
Designer Manual

ADITO Software GmbH

Version 1.8 | 2025-02-19

This document is subject to copyright protection. Therefore all contents may only be

used, saved or duplicated for designated purposes such as for ADITO workshops or

ADITO projects. It is mandatory to consult ADITO first before changing, publishing or

passing on contents to a third party, as well as any other possible purposes.

Version Changes

1.8 ● Chapter Debugger extended and optimized for debugging of managed ADITO

cloud systems.

● Added appendix Version history.

● Minor further improvements

Summaries of changes in previous versions of this document can be found in appendix Version history.

Character Formatting

The following signs will point you to specific sections:

 Hints and notes.

 Tips and tricks.

 This is important!

 Warning! These actions are dangerous and can result in data loss!

The following font formatting applies:

Font type Meaning

Mask The mask, table or button to which the section refers

"Mask" Terms that originate from the system and that need to be emphasized in

the reading flow

code(); Code and program parts

Preface

The ADITO Designer is the central tool to convert customers' requirements into impressing web-based

ADITO projects. The Designer Manual is a glossary, in which the core functions of the ADITO Designer

are explained, part by part - including the various plugins, which extend the Designer’s operational

capabilities.

Happy reading!

The ADITO Academy

P.S.:

After reading this manual, you should go on by reading the ADITO Customizing Manual, which shows

you, on the basis of a plain example, how to use the Designer in order to build and customize ADITO

applications for multiple purposes.

Index

Character Formatting ___ 1

Preface __ 2

1. Introduction __ 8

1.1. Relation to NetBeans __ 8

1.2. General Overview___ 8

1.3. Plugin concept ___ 9

2. Installation ___ 9

2.1. Connecting Designer and server __ 10

2.1.1. All operating systems ___ 10

2.1.2. Additional steps for Linux and Mac __ 10

2.2. Start menu ___ 10

3. Startup ___ 11

3.1. Execution __ 11

3.2. Initialisation __ 11

3.3. Configuration ___ 11

3.4. Ports __ 13

4. Menu bar ___ 14

4.1. File ___ 15

4.1.1. New - New Project ___ 16

4.1.2. Import/Export Project___ 21

4.2. Edit ___ 22

4.3. View __ 23

4.4. Navigate ___ 26

4.5. Source___ 26

4.6. Refactor ___ 26

4.7. Team__ 27

4.8. Tools __ 28

4.8.1. Overview ___ 28

4.8.2. Export Project Structure ___ 29

4.8.3. Options __ 30

4.8.3.1. ADITO __ 30

4.8.3.2. iReport ___ 31

4.8.3.3. Other options__ 31

4.8.3.3.1. Janitor __ 31

4.9. Window ___ 32

4.10. Help ___ 34

© 2025 ADITO Software GmbH 3 / 170

5. Toolbar ___ 35

6. Project Structure ___ 36

6.1. System __ 36

6.1.1. Create a new System__ 37

6.1.2. Overview ___ 38

6.1.3. Users __ 40

6.1.4. System Configuration ___ 40

6.2. Preferences Project __ 41

6.3. Classic___ 43

6.4. Neon__ 43

6.4.1. Deletion of a context__ 44

6.5. Process __ 46

6.6. test ___ 47

6.7. report ___ 47

6.8. Internationalization __ 48

6.8.1. Basics__ 48

6.8.2. Special functions ___ 49

6.8.3. Automated translation __ 50

6.8.4. Find unused keys___ 53

6.8.5. Export Keys with Place of Use___ 55

6.8.6. User help ___ 56

6.8.7. Translation of source code ___ 56

6.9. Roles__ 57

6.9.1. Internal roles __ 57

6.9.2. Project roles __ 58

6.10. alias ___ 58

6.11. Others__ 62

7. Output Window __ 64

8. Execute SQL ___ 65

9. Debugger__ 68

9.1. Preparations__ 68

9.2. Debugging options ___ 72

9.3. Evaluate Expressions ___ 75

9.4. Breakpoint Menu __ 76

9.5. Watches ___ 77

10. Code quality support ___ 78

10.1. Autocompletion __ 78

© 2025 ADITO Software GmbH 4 / 170

10.2. JSDoc __ 78

10.3. Errors and warnings ___ 80

10.4. ESLint support ___ 81

10.4.1. Prerequisites ___ 81

10.4.2. Configuration __ 82

10.4.3. Executing ESLint __ 83

10.4.3.1. Analyze __ 83

10.4.3.2. Fix all ___ 84

10.4.4. Examples of hints and solutions __ 85

10.5. Scan Services __ 87

10.5.1. Preferences __ 87

10.5.2. Result___ 88

11. Deploy___ 90

11.1. Deploy of selected data models__ 93

11.2. Deploy of opened data models __ 94

11.3. Deploy Tool__ 95

11.3.1. Prerequisites ___ 95

11.3.2. Configuration and execution___ 95

11.3.3. Exit codes ___ 96

12. Local Data __ 98

13. Updates___ 100

13.1. Update the ADITO project ___ 100

13.1.1. Basics__ 100

13.1.2. Update of single ADITO models ___ 101

13.2. Update the database ___ 101

13.2.1. Basics__ 102

13.2.2. Maintaining system tables ___ 102

13.2.2.1. ASYS_VERSIONHISTORY __ 103

13.2.2.2. List of system tables___ 103

13.2.2.3. Faulty system tables___ 104

13.2.2.4. Missing entry in ASYS_VERSIONHISTORY __ 104

13.2.2.5. Wrong structure__ 104

13.2.2.6. Table upgrade__ 105

13.2.2.7. Table missing __ 105

13.2.3. Action toolbar ___ 105

13.2.4. Information area ___ 106

13.2.5. Server startup prerequisites __ 107

© 2025 ADITO Software GmbH 5 / 170

14. Plugins__ 108

14.1. Installation ___ 108

14.2. Advantages___ 110

14.3. Plugin AsciidoctorJ ___ 111

14.4. Plugin Git __ 114

14.4.1. Auto-Merging ___ 118

14.5. Plugin Liquibase ___ 120

14.5.1. Basics__ 120

14.5.2. How to use Liquibase ___ 120

14.5.2.1. Creating and naming changelog files__ 121

14.5.2.2. Creating folders __ 121

14.5.2.3. Liquibase folder structure __ 122

14.5.2.3.1. Common structure pattern__ 122

14.5.2.3.2. Liquibase folder structure of the ADITO xRM project _____________________________ 122

14.5.3. Changelog XML structure __ 123

14.5.4. Feature changelog XML structure__ 124

14.5.4.1. Data Definition Language (DDL)__ 124

14.5.4.1.1. CREATE ___ 124

14.5.4.1.2. ALTER___ 127

14.5.4.1.3. DROP ___ 128

14.5.4.1.4. PRECONDITIONS __ 130

14.5.4.1.5. RENAME __ 131

14.5.4.2. Data Manipulation Language (DML) __ 131

14.5.4.2.1. INSERT__ 132

14.5.4.2.2. UPDATE ___ 132

14.5.4.2.3. DELETE ___ 133

14.5.4.3. PREPARED STATEMENTS__ 133

14.5.5. ROLLBACKS ___ 134

14.5.6. BLOB/CLOB ___ 136

14.5.7. XML special characters __ 136

14.5.8. Enabling demo data __ 137

14.5.9. Create Liquibase files automatically __ 138

14.5.9.1. Create empty changelog ___ 138

14.5.9.2. Create changelog with new DB table__ 138

14.5.9.3. Changelog to SQL ___ 138

14.5.9.4. DB to changelog __ 139

14.5.10. Liquibase functions outside the Designer __ 141

© 2025 ADITO Software GmbH 6 / 170

14.5.11. Liquibase with audit and offline synchronisation___________________________________ 141

14.5.12. Using Liquibase files for multiple database types __________________________________ 142

14.5.13. Liquibase troubleshooting __ 142

14.5.13.1. Updated database structure is not accessible____________________________________ 142

14.5.13.2. Handling Liquibase failures __ 143

14.6. Plugin Cloud Support ___ 145

14.6.1. With SSP access__ 145

14.6.1.1. Connection via "load cloud system" __ 145

14.6.1.2. Connecting a local project to a cloud system _____________________________________ 148

14.6.2. Without SSP access ___ 150

14.7. Plugin NodeJS & TypeScript __ 151

14.8. Plugin ESLint__ 152

14.9. Plugin SQL Formatter ___ 152

14.9.1. Functionality __ 152

14.9.2. Settings __ 152

14.10. Plugin Grouped Tabs __ 154

Appendix A: Configuration helpers __ 158

A.1. "+ New …"-Button __ 158

A.2. Blueprints___ 158

A.3. Combobox content search__ 158

Appendix B: Create and upgrade system tables __ 160

B.1. Benefits __ 160

B.2. Execution ___ 160

B.2.1. Parameter ___ 160

B.2.2. Examples __ 161

B.2.2.1. Creating system tables__ 161

B.2.2.2. Upgrading system tables __ 161

B.2.2.3. Using short names ___ 161

B.2.3. Exit codes ___ 162

B.2.3.1. General exit codes ___ 162

B.2.3.2. Exit codes of createTables ___ 163

B.2.3.3. Exit codes of upgradeTables ___ 163

Appendix C: Setting the path variables ___ 164

Appendix D: UUID Generator___ 165

Appendix E: Tunneling __ 165

Appendix F: Version history __ 167

© 2025 ADITO Software GmbH 7 / 170

1. Introduction

1.1. Relation to NetBeans

The ADITO Designer is based upon the NetBeans IDE. Therefore, this manual focuses on the functions

that are special features of the ADITO Designer. For a more general overview, please refer to the official

NetBeans documentation.

1.2. General Overview

The ADITO Designer can generally be divided into six different sections. In the screenshot you can see

the standard setting.

1. The menu bar on top.

These subcategories are always the same and cannot be changed

2. The toolbar directly below.

3. The navigation window for the project ("Projects window", "Project tree").

4. The properties of the marked project part ("Properties window", "Property sheet").

5. The main screen (also called "Editor window"), where all code is displayed.

This is the only window that cannot be removed completely. You can scale the font size of the

code lines up and down by pressing the mouse wheel and then turning it back and forth.

6. The navigation window ("Navigator"), for the file viewed.

© 2025 ADITO Software GmbH 8 / 170

The content of all of these regions can be individually changed with different windows via drag and

drop.

The properties shown in the "Properties" window are interdependent - meaning

that some of them are only shown, if a specific property has been set to a certain

value.

Examples:

● If the calender has been deactivated, then the other calender-specific

properties are not shown.

● If a View’s property "layout" is set to "HeaderFooterLayout", then 2 additional

properties will appear, namely "header" and "footer".

For special information regarding the menu, toolbar, or the different windows, please refer to the

following chapters.

If you have changed the size and position of the window and created a mess, then

there is an easy way to get back to the standard windows setting: Choose "Window"

in the menu bar and then select option "Reset Windows". The Designer will

disappear for a second and reappear on you standard display, with all windows in

standard setting - exception window "Output", which must be added manually

again:

Window > Output.

1.3. Plugin concept

Part of the functionality of the ADITO Designer is offered via plugins, which can be installed/uninstalled

(or activated/deactivated, respectivly) on demand. When starting the Designer for the first time, a

dialog will appear that offers you to install all "standard" plugins, which usually should be installed in

order to work with the Designer smoothly.

Please find further information in chapter "Plugins".

2. Installation

Up to and including ADITO versions 2023.1.x, both the Designer and the server are included in one

installation file, named, e.g., ADITO_2023.1.0_windows-x64.exe.

Additionally, beginning with version 2023.1.0, the Designer is also supplied as ZIP file.

This should enable the user to get familiar with the new installation approach that will be standard

from version 2023.2.0 and newer:

© 2025 ADITO Software GmbH 9 / 170

● The ADITO Designer is available as ZIP file.

● The ADITO server is available in an installation file, which does no longer include the Designer.

2.1. Connecting Designer and server

The following is only required, if you are working with a local server, not with a cloud system.

2.1.1. All operating systems

The handling of Designer and a local server remains the same. The connection between the unzipped

Designer and the installed server is done via property "aditoHomePath". This property has a file

chooser, with which you can select the path of your server, e.g., C:\Program Files\ADITO2023.1.0.

2.1.2. Additional steps for Linux and Mac

Users of Linux and Mac (after unzipping the Designer) additionaly need to specify the path to a Java

JDK or JRE that is compatible with the Designer, in property "javaHomePath" e.g., C:\Program

Files\Java\jre-13.0.2

Furthermore, they need to set the "jdkhome” attribute in the file ADITODesigner.conf to a valid JDK/JRE

path, because the zip file by default includes only a Windows JRE. The Designer requires Java 13.

2.2. Start menu

© 2025 ADITO Software GmbH 10 / 170

As unzipping does not mean that something is included in the Windows start menu, we have to do this

manually. In the Designer’s directory, we navigate to folder "bin", right-click on file ADITOdesigner.exe,

and choose option "Create shortcut". Now you can drag the shortcut on the desktop, into the task bar,

include it in the start menu or wherever you want it to be available for starting the Designer.

3. Startup

3.1. Execution

Start the designer via the shortcut which you have created manually during the installation process -

see previous chapter.

3.2. Initialisation

At the first Designer startup,

● an initial dialog appears, prompting you to specifiy which of the Designer plugins are to be

installed. Usually, you can select all plugins.

● the initial content of the "default_userdir" (see below) is created.

3.3. Configuration

In the ADITO platform’s installation directory "config", you can find a file named "ADITOdesigner.conf".

This file includes startup configuration parameters of the ADITO Designer. Usually, you do not need to

change the default configuration. However, if required, here is a description of the parameters:

● default_userdir (for macOS: default_mac_userdir): Basic subdirectory of the user directory.

Here, the Designer automatically creates and manages its files, e.g., plugins and configuration

files.

From ADITO version 2022.1.0, folder ".aditodesigner" has one separate sub-

folder (sub-user-directory) for every installed ADITO version, be it a major

release (e.g., 2022.0), a minor release (e.g., 2022.0.1), or a hotfix (e.g.,

2022.0.0.2). Earlier versions had sub-folders (sub-user-directories) only for

every major release.

Example: "${HOME}/.aditodesigner/2021.2" (which results in a folder like

"C:\Users\j.smith\AppData\Roaming\.aditodesigner\2021.2). If you work

with multiple Designer installations belonging to the same major version (e.g., 2021.2), you need

to modify this directory’s name (before the first Designer startup), in order to avoid that its

content gets confused by 2 Designer instances writing into this directory. For example, specify

"${HOME}/.aditodesigner/2021.2_customerA" in the ADITOdesigner.conf of the

© 2025 ADITO Software GmbH 11 / 170

first installation, and "${HOME}/.aditodesigner/2021.2_customerB" in the

ADITOdesigner.conf of the second installation.

● netbeans_default_cachedir: Directory in which the Designer places cache data, e.g., indices, or

the state of the Designer windows at last shutdown. Example:

"${HOME}/.aditodesigner/2021.1/cache" (which results in a folder like

"C:\Users\j.smith\AppData\Roaming\.aditodesigner\2021.1\cache"). If

you work with multiple Designer installations belonging to the same version (e.g., 2021.2), you

first need to modify this directory’s name (see remark above).

● default_options: Java parameters passed to the Designer. Here you can, e.g., specify “-D”

parameters, which always need the prefix “-J”.

Example: -J-Dadito.home=\"C:\Program Files\ADITO2021.2.1\". Here are

some further parameters that might be of special interest:

○ If you work with multiple projects in the same Designer instance: -J-Xmx defines the

main memory to be reserved for the Designer. The default value is -J-Xmx6144m (same

as -J-Xmx6G), meaning 2 gigabyte, which should be enough if you work with 1 or 2

projects at the same time. If you work with more projects or with very large projects, you

may increase this value according to your requirements. But CAUTION: The Designer will

always allocate the amount of RAM assigned to it via the -J-Xmx parameter, even if

actually less RAM is required. Therefore, handle this parameter with care.

○ A parameter that is added occasionally is the "default database timeout". It enables you

to define how long the system should "wait" for the completion of a logic execution. If

this timespan is exceeded, a dialog will appear, prompting you to decide whether to

continue waiting or stopping the execution. By default (= if not explicitely set in file

"ADITOdesigner.conf"), this value is 30000 (i.e., 30 seconds).

In some cases, e.g., when executing a "Drop all & update" command via Liquibase, this

default value might be too low and you possibly want to avoid having to confirm the

timeout dialog again and again. You can solve this by changing the timeout value: Add and

set the following parameter:

-J-Dadito.designerdb.timeout=<value in milliseconds>.

○ -Dadito.designer.project allows you to specify an absolute path of a project (or

any file of it), which will then be opened at every Designer startup. If further projects had

already been opened additionally, they will not be closed.

○ -J

-Djdk.http.auth.tunneling.disabledSchemes=\"negotiate,kerber

os,digest,ntlm\" deactivates all non-supported authentication methods when

using a proxy. (The ADITO Designer exclusively supports the authentication method

"BASIC".)

© 2025 ADITO Software GmbH 12 / 170

● jdkhome: Path to your local Java Runtime Environment (JRE); can be a relative or an absolute

path. Default is the relative path "jre", as every ADITO installation comes with a current JRE,

stored in a folder named "jre".

3.4. Ports

The Designer itself does not need ports to be opened. It depends on where the Designer wants to

connect to. If everything runs locally (the system, the database, the project) you do not need to open

any ports. If you, e.g., want to load your project from Git, then the Designer needs to connect to the Git

repository, and thus it needs the Git (SSH/HTTPS) port. Similarly, in order to load data from the SSP, the

Designer must connect to the SSP and thus needs the open port for HTTPS.

The following ports need to be opened, if the Designer needs to connect to non-local destinations (all

ports TCP unless otherwise noted):

Destination Port URL Comment

Plugins 443 https://aditopluginsonline.

adito.de/2023.1.0/

catalog.xml

Caution: Version-specific. It

is recommended to share

the following URL

https://aditopluginsonline.

adito.de/

→ half-optional: nbm files

can be downloaded

elsewhere and then copied

over

→ check correct version!

NodeJS 443 https://nodejs.org/dist/ → half-optional: can be

copied from existing

installation

(%appdata%/…/libraries/bu

ndled_nodejs)

→ check correct version!

Analytics

(optional)

9000 http://157.90.233.96:9000 might change in the future

GitLab 443 for https

AND 22 for SSH

https://gitlab.adito.de/

© 2025 ADITO Software GmbH 13 / 170

https://aditopluginsonline.adito.de/2023.1.0/catalog.xml
https://aditopluginsonline.adito.de/2023.1.0/catalog.xml
https://aditopluginsonline.adito.de/2023.1.0/catalog.xml
https://aditopluginsonline.adito.de/
https://aditopluginsonline.adito.de/
https://nodejs.org/dist/
http://157.90.233.96:9000
https://gitlab.adito.de/

Destination Port URL Comment

Cloud Plugin 443 https://ssp.adito.cloud/

SSH tunnel depending on

system; check

tunnelconfig.xml

depending on tunnelconfig,

e.g., ssh.c2.adito.cloud

database MariaDB: 3306

MS SQL: 1433

Oracle: 1521

Postgres: 5432

Derby: 1527

DB2: 443

depending on

manufacturer, check in

serverconfig (→ host/port);

if managed via SSH tunnel,

then irrelevant

npm install 443 https://nexus.adito.cloud/

repository/xrm

this is the standard; can be

changed, if required, in

.npmrc

Clear Datamodel

Cache at deploy

(optional)

neon HTTPS port

standard is 8443

depending on ADITO server

address

not to be mistaked with db

cache, which is controlled

via manager; if managed via

SSH tunnel, then irrelevant

autom.

translation

of language keys

(optional)

443 https://api.deepl.com/v2/

translate

https://translation.googlea

pis.com/language/

translate/v2

https://translate.yandex.ne

t/api/v1.5/tr.json/translate

via DeepL, Google

Translate, or Yandex

Debugger 1098 and 1099 depending on ADITO server

address

if managed via SSH tunnel,

then irrelevant

Telnet logger 7722

DNS UDP/53

© 2025 ADITO Software GmbH 14 / 170

https://ssp.adito.cloud/
https://nexus.adito.cloud/repository/xrm
https://nexus.adito.cloud/repository/xrm
https://api.deepl.com/v2/translate
https://api.deepl.com/v2/translate
https://translation.googleapis.com/language/translate/v2
https://translation.googleapis.com/language/translate/v2
https://translation.googleapis.com/language/translate/v2
https://translate.yandex.net/api/v1.5/tr.json/translate
https://translate.yandex.net/api/v1.5/tr.json/translate

4. Menu bar

Only menu items that differ from the NetBeans standard will be covered in this

chapter.

For information regarding other options please refer to the NetBeans

documentation.

4.1. File

Name Usage

New - New Create a new data model (entity/process/role/etc.) within the selected

project.

New - New Project Create a new project. Additional Information below.

Open Open/Search for one data model in a project.

Open Project Open a project saved locally.

Open Recent Project Open recently open projects.

© 2025 ADITO Software GmbH 15 / 170

Name Usage

Close Project Close the selected project.

Close Other projects Close all projects but hte selected one.

Close All Projects Close all open projects.

Project Groups Group your projects together.

Import Project Import data models or complete projects from a export file into your

selected project. Additional Information below.

Export Project Export one or more data models from your selected project. Additional

Information below.

Save Save the project.

Save As Specify how you want to save the project

Save All Save all projects.

4.1.1. New - New Project

There are a few ways to create a new project.

© 2025 ADITO Software GmbH 16 / 170

 To be able to use option number 3 the git plugin has to be installed.

1. create empty project

First you have to choose a name and the storage location.

This will create, as the name suggests, a completely blank project with not a single data model

with the exception of empty preferences.

2. load template from server

© 2025 ADITO Software GmbH 17 / 170

This option is used to create a new local project out of a already existing 'compressed' project.

Copy the storage path into the field "Repository" and the project will show up. You may have to

give a username and password when connecting to the "Repository".

Again choose a name and storage location in the following window.

3. create from system db

Select the name and storage location for your project, but also the system db file, from which

the project shall be generated.

4. clone from git repository

Firstly you have to select the way to connect to the git server where the project is saved. Either

via https or ssh. In both cases you will need the right address. Connect to git with your browser

and navigate to your project. here there will be a button "clone" where you are able to obtain

both keys.

© 2025 ADITO Software GmbH 18 / 170

Copy the key for the preferred method into the "Repository URL" field.

In both cases choose a name and storage location.

The name must not be "dist" or "node_modules", as these are names reserved for

internal use.

When working with the https key you will now be asked for you git login

© 2025 ADITO Software GmbH 19 / 170

In case of the the ssh key you have to select the physical key, generated with puttyGen and deposited in

git, and its password.

In both cases you will have the option to checkout with a specific branch of your project.

© 2025 ADITO Software GmbH 20 / 170

4.1.2. Import/Export Project

When importing/exporting a project, the process is mostly the same, just the other way around.

© 2025 ADITO Software GmbH 21 / 170

 When exporting a project, this project has to be the currently selected project.

You may choose all, or just one datamodel which you want to export. Do this by simply clicking the

checkbox.

In the next step choose the storage location for your export, and a zip-file will be generated.

When importing a project you just have to choose the zip-file and the same screen shown above will

appear.

You again have the option to deselect datamodels for the import.

Should one imported datamodel have the same name as a existing datamodel you have the option to

override the existing datamodel or cancel the import.

4.2. Edit

There is no difference between this menu point in ADITO and NetBeans, with the exception you cannot

use macros in ADITO. For this reason please use the NetBeans documentation for any questions.

© 2025 ADITO Software GmbH 22 / 170

4.3. View

With the menu point View - Toolbars, the toolbar beneath the menu bar can be configured.

The following options can be selected (most of them is selected by default):

Git

Commit your changed files

Pull the newest version

Push your changed files

Diff the local changes

Show the project history

Show local changes made

deploy

Deploy of complete project

© 2025 ADITO Software GmbH 23 / 170

Deploy of opened data models

Open the SQL prompt

open

Create a new data model

Open the searchbar for data models

Save your project

undo/redo

Undo the last action

redo the last undone action

run

Select the instance which you want to start

Start the selected instance

© 2025 ADITO Software GmbH 24 / 170

The items selectable in this combo box are named "run configs". They are used, e.g., to start the ADITO

server or the browser including the ADITO Web Client.

In section "Scripts" you can find the run configs of the NodeJS scripts, but only if you have installed the

NodeJS plugin. (This plugin allows you to create NodeJS scripts, which will be stored, keeping with the

standard, in package.json).

The NodeJS scripts will not work unless you have executed the "npm install" command via the context

menu of the file "package.json" (in the lower part of the "Projects" window):

After executing a NodeJS script, its output is shown in the Designer’s output window "NodeJS Script:

<name of script>". Here, you can find a white, square button that enables you to stop the script:

In section "Scripts" you can find the run configs of the frontend-related tests written with Cypress.

© 2025 ADITO Software GmbH 25 / 170

https://docs.npmjs.com/cli/v7/using-npm/scripts
https://www.cypress.io

performance

Shows the current Designer performance. A click

activates the garbage collection

Profile the application and create a screenshot

Pauses and resumes I/O checks

The performance tool is disabled by default.

Please look into the NetBeans documentation for further information.

When more than one project is open the project name will show when selecting you

instance

With the button "Reset Toolbars" all changes made to the toolbar will be reverted.

If you want to add additional functions to your toolbar, you can select many different functions in

"Customize" and add these via drag and drop to your toolbar. Also you are able to move icon while this

list is open via drag and drop.

4.4. Navigate

There is no difference between this menu point in ADITO and NetBeans. For this reason please use the

NetBeans documentation for any questions.

4.5. Source

There is no difference between this menu point in ADITO and NetBeans, with the exception you cannot

use macros in ADITO. For this reason please use the NetBeans documentation for any questions.

© 2025 ADITO Software GmbH 26 / 170

4.6. Refactor

This menu group provides options for refactoring, in particular, for deleting and renaming ADITO

models, such as Contexts or Entitys. The functionality is the same as the corresponding items in the

context menu of the respective ADITO models.

In some cases, particularly when deleting or renaming, a tab "Refactoring" will

appear in the lower middle part of the Designer (it can very easily be overlooked!),

which requires you to confirm the refactoring by clicking on button "Do

Refactoring". Here you see all models affected by the refactoring, and on demand,

you can uncheck part of them (not recommended!). If you miss to react to the

refactoring prompt (or repeat the action that caused it) and continue working, your

XML project source code might become confused and you will have to repair it

manually.

Figure 1. Example of content of tab "Refactoring"

The refactoring will fail or be executed incompletely, if you had cancelled the

"Indexing" process - please refer to chapter "[Scan services]".

4.7. Team

The menu point team changes depending if the Git plugin is installed or not, refer to the Git-Plugin

chapter for further information.

If it is not installed you have the option to "Shelve Changes", NetBeans Standard and use the

"Versioning".

Should Git be installed on the other hand, you have will find the different Git-Commands.

For further questions about those please visit the official Git forum.

© 2025 ADITO Software GmbH 27 / 170

4.8. Tools

4.8.1. Overview

Generate UUID Generates a random 36-digit hexadecimal UUID (see appendix UUID Generator)

Apply Diff Patch… Update your project using a diff file selected by the user.

Diff… Enables the comparison of the source of the currently marked model with a file

selected by the user.

Add to Favorites Mark a data model/system-component/project as a favorite. It will then be

displayed in a sub-window of the "Projects" window.

Open in Terminal Opens the Terminal window (requires cygwin to be installed).

DTDs and XML

Schemas

see NetBeans documentation

Palette see NetBeans documentation

Create

Dependency

Graph…

Creates an illustration of all dependencies of the complete project, in one large

png file. CAUTION: This can take several minutes, while the Designer is blocked.

© 2025 ADITO Software GmbH 28 / 170

Export Project

Structure

Exports the structure of the complete project, as csv file (see sub-chapter

Export Project Structure below)

Plugins See chapter Plugins and its several sub-chapters.

Options Opens a tabbed dialog for configuring editors, colors, shortcuts, the debugger,

and many more (see sub-chapter Options below)

4.8.2. Export Project Structure

The tool "Export Project Structure" enables you to export the structure of the complete project, as csv

file, with comma as separator.

The design of the export structure reflects the requirement of a specific customer

group and may thus not meet every user’s expectations.

The csv file consists of several rows, one row per structure element (e.g., a table), and 6 columns,

whose general meaning is as follows (exceptions possible):

1. module: The module to which the structure element belongs, e.g. "Contact Management". In

most cases, a "module" is identical to a specific menu group of the Global Menu.

2. Context - in most cases identical to a specific menu item of a menu group.

3. type of visual element, e.g., FilterView, PreviewView, "G Tab", "D Tab" (tab of a MainView). To

simplify filtering in Excel, prefix "G" means that it is the first row of the view element (with

colums 4, 5, and 6 being empty), and "D" marks the following rows.

4. name of the sub-component visual element, e.g.,

○ FilterView/PreviewView: title of the Entity

○ lable of tab in a MainView (= title of ViewTemplate)

5. The title of the sub-element, e.g., of a TableViewTemplate.

6. The lowest structural element(s), e.g., the columns of a TableViewTemplate (separated by

semicolons), or the title of an Action.

Some cells have three slashes ("///") as prefix. This indicates that the cell’s content could not be

retrieved statically, because, e.g.

● the title is generated at runtime, via a titleProcess or

● there is no translation available

© 2025 ADITO Software GmbH 29 / 170

Instead, the name or the non-translated title of the object is given. This will help you to find the

corresponding place in the web client, in order to fill in / correct the cell value by yourself.

4.8.3. Options

4.8.3.1. ADITO

The subject "ADITO" contains the following settings:

General Settings regarding

-Dialogs

-System Editor

-JDito Upgrader

-Adito Hints

- Scan Services (refer to the corresponding chapter)

NodeJS Here you can change your installationpath for your NodeJS instance and also

download a desired version.

ESLint Enable code analyzis after you save a file.

Translators Here it is possible to specify API keys for Google, DeepL and Yandex translators

(refer to the corresponding chapter).

Debugger You activate the Debugger here and choose to show the elapsed time (refer to

the corresponding chapter).

Cloud Change the buffer size for the logging with RXJava backpressure.

Encoding Change your encoding in your ADITO Designer if necessary.

Data Sharing Enable or Disable the sharing of anonymous usage statistics (recommended to

enable it) .

© 2025 ADITO Software GmbH 30 / 170

4.8.3.2. iReport

The subject "iReport" contains the following settings regarding Jasper-Report:

General Here you can define the standard unit and make general settings in the areas

Report defaults, Designer, Expression editor, and Compatibility.

Classpath Classpath lets you manage existing JARs or add more.

Fonts Fonts can be managed or added .

Viewers In this tab it is possible to specify the paths of the viewer to be used.

Wizard Templates Here you can manage templates or add new ones.

Compilation and

execution

In this tab, you can change the compilation default directory, customize the

execution options, or make settings in the Parameters prompt or Virtualizer

sections.

Query Executers Here you can adapt the Factory Class and the Fields Provider class to the

respective language or add new ones.

Export options In this tab export settings in the areas common, PDF, HTML / XHTML, Excel, CSV

and text can be made.

JasperReports

Properties

Here it is possible to complete or modify properties for JasperReports.

4.8.3.3. Other options

For information regarding the subjects "General" till "Miscellaneous" please use the NetBeans

documentation. In the following, selected options are explained.

4.8.3.3.1. Janitor

Janitor is a NetBeans feature that is also included in the ADITO Designer. It helps you to delete outdated

version folders and thus free up disk space. Version folders are the folders holding cache data, plugin-

related data etc. You can find these folders in your roaming directory:

C:\Users\<username>\AppData\Roaming\.aditodesigner\<version number>,

e.g., C:\Users\j.smith\AppData\Roaming\.aditodesigner\2023.0.2

© 2025 ADITO Software GmbH 31 / 170

Janitor runs one minute after startup and checks, if the version folder was not used for more than (by

default) 30 days. In this case, a notification is shown that this folder might be deleted, which could free

up a specific amount of disk space. If you click on the respective link in the notification, the folder can

be removed immediately.

Under Tools > Options > Micellaneous > Janitor you can configure

● if Janitor should run on startup;

● the removal threshold (default: 30 days), i.e. the minimum number of days without changes,

which makes Janitor classify a version folder as "outdated".

Furthermore, you can run Janitor manually via the button "Run Janitor Now".

4.9. Window

Using the "Window" menu item, you have the option to select/deselect from a variety of different

windows with different functions.

 The arrangement of all windows can be changes via drag and drop.

© 2025 ADITO Software GmbH 32 / 170

Name Standard

Position

Usage

Projects 1 Shows the open project(s) as a tree table, split into data

models.

Files 1 Shows the open project(s) as a tree table, split into its

folder structure

Favorites 1 Shows all as favorites marked files/data models/project/…

Output 4 Logs everything happening for the selected server/client/…

Services 1 Shows a logical overview of run-time resources e.g.

database drivers

Scan Services 4 Lists all things detected that should be reworked/looked

over like TODOs or warnings

Navigator 3 Gives an easy overview of the selected file (e.g. methods)

Debugger 4 See the corresponding chapter for further information

© 2025 ADITO Software GmbH 33 / 170

Name Standard

Position

Usage

Palette 3 Shows all components available for the selected data

model

Properties 2 Shows the properties given to the selected data model

Bookmarks 4 Shows all toggled bookmarks (via menu point "Navigate")

Notifications 4 Shows all application wide messages which are not specific

for a file or project

Terminal 4 A terminal window for specific command lines

Report designer Multiple windows helping when creationg a report

Editor Middle The place where the code or opened frames will show up

For any questions regarding the remaining menu points please use the NetBeans documentation.

4.10. Help

1. Check for Updates

Check for available Updates.

2. About NetBeans

Show a short summary of the source NetBeans-Version.

3. About ADITO

Info show the Designer-Version as a image.

Licence show the used licence.

System contains multiple values regarding a wide variety of information.

This information is sorted via a key which shows its origin.

For example java.runtime.version contains the used java version.

The values regarding ADITO are:

© 2025 ADITO Software GmbH 34 / 170

adito.designer.build The exact buildnummer of your Designer

version.

adito.designer.data This is the storage location for database

information like logs.

adito.designer.home Here is the path for the opened Designer.

adito.designer.version The installed ADITO is shown here.

adito.db.derpy.start A boolean value showing if a derby database

is/was started.

adito.home The installation path for ADITO.

adito.netbeans.buildnummer This is the combination of .build and .version

5. Toolbar

For instructions regarding the toolbar please take a look at the chapter Menu bar, subchapter View.

Everything listed there for the "Toolbar" section is still relevant for this chapter.

Please note you can also access this menu point by right-clicking into the toolbar.

If you want more information on how to customize your toolbar or add a new one, please refer to the

NetBeans documentation.

© 2025 ADITO Software GmbH 35 / 170

6. Project Structure

To create a new empty project, select File > New Project > create empty project. Specify its name and

location, and press the "Finish" button. This will create a new project with a substructure, in which ten

different sub-nodes appear:

● system

● preferences

● classic

● neon

● process

● report

● language

● role

● alias

● others

These substructure will be explained below.

In most cases, you will not create a new project from scratch, but you will use the

standard project "ADITO xRM" (or one of its industry models) as template for a new

project, and then customize it according to your requirements, e.g., by modifying

existing Entities, or creating new Contexts, Entities, and Views. Nevertheless, in the

following, you will find a description of how to create a completely new project and

its sub-structure.

The general creation procedure usually is:

1. Create a new ADITO model (system, Entity, View, etc.) in the "Projects"

window, the included "+ New …"-button in the entity or in the Navigator

window, respectively.

2. Configure its properties in the "Properties" window.

3. If required: Create its substructure in the Navigator window.

In the Designer there are various mechanisms to simplify the configuration of new

models - please refer to appendix "Configuration helpers".

© 2025 ADITO Software GmbH 36 / 170

6.1. System

The system model is the access point for all external systems which can connect to ADITO like e.g.

1. Database Systems

2. Mail Server

3. Groupware Systems

In addition to being the access point, the system settings also define the ADITO server itself.

6.1.1. Create a new System

To create a new system, right click onto the "system" folder and select "New". Alternatively you may

also use the option "File" - "New" - "New", in this case please make sure that the right type is selected.

But before you can effectively do anything with it, the server has to be started.

So please make sure a serverconfig file is available at the location given under properties as well as the

actual license file.

© 2025 ADITO Software GmbH 37 / 170

The server can be started using the buttons in the toolbar.

6.1.2. Overview

By default the connected systems together with the configuration menu will appear as well as a tab

with all users present in ADITO. In this example there are two databases, both of which can be accessed

via a double click in addition to "___CONFIGURATION". Should there be more external systems

connected they would show up here together with their address.

There will always be two connected data bases "___SYSTEMALIAS" and "Data_alias". All tables

© 2025 ADITO Software GmbH 38 / 170

regarding the system or the client, normaly with the prefix "ASYS_" are saved in "____SYSTEMALIAS".

The data you normally work with in the client, like persons or contacts, is saved in a table in

"Data_alias".

Via a double click on an instance, like a database, it can be accessed.

It is also possible to create or alter database tables here. With a right click you open the following

window.

Simply select "Create Table" and you will get a pop up window where you are able to easily create a

new window. The same way you may also create system tables with "Create System Tables" but it is

recommended you don’t do this. There are more options to alter tables when directly clicking on a

table.

You are also able to create views and store procedures in their respective folders. These work the same

way in ADITO as in any other database system.

In addition it is also possible to create more different schemas in the "Other schemas" tab. These can

be simply selected as the default with a right click.

© 2025 ADITO Software GmbH 39 / 170

6.1.3. Users

In the tab "User" all users are shown. Also you are able to create Users here via a right click. These

functions are relatively the same when you create a user via the frame. But further there are some

option which can only be selected in the Designer via the "Properties" window. For example the

"INTERNAL_…" roles can only be assigned here.

6.1.4. System Configuration

With a double click on "____CONFIGURATION" you open the system settings regarding a multitude of

options of the ADITO server as well as the ADITO client. All options are grouped in multiple categories

© 2025 ADITO Software GmbH 40 / 170

shown in the "Navigator" on the right side.

Do not mistake these 2 configuration options: The properties of "CONFIGURATION"

all refer to the system, while the properties of "PREFERENCES_PROJECT" (in the

project tree, under the node "preferences") all refer to the project.

System information regarding the client/server ports as well as security measures

Client Options to disable or enable the different client types, to modify the client

appearance and to configure which login types are being used

Modules Disable or enable Indexsearch, e-mail, telephony and snmp

Database Options for database audits and timeouts and Master and Slave settings for

offline synchronisation

Calendar Determine calendar storage locations and the synchronisation with other

calendar applications

InstantMessaging Settings concerning the instant messaging in the client on the server level

JLoader Settings concerning the download manager

Logging De/activate the logging function for multiple different ways

Custom Create own custom properties

6.2. Preferences Project

In addition to the system settings, there are more options for the client and server in the data model

"preferences" (see second main node of the project tree in window "Projects").

These settings are specific to the project and are the same for all systems within the current project.

Do not mistake these 2 configuration options: The properties of "CONFIGURATION"

all refer to the system, while the properties of "PREFERENCES_PROJECT" (in the

project tree, under the node "preferences") all refer to the project.

© 2025 ADITO Software GmbH 41 / 170

System Specify a language and the autostart

Client Set a default browser and login limits as well as the client search plus feedback

options

Security Define requirements for user passwords

Modules No content

Database More options for the database audit and new options determining how to

handle large data packages

Calendar Enable a standard sorting and define categories (e.g. events)

Email More specific options on how to handle e-mails

Indexsearch Enable the index search and define the indexer (when indexes should be build)

+ general rules

InstantMessaging Settings concerning the instant messaging in the client on the client level

Custom Create own custom properties

You can access these preferences via the methods of module project.

Example:

import { project } from "@aditosoftware/jdito-types";

© 2025 ADITO Software GmbH 42 / 170

JSON.parse(project.getPreferenceValue("custom.dsgvo.active", "true"));

6.3. Classic

Classis in ADITO is the "swing"-client you might know as the default client of older ADITO versions using

"Frames".

In "application" each frame is places in a location, which would create the sidebar in the client.

Frames contains all frames, now known as context-types.

When a component is placed inside a frame, you may often need exact measures or other setting for

more than one component. To simplify this, you can create a template with all settings and apply the

template for your component under "Properties" - "template". All templates are managed under

"classic" - "template".

For further information on how to work with frames etc. please refer to the Coding-Guidlines.

6.4. Neon

The node "neon" includes groups containing data models that are used in the ADITO Web Client

(sometimes refered to as "Neon"), which is the new standard client since version ADITO 2019.

The group "application" fulfils a similar role as "application" in "classic": A double-click on

"____SYSTEM_APPLICATION_NEON" opens an editor to modify the Global Menu of the Web Client.

"context" contains Context models, which can then be referenced in the editor of the Global Menu

(see above).

You may create custom notifications for your project. These are managed in "notificationtype".

"entity" clusters ADITO Entities, which are used to model the data structure of the ADITO system.

"dashboard" includes Dashboard models, which are used for showing web pages that include Dashlets,

© 2025 ADITO Software GmbH 43 / 170

which in turn included capsulated Views of specific Contexts. Dashboard "Home" is always shown after

logging into the Web Client, while further Dashboards (e.g. Sales Dashboard) can be opened via the

Global Menu.

"renderer" contains definitions of Renderers, which, e.g., are required for the ViewTemplate

MultiEditTable.

Find detailed information about how to handle the Neon data models in the

Customizing Manual and in the various "ADITO Information Documents" (AIDs).

Therefore, the above paragraphs are only an overview.

Newer version don’t support the "classic" ("swing"-client) folder structure. The

project will look like this:

6.4.1. Deletion of a context

With 2022.2.2 you will be able to delete a context with the connected entity, views,

SYSTEM_APPLICATION_NEON entry, cypresstests, consumer and references in your system

© 2025 ADITO Software GmbH 44 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Customizing_Manual.pdf

1. The Context to be deleted

2. The children hanging under the context

3. The entity of the context

4. The references of the entity

5. The order of the Cypress tests and the tests to it

6. The view of the context

7. The references of the view

8. SYSTEM_APPLICATION_NEON and its use in the menu.

Explicitly, this means:

● If all checkmarks are set (as in the image above), the Context, View, Entity, Cypress tests and the

folder where the Cypress tests are located will be deleted. It also deletes the context entry from

SYSTEM_APPLICATION_NEON and the view and entity references.

● If you want to keep the view, you have to uncheck (6). The check mark at (2) only indicates that

in 306Degree.aod (the AOD of the context) the entry is removed, but not the view. Similarly for

Entity (3) and Cypress tests (5)

● For Cypress the folder (under basic\cypress\e2e\singleTests) is deleted and the files under it. You

can deselect child items here, which will not be deleted, or the whole folder, so that no Cypress

tests will be deleted.

● If all checkmarks are removed and you press Refactor, the context is the only one deleted

(default behavior).

© 2025 ADITO Software GmbH 45 / 170

● Rule of Tumb: Parent elements in the tree that end in _view or _entity or have a folder icon

will have been deleted after the refactor. Parent elements to which this does not apply and child

elements will have lost the reference to the element to be deleted (which can be either the

context for SYSTEM_APPLICATION_NEON; or the entity or view for its child elements).

6.5. Process

There are multiple reasons, why you should write code in a process instead of in the Context, e.g.,

reusability, server processes, etc. The processes are stored in sub-folders, according to purpose.

To create a new process, right-click on the folder "process" and choose "New" from the context menu,

enter a suitable name, and click "OK". At first, the process will appear at the same level as the sub-

folders. Via property "variants", you can assign your new process to one of 4 variants.

If you check a checkbox, the new process is immediately moved to the corresponding folder.

The purpose of these variants is:

● authentication: All processes responsible for authentication - see the ADITO document AID032

Authentication Methods

© 2025 ADITO Software GmbH 46 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID032_Authentication_Methods.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID032_Authentication_Methods.pdf

● executables: All processes which are used as an executeable, e.g. importer or other server

processes.

● libraries: All standard and customer-specific libraries, which include methods for general

purpose (e.g., Sql_lib) or for specific Contexts (e.g., Person_lib).

● workflow: All processes related to workflows - see the ADITO document AID110 Workflow

Management

A fifth variant is "webservices". In this folder, there are all processes that have property

"publishAsWebservice" set to true. Find more information about how to handle web services in the

ADITO document AID059 Web services with ADITO.

The sixth variant, "internal", contains all processes which are provided by the ADITO platform ("core"),

because they are needed for internal purposes, e.g., autostartNeon, blobHandler, or ctiCall. You cannot

add your own processes in this folder, but there are multiple processes with names in grey font; if you

need them, you can double-click on them or right-click and choose "Create Model". Then you can set

their properties and insert code.

Processes can appear in multiple folders. E.g., the REST web service "mosaico_rest" appears not only in

folder "webservices" (because its property "publishAsWebservice" is set to true), but also in the folder

"executables" (because this variant is set in property "variants").

If you add new processes, you should name them according to the naming

conventions, which you can learn from the names of the existing xRM processes.

Libraries, e.g., are named in CamelCase, with the suffix "_lib"; REST webservices are

named in camelCase, with the suffix "_rest", etc.

The processes included in the ADITO xRM project should never be renamed, and

their content should only be modified in exceptional cases. If you need additional,

customer-specific methods, you should store them in new, customer-specific

processes, e.g., MyNewContext_lib or KeywordRegistry_custom. In particulary, this

separation will help you to avoid merge conflicts when updating your project to a

new version of the xRM project.

6.6. test

Node "test" include test files, which contain jDito code to test parts of the ADITO project code. The files

can be executed via the context menu option "Execute tests".

6.7. report

All report files in ADITO are based on JasperReports.

© 2025 ADITO Software GmbH 47 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID059_Webservices.pdf

For further information, please refer to

● the ADITO Reporting Manual

● the documentation provided by the manufacturer of JasperReports.

6.8. Internationalization

ADITO is ready to be used in any international context. Most of the web client’s elements can be shown

in any language. This requires language-related settings in the project tree, under node "language":

In addition to the following sub-chapters, we recommend you to read also the

complete chapter "Internationalization" of the Customizing Manual, where you will

find additional information.

6.8.1. Basics

By default, the ADITO xRM project comes with English and German language settings. By right-clicking

on the "language" node and choosing option "New", you can add settings for further languages.

© 2025 ADITO Software GmbH 48 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Reporting_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Customizing_Manual.pdf

Figure 2. Language editor with settings of German language translation

Languages in ADITO are always represented as tables, who are embedded in a language editor. In this

table, you can enter the translations for the corresponding keys. Via a context menu you can create a

new line, edit a line or delete an entry. Furthermore, the function bar above the table provides you

with additional options, e.g. the automatic extraction of language keys from the project (button

"Extract Keys").

1. Languages and regions

A translation in ADITO is always divided into the language (language, e.g., en) and region (US). A

language key is built from these parts and is also displayed in the Language Editor, e.g.,

LANGUAGE_en_US.

Translations can be specified in ADITO either down to the region (see LANGUAGE_en_US) or for

one language family (LANGUAGE_en).

2. Fallback to other languages or translation keys

If a particular translation (e.g., LANGUAGE_en_US) does not exist for a language family (e.g.,

LANGUAGE_en), the special language falls back to the translations of the language family, if

available (e.g., LANGUAGE_en_US falls back to LANGUAGE_en).

However, if both the translation settings of the language (e.g., LANGUAGE_en_US) and the

language family (e.g., LANGUAGE_en) are present and a special translation key is translated in

the language family, but not in the language, the fallback to the actual translation is not to the

language family, but only to translating keys.

Example: Translation key "bonnet", English "Bonnet"; in the American translation, the key is not

registered. An ADITO client then displays "hood". Only when you enter the corresponding term

("Hood") in the American translation, the term is displayed translated accordingly.

6.8.2. Special functions

The following functions may help you to configure the language files more smoothly:

● Generate missing values based on keys

© 2025 ADITO Software GmbH 49 / 170

With this function, you can fill all empty values in column "Values" with the existing keys in

column "Keys". Existing values will not be overwritten. This simplifies the configuration in cases,

when key and value are identical (e.g., in the English language file).

● Copy values from another language file

If a new language is configured and maintained, the user can copy values from another language

file (and, optionally, translate them subsequently). The relevant languages are already

preselected in the translation dialog.

6.8.3. Automated translation

The ADITO Designer has interfaces to automated translation providers, which are realized via web

services. The automatism exclusively translates the values in column "Value", NOT (as in earlier

versions) the keys. (The latter led to problems, as "technical" keys, such as "KEY_PERSON_SALUTATION"

cannot be translated.)

The following providers are supported:

1. Yandex Translate API, see https://tech.yandex.com/translate/

2. Google Cloud Translation API, see https://cloud.google.com/translate/

3. DeepL GmbH, see https://www.deepl.com/pro

The API keys are not included in ADITO. You need to obtain a license directly from the providers. Some

of them offer free licenses or limited test licenses, under certain conditions. (Please refer to the above

web sites.)

© 2025 ADITO Software GmbH 50 / 170

https://tech.yandex.com/translate/
https://cloud.google.com/translate/
https://www.deepl.com/pro

The corresponding API key must be stored under Tools > Options > ADITO > Translators. In this tab, you

can also set a proxy, if required.

As soon as the API key is stored and (if required) the correct proxy is set, the "Translate all" button will

work.

Alternatively, single terms can be translated via right-clicking on them and choosing "Translate" from

the context menu.

© 2025 ADITO Software GmbH 51 / 170

In both cases, the following dialog is opened:

The settings are self-explanatory, except for the line break:

● Linebreak To Space: Line break is passed as a space.

● Linebreak As Single Request: each line is transferred individually (default).

● Disabled: String is passed as deposited.

If you want to use DeepL, please note:

● Usually, you do not need a proxy. On the basis of the key, ADITO automatically

detects if the pro API or the free API must be called.

● Make sure that the web API is accessible, e.g., by executing the following test

URL: https://api-free.deepl.com/v2/translate?auth_key=<API-

Key>&text=HelloWorld&target_lang=DE (insert your API key accordingly

before executing)

● Some IT environments require you to deactivate the proxy in the Designer

options (Tools > Options > General > "No Proxy"):

© 2025 ADITO Software GmbH 52 / 170

6.8.4. Find unused keys

In the development process, language files can get bigger than required, if they include unused keys.

With button "Find unused keys" you can trigger a function that checks which of the keys are not used in

the project:

No matter which language file you have opened to call this function, all language files will be scanned

for unused keys. The result is shown in a dialog that enables you to remove all unused keys in one step

or to select and remove only some of them (to select more than one, press CTRL while clicking on the

respective keys).

© 2025 ADITO Software GmbH 53 / 170

All keys that you delete will be deleted in all language files, along with their values.

The scan that searches for unused keys works as follows:

The search is for all keys that are included in the language files, but cannot be found in the project.

There are 3 ways how the project is scanned:

1. Execution of SQL in order to read entries from the database (see project folder "language" >

_____LANGUAGE_EXTRA > property "sqlModels" > 3-dot button > mark "Data_alias")

2. Static code analysis: Search for strings of the "translate.xxx" methods, e.g.

○ translate.text("This will automatically be included in the

translation.");

○ var msg = "This will not automatically be included in the

translation."

translate.text(msg);

3. Read specific properties: These are all properties that need to be shown translated in the client,

e.g., the property "title".

© 2025 ADITO Software GmbH 54 / 170

Keys that are not found/no longer needed can be removed from the language files via the subsequent

dialog.

6.8.5. Export Keys with Place of Use

With 2022.2.1 you can export keys with the place of use via the button between im- and export.

After the dialog to select your project and system you see a progressbar. This process will define the

place where sqlModels/Alias/DB, Datamodels and Jasper Reports are used. After finishing this process

you can set the parameter for the generated CSV file and the place to store the file.

For the keys from the alias a database must be available. In addition, a query for determining the keys

must be available in _____LANGUAGE_EXTRA in sqlModels. With this query applies:

● At least one, at most two columns are assumed.

● In the first column the key must be returned.

● In the second column the usage location is returned.

● If the second column is not filled (because it is either not there, or is null or empty), then only

Database is written to the usage location in the CSV.

Example for the place of use:

● Attribute_entity/entityFields/ATTRIBUTE_ACTIVE/title

● TopicTree_lib/process

● FacebookTimeline_view/dashletConfigurations/AditoFacebookDashlet/title

For the keys from the Jasper, the folder where the Jasper file is located + the name of the Jasper file is

exported, e.g. Organization_report/reportData.jrxml

One row in the CSV will then have exactly 3 columns.

● The key (exactly as in the normal export)

● The value in the respective language (exactly as in the normal export)

© 2025 ADITO Software GmbH 55 / 170

● The usage locations, separated with comma

6.8.6. User help

The "user help" are the texts and illustrations provided to client users via the "questionmark" icons.

These texts are also submitted to internationalization, i.e., you can provide them in various langugages.

In ADITO document AID005_Userhelp.pdf, you can find more information of how to

implement and maintain the "user help" via the ADITO Designer.

In the xRM project, this functionality is included, e.g., as "Context help":

Figure 3. Example of facilitating the "user help" functionality

6.8.7. Translation of source code

Given that a valid API key is used (e.g., for DeepL, see above), you have the option to automatically

translate selected source code (adoc, js, xml, and aod files). This can be, e.g., a helpful function when

writing a User help.

Proceed as follows:

Open the code in the code editor, mark the part you want to translate, then right-click and choose

"Translate selection…" from the context menu.

© 2025 ADITO Software GmbH 56 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID005_EN_Userhelp.pdf

This option opens the translation dialog that you know from the translation of language files (see

above). Mind the checkbox in the lower part of the dialog: Here, you can decide if the translated text

should overwrite the selection, or if it should be saved in a separate file:

If you have chosen "Save selection in new file", a file browser will open subsequently to let you choose

where and with which name the file is to be saved.

6.9. Roles

ADITO users (appearing as "Employees" in the Web Client) are always equipped with roles. There are

two types of roles:

● Internal roles

● Project roles

6.9.1. Internal roles

Internal roles included in the ADITO platform ("core"), not in an ADITO project. They can only be

assigned (e.g., to control what Contexts are shown in the Global Menu) but not changed. You can view

all internal roles, if you navigate to neon > application > ___SYSTEM_APPLICATION_NEON and then

check "Role" in the Navigator window. Then, the Editor window’s content is reduced to roles, with the

© 2025 ADITO Software GmbH 57 / 170

internal roles' names starting with the prefix "INTERNAL".

6.9.2. Project roles

Project roles can be used to give specific rights to an user, e.g. ability to see certain data and/or editing

it. These are heavily dependent on the intended use. For example, a role can be created for each

department and users can be assigned to the department.

To create a new role right click "roles" and choose "new" - type = role and enter the name of the new

role.

6.10. alias

Node "alias" contains alias models, named according to the name of the database alias they are

refering to. If you double-click on an alias model, the so-called "Alias Definition" is shown in the

Navigator window. It is a junction layer between the database and the project and includes only the

structure of the database, i.e., the names and configurations of the database’s tables and their

columns. It does not include datasets. The "Alias Definition" is also refered to as "The database

structure of the project".

© 2025 ADITO Software GmbH 58 / 170

To synchronise the Alias Definition with the databas tables, right-click on the alias name (root node in

the "Navigator" window) and select "Diff Alias Definition <> Database tables". Likewise, choose "Diff

Alias Definition <> Platform", if you want to update the Alias Defintion with the table definitions hard-

coded in the ADITO platform.

The Designer will compare the Alias Definition ("[local]")" with the database ("[remote]") and mark all

differences (changes). These differences may be synchronized in either direction: Just click on the

respective double-arrow button and then on "OK".

© 2025 ADITO Software GmbH 59 / 170

The icons to the left of a table column give additional information:

Key Is either a primary key or a foreign key (if a dependency has been established).

Ball Is part of the index.

The buttons at the top have the following functionality:

Toggles between showing only direct or also

indirect dependencies of the selected table.

Arrange the respective tables in a standardized

way, with the dependency arrows drawn

rectangularly.

Export the selection, as ERD diagram (png file)

or as well-structured text file in "Asciidoctor"

format (adoc). See illustrations below.

© 2025 ADITO Software GmbH 60 / 170

Directly print the selection.

Figure 4. Example of how to export selected tables of the Alias Definition, as ERD diagram or as well-

structured text file (adoc format)

Figure 5. Export result: ERD diagram (png file)

© 2025 ADITO Software GmbH 61 / 170

Figure 6. Export result: adoc file (to be viewed, e.g., with application "Visual Studio Code")

For technical reasons (e.g., because of asynchronous saving), it is unusual to

configure foreign keys in ADITO data databases. Therefore, you need to maintain the

dependencies shown in the ERD (as arrows between primary keys and factual

"foreign keys") manually.

The dependencies are configured on the foreign key side of the relationship: Click on

the column working as foreign key (e.g., CONTACT_ID) and enter the corresponding

table and its primary key in property "dependencies". After a restart of the Designer,

this table will appear additionaly in the ERD, connected to the other table with an

arrow between primary key and foreign key. Furthermore, the foreign key will be

marked with a key symbol to the left of it.

Note that this configuration of the Alias Definition does not influence the database

table’s configuration; it still has no technical foreign key.

© 2025 ADITO Software GmbH 62 / 170

6.11. Others

In folder "others", there are, e.g., files related to the "Cypress" test framework.

Furthermore, you may create folders and add files directly in your project’s file structure, via a file

explorer tool (e.g., the Windows Explorer); it will then be visible and (depending on the file type) also

be editable in the Designer.

Some Designer users utilize the folder "others" for, e.g., keeping specification files of their customizing

tasks or log files for documenting changes they have done in the database.

© 2025 ADITO Software GmbH 63 / 170

7. Output Window

When a server or client is started using the Designer, the output window opens automatically.

The specific server instance can also be seen in the window header (e.g., "Server: default").

The console output of the server or client is shown in the middle of this window. There are also some

actions you can use via the buttons to the left of the console output:

Starts the selected instance when paused or

shut down

Completely shuts down the instance (graceful

shutdown)

Instantly shuts down the instance

Clears the cache of the selected instance

© 2025 ADITO Software GmbH 64 / 170

8. Execute SQL

Your are able to directly execute sql statements in the Designer.

All you have to do for this feature, is opening the sql window using the following button in your toolbar:

Top Bar:

Connection Select the database instance where the

statement should be executed

Execute all written statements

Execute your selected/marked sql statement

Select the connection of the services

Shows you the history of all executed sql

statements

Keep prior tabs

Jump to the last edit

Take back the last edit

forward the last edit

Search for a string

© 2025 ADITO Software GmbH 65 / 170

Selects the previous occurrence of your search

Select the next occurrence of your search

Toggles the option to highlight your search

findings

Toggles a visible border when selecting

Selects the previous bookmark

Selects the next bookmark

Sets a bookmark in the marked line

Shifts the line one tabulator to the left

Shifts the line one tabulator to the right

Starts a macro recording. Macro execution is not

supported by the Designer.

Stops the macro recording. Macro execution is

not supported by the Designer.

Comments the selected line

Uncomments the selected line

"select * from ASYS_SYSTEM" - In the text area below the top bar, you can write your sql statements.

After the sql statement is executed, the lower half of the picture will appear.

A tab with the results of each executed statement is shown, as well as the middle bar.

Middle Bar:

© 2025 ADITO Software GmbH 66 / 170

Adds a new row, where you are able to insert

the values

Deletes the selected row

Commit your applied edits

Cancel your applied edits

Deletes the table without protocolling it (See

SQL truncate statement)

Refreshes the output, when applying changes

Max. rows Select the maximal amount of rows which

should be displayed

Fetched Rows Shows the amount of rows displayed (When may

Rows is high enough all rows)

Matching Rows Search in all rows and all columns after a string

If you commit your changes, those will be committed to the database and can’t be

rolled back.

Only use this, if your are really sure, not to destroy any production data!

© 2025 ADITO Software GmbH 67 / 170

9. Debugger

The debugger enables you to interrupt the execution of code at specific code lines, in order to obtain

various information, such as the value of a specific variable.

As for modularized systems with versions from 2025.0.0, it is only possible to select

a project as the "debugged" project in the Designer and not individual modules, as

they are not independently executable projects.

9.1. Preparations

Prerequisites for using the debugger with managed ADITO cloud systems are:

● System property "enableJDitoDebug" is set to true:

● The instance configuration’s property "jditoDebuggerEnabled" is set to true:

● Reboot the ADITO server and wait until it is accessible again in the client:

© 2025 ADITO Software GmbH 68 / 170

● Activate the debugger under Tools > Options > ADITO > Debugger:

● As a result, you will see an additional vertical "breakpoint bar" to the left of each code windows

(if you do not see this bar, simply close the code window and re-open it):

● Set the system you want to debug as default:

© 2025 ADITO Software GmbH 69 / 170

● Open the database (db) tunnel (cf. appendix Tunneling):

● Make sure that all local changes are deployed.

● Add (if not already opened) the "Debugger" window, via the menu item "Window" >

"Debugger".

● In the "Debugger" window, press the little button with the bug icon:

This button will start and connect the debugger.

If the debugger throws an error message (e.g., "Connection refused"), immediatly after pressing the

button with the bug icon, proceed as follows:

1. Restart your PC and your Designer.

© 2025 ADITO Software GmbH 70 / 170

2. Do not open all tunnels, but connect only the database (db) tunnel:

3. Find out the web pod you are currently logged into, by using Context "Session" of menu group

"Manager" in your ADITO client. There, you can see where your user session is active.

Remember it:

4. Download the batch tunnel from your SSP system…

© 2025 ADITO Software GmbH 71 / 170

5. … and open it in a text editor, such as Notepad++. Remove all tunnel entries except those for

the two ports 1098 and 1099 of the web pod you are currently logged into (e.g., adito-web-

1). Then, replace the port numbers at the beginning of these entries with 1098 or 1099. Here is

an example:

6. Save the modified tunnel batch file and double-click it to open both tunnels. Follow the

instructions displayed in the terminal.

7. Now, try again to start debugging via the button with the bug icon.

NOTE: If you want to debug again later, you will, again, first need to find out the web

pod you are currently logged into and then execute the subsequent steps (see

above).

9.2. Debugging options

The response time of ADITO’s debugger features is partly slow. This will be improved

in future ADITO versions.

© 2025 ADITO Software GmbH 72 / 170

After you have started the debugger, set so-called breakpoints wherever you like the code execution to

be stopped. To do this, click into the breakpoint bar (to the left of your code window), exactly in the

height of the code line in which the execution should halt. Then, an a little orange square will appear

(see the picture below). (In earlier ADITO versions, you need to click into the code window once and/or

execute the code to be debugged once, before the color changes to orange.)

With a breakpoint you mark a line of code. Now, use your client to execute the code you want to

debug. When the code execution reaches a breakpoint, the execution will completely stop until

manually resumed via one of the respective buttons. (In earlier ADITO versions, you initially need to

repeat the first code execution, before the code actually stops at the first breakpoint.)

The line of the halt is marked yellow. At the end of the line you can see (by default) the time elapsed

since the start of the code execution.

A breakpoint may also be muted, then the execution will not stop, but it is easier to reactivate it later

on. How to do this look further below.

On the left side in the table "Frames", the current stacktrace will be displayed (In this case the

auostartNeon.process line 4). The right hand side shows all variables and their value, which exist at this

point.

For one there are the variables, which are always in the system. These are listed under "_variables_"

e.g. "_system_", others do not have values yet, as this is the first process started. The value for some

variables are to complex to show immediately, in this case you have to click calculate to get a value.

That was also the case for "sys.clientcountry" and "sys.clientid".

© 2025 ADITO Software GmbH 73 / 170

But also local variables will be shown, like e.g. "users" (array with the size 3), which gets created in line

3.

The buttons in the window:

Manually resume the code execution after a

breakpoint

Step into a function when there is one declared

while debugging line-by-line

The debugger will step over this line, any

functions will be executed but not debugged

line-by-line

Jumps to the line where the current function

was called

Remove all breakpoints in your project

Mute all breakpoints in a project

Shows all breakpoints in a project and their

menu (see below)

Stops the execution of the code without a

breakpoint

Opens a new window where you are able to

evaluate custom expressions

Opens the "Debugger" option in "Settings"

© 2025 ADITO Software GmbH 74 / 170

9.3. Evaluate Expressions

The option to evaluate a expression is available, when a breakpoint is reached. Any exprssion can be

searched for. Just write it into the field "Expression", click on "Evaluate" and the results will show

below.

An Expression can in principle be any valid single-line JavaScript.

Example: "var arr = []; for (var i = 0; i <10; i ++) arr.push (i); filelist = arr;" is executed and works and

displays the result of the assignment at the end! The last return is always displayed.

Furthermore, one can simply use variable names to see their contents.

For example, fileList.

Or you can also inspect individual array / object elements if you know the right index.

For example, filelist[0] or fileObj["file.txt"]

Also JDito methods can be called.

For example, to see if a variable contains the correct date, you could use "datetime.toDate (pDate,"

dd.MM.yyyy HH: mm: ss ");" to temporarily convert the long value for display into a readable date. For

the calls to work, the corresponding system module must be imported in the code.

Example: import { mymodule } from "@aditosoftware/jdito-types";

It is also sufficient if the import of the system module is imported into one of the imported libs.

You can also call functions from the code or imported libs, but it can be problematic that you only get

the return value of the function call, but this may do more in the code sequence. For example,

Database changes, triggering emails or actions. One should always keep in mind that a function call in

many cases may have far reaching side effects!

Be careful with assignments: these are executed in the context of the current code and override the

values that are in a variable at the moment of the break!

© 2025 ADITO Software GmbH 75 / 170

9.4. Breakpoint Menu

Mute the selected breakpoint

Unmute the selected breakpoint

The debugger will step over this line, any

functions will be executed but not debugged

line-by-line

On the left side all breakpoints in a project will be listed, with a checkbox if they are muted and their

location (name of the data model and the line).

The right side will open when you right-click on a single breakpoint.

When in the breakpoint menu for all breakpoints, the options on the right will only

apply to the currently selected breakpoint

Most of the point in this menu are self explanatory. The most noteworthy are "Condition" and

"Evaluate and Log".

For "Condition" you can set a special condition for the breakpoint to be active. Like "array.length > 5"

for example.

"Evaluate and Log" gives you the option to set things that should be logged.

© 2025 ADITO Software GmbH 76 / 170

9.5. Watches

You can set so called "watches" to permanently view the value of a field or result of an expression while

you go throw the debug process. The value of these watches may change over the course of the

process.

You can add watches via the right-click menu

After adding watches you will see them in your "Variable"-tab in the debugger:

© 2025 ADITO Software GmbH 77 / 170

10. Code quality support

The ADITO Designer, particularly the code editor, offers a variety of functions that help you to optimize

the quality of your code.

10.1. Autocompletion

Using the ADITO Designer’s autocompletion functionality speeds-up coding and helps you to avoid

syntax errors. If, e.g., you use a variable that you had declared earlier, you might make a typing error if

you simplye re-type the variable’s name. Instead, you can press CTRL-SPACE in order to open a

combobox that includes all currently available variable namens - and then you can simply select from

this combobox.

If you first type some characters and then press CTRL-SPACE then the combobox' content will show

variables starting with these characters on top:

10.2. JSDoc

Related to the autocompletion is a documentation, the so-called JSDoc (JavaScript documentation). It

appears below whenever you select an item in the autocompletion combobox (see above) and contains

important information about the usage of the respective method, constant, etc. In particular, the JSDoc

contains the following parts:

● general description

● parameters/arguments

● return value

© 2025 ADITO Software GmbH 78 / 170

● exception

● example(s)

Figure 7. Example of a JSDoc

© 2025 ADITO Software GmbH 79 / 170

10.3. Errors and warnings

To the left of the code editor, in a vertical bar, icons appear, symbolizing errors or warnings in the

respective line:

● A "light bulb" icon means "Warning".

● An icon showing an exclamation mark in a red circle means "Error". Additionally, the erroneous

code is underlined in red.

If you hover over these icons or over the red line under the erroneous code, a small popup window will

show you the details of the error/warning, which can be a hint to the problem’s source. (Some of these

hints are generated by the ESLint plugin and marked with the prefix "ESLint: ". See chapter [ESLint] for

further details.)

Example:

If you click on the light bulb, a popup list will appear, offering one or multiple automated solutions, one

of which might solve the problem. Choose it carefully, as all other "solutions" will not be suitable and

probably not only fail to solve the problem, but produce further problems.

(Some of the offered solutions are generated by the ESLint plugin and marked with the prefix "ESLint ".

See chapter ESLint support for further details.)

In the following example, an automated generation of the missing "import" code line is offered as

solutions (amongst others, which are not suitable).

Simply click on the suitable action to execute it:

© 2025 ADITO Software GmbH 80 / 170

→

Most of the errors and warnings shown here can also be found using the "Scan Services.

10.4. ESLint support

If you have installed the Plugin "ESLint" (and the NodeJS plugin as well as some configuration, see

chapter "Prerequisites" below), your code quality is supported by the linter ESLint, which is a tool for

static code analysis of JavaScript code. It

● marks errors and warnings,

● can solve many of them automatically and

● can also be used for code formatting.

Besides the ESLint functionality as preconfigured by ADITO, ESLint can also be customized individually.

As it is a common tool in the software developer community, you can find good advice on its functions

and configuration in the internet (not only on its homepage).

10.4.1. Prerequisites

To make ESLint work, the following must be given:

● Plugin "NodeJS & TypeScript" is active.

● Plugin "ESLint" is active.

● Configuration file ".eslintrc" is present in the ADITO xRM project (in the lower part of the

"Projects" window).

© 2025 ADITO Software GmbH 81 / 170

https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/ESLint
https://eslint.org/

● File "package.json" is present (in the lower part of the "Projects" window) and includes all

required dependencies:

(...)
 "eslint": "8.12.0",
 "@typescript-eslint/parser": "^5.18.0",
 "@typescript-eslint/eslint-plugin": "^5.18.0",
 "eslint-plugin-brace-rules": "^0.1.6",
 "eslint-plugin-standard": "^4.0.2"

● command "npm install" has been executed on file "package.json"

10.4.2. Configuration

Each xRM project usually already includes an ESLint configuration file ".eslintrc" (see above). This file

contains a lot of settings that (amongst others) respect the coding guidelines included in the ADITO

document AID001 Coding Styles, e.g. the requirement that the end of each code line must be a

semicolon.

It can be very helpful to add further settings according to your requirements, but these should always

comply with ADITO’s coding guidelines. ADITO does not provide a detailed documentation of the

various configuration options, as ESLint that is already well-documented in the internet (see, e.g.,

© 2025 ADITO Software GmbH 82 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

here).

10.4.3. Executing ESLint

Basically, ESLint offers 2 options:

● Analyzing code

● Fixing problems (errors and warnings)

Both are generally related to the complete content of a single code window. There is no option to only

fix one single problem separately from other problems existing in the same code window. And there is

no option to fix all problems of the complete ADITO project (only for all files detected as "changed" by

Git, see below).

10.4.3.1. Analyze

If you click button "ESLint: Analyze" (in the button bar above the code window), the code of the current

code window is being analyzed by ESLint.

You can call this function also via the context menu, when right-clicking in the code window:

In the Designer options (select Tools > Options in the upper menu bar) you can activate that the ESLint

analysis is automatically executed after every save:

© 2025 ADITO Software GmbH 83 / 170

https://eslint.org/docs/latest/user-guide/configuring/

We recommend to activate this option.

If ESLint detects a problem, it is underlined in red, and an icon is shown to the left of the code. In most

cases, this icon shows a combination of an error icon (= an exclamation mark circled in red) and the

corresponding solution icon (= a light bulb).

These results of the analysis are cached - thus, they are still available after closing and re-opening the

Designer.

10.4.3.2. Fix all

If you click button "ESLint: Fix all", all problems detected in the current code window are fixed

automatically.

You can call this function also via the context menu, when right-clicking in the code window:

Furthermore, this function is also available if you click on the light bulb icon to the left of a code line in

which ESLint has detected an error.

© 2025 ADITO Software GmbH 84 / 170

In the Git commit dialog you can select an option that the ESLint analysis is automatically executed on

all changed files:

Then, if ESLint detects problems, they can optionally be fixed before commit:

We recommend to activate this option.

10.4.4. Examples of hints and solutions

As explained in chapter Errors and warnings, in the vertical bar to the left of the code editor, 2 kind of

icons are shown whenever the Designer’s code scanner detects a problem: An exclamation mark circled

in red marks an error, while a yellow light bulb is a warning. In most cases, a combination of both icons

is shown.

If you hover over these icons, you get a small popup window including hints to the possible source of

the problem. If you click on the light bulb, various solutions are being offered in a popup window.

Those of these hints and solutions that are generated by ESLint can be identified by the prefix "ESLint:".

You can use them similar to the other hints and solutions that are generated by the ADITO Designer

itself, see chapter Errors and warnings - with the only difference that for ESLint-detected problems no

© 2025 ADITO Software GmbH 85 / 170

single fixes are possible, only "Fix all".

Here is are some examples:

Figure 8. Examples of hints provided by the Designer (first hint) and ESLint (all other hints)

Figure 9. Solution "ESLint Fix all" (after clicking on one of the light bulb icons related to ESLint)

After the execution of the command "ESLint: Fix all", all ESLint-detected problems will be fixed within a

few seconds. The result of the above example will look like this:

As you can see, the first problem was not solved, because this was not a problem detected by ESLint,

but by the ADITO Designer. To solve also this problem, you need to click on the light bulb icon to the

left of the respective code line and choose the suitable solution.

© 2025 ADITO Software GmbH 86 / 170

10.5. Scan Services

The ADITO Designer’s "Scan Services" trace possible problems within your project and display them

structured in errors and warnings in tab "Scan Services" (next to tab "Output").

Figure 10. Example of the content of tab "Scan Services"

10.5.1. Preferences

By default, the Scan Services are

● executed completely, if

○ you open a project file for the first time, or

○ the opened version of the project file is not identical with the version you had opened

before.

You can deactivate this by unchecking option "Refresh on file change" (under Tools > Options > ADITO >

General > Scan Services)

© 2025 ADITO Software GmbH 87 / 170

● executed restricted to changes, if you

○ add elements to your project, e.g., a new EntityField or a new Action

○ change elements of your project, e.g., set a property value

● checked on every deploy. You can deactivate this by unchecking option "Check Scan Services on

deploy (Errors, Warnings)" (under Tools > Options > ADITO > General > Dialogs)

The refreshing process of the Scan Services is part of the "Indexing Project" process (not to be mistaked

with another meaning of "indexing" in the context of a IndexRecordContainer and the global "Index

Search"), which consists of multiple subsequent phases that are indicated in the small message box in

the lower middle part of the Designer:

1. "Collecting References…": References to "refactoring" feature are collected and indexed.

2. "Saving References…": The result of the collection process is persisted.

3. "Preparing Model Scanners…": Preparation of data model scanner for Scan Service indexing

4. "Analyzing Warnings and Errors…": Scan Services are evaluated

5. "Collecting Model Dependants…": Collection of dependencies between data models (also

required for Scan Services)

6. "Scheduling Model Dependants…": Execution of a process for re-indexing the dependencies

If one of this processes is executed very fast (< 1 sec), it might not be visible in the message box.

It is possible to cancel running "Indexing" processes. This is explicitely NOT

recommended, especially not during phase "Collecting References…", as then the

"refactoring" feature will fail or being executed incompletely. If you cancel it anyway,

a warning message will appear.

Figure 11. Warning message appearing when "Indexing" is cancelled

10.5.2. Result

By default, all types of messages (errors, warnings, hints, etc.) will be displayed, structured as a result

tree. If you mark one or multiple tasks, you can make them disappear from the result tree via context

menu option "Ignore selected tasks". This is not possible for results of type "Error". By clicking the

respective switch (see table below), you can let these "ignored tasks" reappear and, if required, choose

© 2025 ADITO Software GmbH 88 / 170

option "Include selected tasks" in the context menu, in order to show them permanently again.

If you double-click on a result (or choose "Open in editor" in the context menu), the corresponding

ADITO model will be opened in the "Editor" and "Navigator" windows, enabling you to quickly find the

source of the related problem.

Content and design of the result tree are controlled via buttons to the left:

Table 1. Buttons of tab "Scan Services"

Refresh all Scan Services for the complete project. This runs the same processes that are

executed when you open a project (see list in previous chapter "Preferences").

Enables you to select what type of information is to be included in the result tree and how

the tree is structured.

Switch to control whether or not those tasks are shown that have been marked as

"ignored" (see above).

Expand all nodes of the result tree.

Collapse all nodes of the result tree.

Part of these options are also available via the context menu of the nodes of the result tree.

© 2025 ADITO Software GmbH 89 / 170

11. Deploy

Deploying a project means to transfer the local development status into the registered ADITO system

database (in particular, the table ASYS_SYSTEM). Besides a deploy via the ADITO Designer, there is a

Deploy Tool, which allows a standalone deploy, without the Designer.

Make sure that the deploy toolbar is shown in the Designer’s button bar (menu "View" > "Toolbars" >

check "deploy").

If you want to deploy all changes in your project, press button "Deploy project" in the button bar:

The following dialog will open:

If you have more than one project opened, you need to choose the project you want to deploy via the

combobox in line "Project".

One project can have several systems. If so, select the system to which database you want to deploy via

the combobox in line "System".

Be very careful with the selection in line "System", in order to avoid, e.g., that by

mistake you deploy into the productive system instead of your development system.

Furthermore, the deploy dialog includes 3 checkboxes.

● "Check Scan Services (Errors, Warnings)" will show a dialog with the result of the latest run of

the Scan Services, before the deploy starts.

© 2025 ADITO Software GmbH 90 / 170

This dialog enables you to abort the deploy, if you are not sure about the errors and warnings

and want to analyze them first.

● "Force deploy": If this checkbox is unchecked, only those data models are deployed that have

actual changes. The process that searches for these changes works with caches; in rare cases it

can happen that some changes are not found and therefore not deployed. In this case, you can

check "Force deploy", which deploys all data models of your project, no matter if they include

changes or not.

● "Deploy Userhelp": If this checkbox is checked, the User help is included in the deploy.

Subsequently to this dialog, another dialog will show all data models that are prepared for being

deployed.

© 2025 ADITO Software GmbH 91 / 170

The header of this dialog shows the name of the system into which the data will be deployed. Once

again, check carefully if you have selected the correct system (see above).

If you double-click on the name of a data model or right-click on it and choose "Show changes", you

can see the actual changes that will be deployed.

The letter before the name of a data model refers to the SQL statement that will be executed in the

system database, being the actual deploy:

● I for Insert: This data model is new and will be deployed (inserted in the system database) for

© 2025 ADITO Software GmbH 92 / 170

the first time.

● U for Update: This data model is already in the system database, but was changed meanwhile, so

it will be updated now.

● D for Delete: This data model is no longer present, so it will be deleted in the system database

now.

If required, you can deselect data models that should not be deployed.

If you press the "OK" button, the deploy will start. When the deploy is finished, a message balloon will

appear in the footer of the Designer:

11.1. Deploy of selected data models

If you do not want to deploy all new or changed data models, you have 2 options:

● You can deselect data models in the deploy dialog (see previous chapter)

● In the project tree, you can mark all data models that should be deployed. (Hold CTRL to mark

one data model after another or SHIFT to mark multiple data models in one step.) Then right-

click on one of the marked data models and choose option "Deploy (…)" from the context menu.

If you have marked up to 3 data models, there names are shown in the context menu:

If you have marked more than 3 data models, their sum is shown in the context menu:

© 2025 ADITO Software GmbH 93 / 170

Subsequently, the same deploy dialogs are shown that you know from a full deploy (see previous

chapter).

11.2. Deploy of opened data models

In addition to the "Deploy Project" action (see above), you can also restrict the deploy to the data

models opened in tabs in the "Editor" part of the Designer. There are 3 ways to do this:

● Press button "Deploy n opened model(s)" in the "deploy" part of the button bar:

● Right-click on any opened tab and choose option "Deploy n opened model(s)" from the context

menu.

● Use the shortcut CTRL-ALT-F8.

© 2025 ADITO Software GmbH 94 / 170

11.3. Deploy Tool

The ADITO Deploy (aka "Deploy Tool") enables you to deploy your project via the command shell, i.e.,

without using the ADITO Designer. This is, e.g., a common requirement whenever automated deploy

procedures are to be established.

11.3.1. Prerequisites

The following prerequisites apply:

● The ADITO server must be running.

● The Designer must be closed. (Technically, the Deploy Tool can be considered as a "Designer

without a GUI". Therefore, conflicts are likely, if both applications would be running.)

● The path of the JRE must be set in the file ADITOdeploy.conf, which you can find in the "config"

directory of the ADITO installation.

Example: jdkhome = "C:\Program Files\Java\jre1.8.0_291"

(Simply reference the JRE that has automatically been installed by the ADITO installer.)

11.3.2. Configuration and execution

The following example commandos are to be used under Windows. At the end of

this chapter, you can find a description of the differences between execution under

Windows and Linux.

In the "bin" directory of the ADITO installation you will find an executable file, which has the following

name:

* under Windows 64 bit: "ADITOdeploy64.exe"

* under Linux and Mac: "ADITOdeploy"

To execute the deploy tool, call the executable files via command prompt (Windows Power Shell etc.),

along with the following parameters:

Mandatory parameters:

● --projecthome (shortName = 'p', longName = "projecthome")

● --serverconfig (shortName = 's', longName = "serverconfig")

Additional parameters:

● --user (longName = "user")

● --password (longName = "password")

© 2025 ADITO Software GmbH 95 / 170

● --host (longName = "host")

● --port (longName = "port")

● --force (shortname = "-f", if "-f" is set, forcedeploy is active, if the flag is not set, forced assembly

is not active)

● --userhelp If this parameter is set, then the "user help" will be deployed. (This is the help

functionality available in the client via the little "questionsmark" icons.)

Example:

ADITOdeploy64.exe --projecthome "C:\Users\j.smith\Documents\AditoProjects\2021-05-31-xRM-2021.1.0" -f --serverconfig "C:\Users\

j.smith\Documents\AditoProjects\2021-05-31-xRM-2021.1.0\data\config\serverconfig_default.xml"

When using short names, please note that in this case, the equality sign (“=”) must not be written.

Example:

--serverconfig="C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\config\serverconfig_default.xml"

is equivalent to

-s"C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\config\serverconfig_default.xml"

11.3.3. Exit codes

To request the exit code of the execution of the Deploy Tool under Windows, please note that - unlike

under Linux - processes are executed asynchronously by default. In order to wait for the result

blockingly, we suggest the following patterns:

● PowerShell (output of exit code in the command line):

$p = Start-Process ".\ADITOdeploy64.exe" -ArgumentList "--

projecthome '<YourProjectPath>\2021-05-31-xRM-2021.1.0'

--serverconfig '<YourProjectPath>\2021-05-31-xRM-

2021.1.0\data\config\serverconfig_default.xml' -PassThru -Wait;

$p.ExitCode

● Cmd (output of exit code in a file):

start /wait cmd /c "ADITOdeploy64.exe --projecthome

'<YourProjectPath>\2021-05-31-xRM-2021.1.0' --serverconfig

'<YourProjectPath>\2021-05-31-xRM-

2021.1.0\data\config\serverconfig_default.xml' & call echo

%^errorLevel% > .\exitcode.txt"

© 2025 ADITO Software GmbH 96 / 170

The following exit codes are possible:

● 0: Deploy successful

● 142: Deploy partially successful

● 150: Exception of other type

© 2025 ADITO Software GmbH 97 / 170

12. Local Data

The local project folder contains only the alias definitions. These include the name of the alias and the

types of the alias. The connection data and the alias configuration are in the system database table

ASYS_ALIASCONFIG of the respective ADITO system.

The user data also depends on the respective system. Therefore, these are only stored in the database

and are located in the system database table ASYS_USERS.

These data are kept in the database because they belong directly to each system and should prevent

local changes from hindering the system’s functioning.

Local Designer Data

When using the ADITO Designer, the Designer will save local data under the path:

"C:\Users\<username>\AppData\Roaming\.aditodesigner\2020"

Replace "<username>" with your user on the computer.

These local files contain a multitude of different things. For example individually set colors for your

Designer are saved here, but also things like the last update and installed plugins.

When there are problems with the Designer it often helps to force these local files to be created newly.

Just create a differently named copy and delete the original folder or rename the original one.

The path is can also be found and changed in

"C:\Program Files\ADITO2020.0.1\config\ADITOdesigner.conf"

Simply use a text-editor like notepad to open the file.

© 2025 ADITO Software GmbH 98 / 170

In the same location you also find ADITOdesigner.clusters which lists all java-libraries which are used.

Just add infront of the path shown:

"C:\Program Files\ADITO2020.0.1"

© 2025 ADITO Software GmbH 99 / 170

13. Updates

In regular frequency, ADITO releases new versions both of the ADITO platform and of the ADITO xRM

project. If your own project is based on the xRM project, it can be helpful to merge new xRM versions

into your own project, in order to make use of the latest new features and bugfixes. Furthermore,

please consider that the version of the ADITO platform (Designer, backend, etc.) must fit to the version

of the project.

You will find all information required for handling ADITO updates in the Update

Manual, which will in itself be updated whenever a new ADITO version is released.

We recommend you to read the Update Manual regularly and carefully.

13.1. Update the ADITO project

13.1.1. Basics

Normally a ADITO project will be kept on the same version for as long as possible. But sometimes it

might be necessary to upgrade the project to a newer version.

To start this procedure install the new ADITO version and start the Designer. Next open the project in

the new Designer. It will appear greyed out as it is not the correct version for the Designer.

When loaded into the Designer it will still be greyed out with only the field "Upgrade project…"

beneath.

Double click this field to start the upgrade process. A pop up will open, asking for confirmation and

informing, it won’t be possible to open the project with older versions anymore. If not done so already,

it is recommended to create a copy of your project before this step.

The automated process will start now.

As soon as the process is finished the normal project structure will show again.

© 2025 ADITO Software GmbH 100 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Update_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Update_Manual.pdf

There still might be some problems in the code which can not be automatically fixed, so it is still

necessary to manually check the client for errors to pop up.

13.1.2. Update of single ADITO models

If there is an updated available for a single model of the project (e.g., a specific Entity, which you have

imported from an older project) and you double-click on it, the following message will be displayed in

the editor:

To upgrade the model, click on button "Upgrade".

13.2. Update the database

When there are database changes between two updates or the system database requires a new

version, the ADITO server cannot be started, but an error message will be logged.

© 2025 ADITO Software GmbH 101 / 170

13.2.1. Basics

To be able to update the database without starting the server, you need to start the database alone

first: Simply select it in the combobox of the button bar and then press the "green triangle" button. In

window "Output", you can view the log entries until the database is started.

Figure 12. Starting the database without the ADITO server (example for a Apache Derby database)

When the database is running, double-click on your system (e.g., system > default). Then the available

databases will appear in the Editor area of the Designer, and you can continue, e.g., with the "Organize"

function, see following chapters. (The option named "Upgrade", which was included in earlier ADITO

versions, has been replaced by "Organize".)

13.2.2. Maintaining system tables

System tables are database tables that are essential or optional for running the ADITO system itself

(e.g., ASYS_SYSTEM, ASYS_USERS, ASYS_BINARIES), indepentently from the tables holding data

managed by the client user (e.g., PERSON, ORGANISATION, CONTACT).

While in ADITO versions earlier than 2021.0.0, system tables resided exclusively in the system alias,

they can now reside in multiple aliases. This can be configured in the preferences of the project.

When the database is running, double-click on your system (e.g., system > default). Then the available

databases will appear in the Editor area of the Designer. If you right-click on the database, you will find

option "Organize System Tables" in the context menu.

After selecting this option, a dialog will open, named "System Table Control Center". It shows a list of all

© 2025 ADITO Software GmbH 102 / 170

system tables to the left, while further information on the currently selected system table is available in

the right part of the dialog.

Figure 13. System Table Control Center

Besides the approach explained in this chapter, you can also create system tables

● via customizing, using Liquibase (see chapter Plugin Liquibase)

● via a tool named "ADITOdatabase", which enables you to create system tables

via command line or batch file (see appendix Create and upgrade system

tables)

13.2.2.1. ASYS_VERSIONHISTORY

Table ASYS_VERSIONHISTORY contains all version-related information on a system table. Initially, this

table will automatically be set when executing an upgrade of the system database (see earlier chapter).

If it is deleted, it will automatically be re-created on the next startup of the dialog.

13.2.2.2. List of system tables

The list in the left part of the System Table Control Center contains all system tables that

● exist or

● do not exist, but are essentially required

© 2025 ADITO Software GmbH 103 / 170

If a table is treated as "essentially required" depends on the settings in the preferences. Example:

Property userdirectoryAlias (preferences > ____PREFERENCES_PROJECT > Modules) determines, in

which DB alias the database tables for user directory and user data reside.

Figure 14. Example of a property determining if a table is treated as "essentially required"

13.2.2.3. Faulty system tables

If there is a problem with a system table, it will be marked red in the list. If you select it, further hints

on the problem are shown to the right. The most common problems are as follows:

13.2.2.4. Missing entry in ASYS_VERSIONHISTORY

If a system table exists, but there is no related entry in table ASYS_VERSIONHISTORY, the following note

is shown:

13.2.2.5. Wrong structure

If the structure of the database table does not meet the structure required by the ADITO platform, the

following note appears:

© 2025 ADITO Software GmbH 104 / 170

If you have the Plugin "Git" installed, you can inspect the structural differences by choosing action

"Show Diff" (upper right side).

13.2.2.6. Table upgrade

Is a table ready for being upgraded, the following note is shown:

13.2.2.7. Table missing

If a table is missing that is essentially required, the following note will appear:

13.2.3. Action toolbar

There is a toolbar providing actions adding and deleting system tables, as well as for resolving the

above problems. Generally, these actions are only applied to the currently selected system tables. If an

action might lead to data loss, a warning dialog will be shown that enables you to cancel the action

before it is executed.

The effect of the actions is as follows (description from left to right):

© 2025 ADITO Software GmbH 105 / 170

● Create optional tables: By default, the list contains only tables that already exist or that are

essentially required. If you want to create an optional table, klick on the "+" button (plus sign)

and select the table you want to create.

● Delete

A click on the "-" button (minus sign) deletes all tables selected via the checkboxes.

● Resolve problems

A click on the "Resolve problems" button ("magic wand" icon) resolves the problems related to the

currently selected system tables (see chapter "Faulty system tables"), e.g., a table is created or

upgraded.

● Refresh

A click on the "Refresh" button refreshes the complete System Table Control Center dialog. This can be

required, if database changes have been performed in the background (i.e., outside the dialog).

13.2.4. Information area

In the right part of the dialog, additional information on the currently selected system tables is given.

This information is structured as follows:

● Table Name

● Current Version

● Available Version: Version that is available via upgrading.

● Last Upgrade: Date of the latest upgrade

© 2025 ADITO Software GmbH 106 / 170

● User: User that has performed the latest upgrade

13.2.5. Server startup prerequisites

The ADITO server can only be run, if tables ASYS_ALIASCONFIG and ASYS_SYSTEM are present in their

latest versions, i.e., they do not appear as "upgradeable".

© 2025 ADITO Software GmbH 107 / 170

14. Plugins

14.1. Installation

The ADITO Designer offers function packages to be added or removed on demand, in the form of

plugins. When starting the Designer for the first time, a dialog will prompt you to decide which of the

plugins you want to use; we recommend you to choose "Install all", in order to have the full Designer

functionality available (you can deactivate them at any time later, see below).

We recommend you to install at least these plugins, as they will be required in most cases:

● AsciidoctorJ

● Encoding Support

● Git

● Liquibase

However, you can also add, update, or remove these or further plugins at a later time, via the Plugins

dialog, available via menu Tools > Plugins.

© 2025 ADITO Software GmbH 108 / 170

Figure 15. The Plugins dialog

The dialog consists of these tabs:

● "Updates" shows all updates available for the installed plugins.

● "Available Plugins" lists every plugin of the given source.

● "Downloaded" enables you to import other plugins as nbm-files.

● "Installed" shows all locally installed plugins (some of which had been automatically installed).

You can also deactivate/reactivate plugins here.

● "Settings" contain the plugins' source, as well as the frequency to check for updates.

In case your firewall blocks the download of plugins, you may proceed as follows.

In the this catalogue you will find all plugins available for the ADITO Designer:

https://aditopluginsonline.adito.de/2020.2.0/catalog.xml

In attribute "distribution" of tag "module" you see the URL for downloading the

respective plugin. The download result will be a file of format ".nbm" ("NetBeans

Module").

If you want to open your firewall for downloading the plugin directly in the Designer,

then you need to use the following parameters:

URL: "https" / see catalogue above

Port: 443

Applikcation: HTTP / Webserver

© 2025 ADITO Software GmbH 109 / 170

https://aditopluginsonline.adito.de/2020.2.0/catalog.xml

Target port: 443

If you do not want to open your firewall, then you can alternatively download the

plugins from somewhere "outside" the firewall and install them manually - but

please note, that in this case, the automation of plugin updates will not work.

14.2. Advantages

The plugin concept offers you the following advantages

● You can optimize the Designer’s performance by running only those plugins that you actually

need.

● Enhancements, improvements, and bugfixes can be provided via plugin updates, independently

from new ADITO version releases. By default, the Designer checks for new Plugin versions at

every startup. You may change the frequency via tab "Settings" in the Plugins dialog (see

screenshot above).

● In the rare case that a plugin-related bug disturbs your work, you can simply de-activate the

respective plugin via Tools > Plugins > Installed > <Mark respective plugin> > button "Deativate"

(or, if required, button "Uninstall")

In the future, ADITO will consequently extend the Designer’s functionality via plugins, which will then

appear under Tools > Plugins > Available Plugins, ready to be installed.

© 2025 ADITO Software GmbH 110 / 170

Figure 16. The Plugins dialog

In the following chapters, you will find a description of selected plugins. If you need assistance for

further plugins, please contact ADITO via Service Client ticket.

14.3. Plugin AsciidoctorJ

The plugin AsciidoctorJ provides preview functionality for Asciidoctor (adoc) files. In ADITO, these files

are used for documentation purposes, mainly available via property "documentation" of various ADITO

models or via the

ADITO Userhelp. Besides, you can create additional adoc files on demand, e.g., in the project folder

"others" (choose New > Other… from the context menu of "other" and then select "Asciidoc" in the

popup dialog).

A good example in the xRM project is the documentation property of 360Degree_entity:

© 2025 ADITO Software GmbH 111 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID005_EN_Userhelp.pdf

As you can see, reading the documentation text via the source file is quite difficult, as there are a lot of

control characters and terms of the AsciiDoc markup language. Now, when the plugin AsciidoctorJ is

installed, a new tab "Preview" is available to the right of tab "Source". If you click on tab "Preview", the

document is rendered and shown in a formatted, readable way:

You can learn more about the adoc language by

● scanning the source of examples from the xRM project, like the above;

● reading the official online documentation of the open-source tool Asciidoctor;

● use other online resources, such as the AsciiDoc Cheatsheet.

© 2025 ADITO Software GmbH 112 / 170

https://docs.asciidoctor.org/
https://powerman.name/doc/asciidoc

Adding images to adoc documents is currently only supported by ADITO for Userhelp documents. Find

more information in chapter "Adding images and videos" of the ADITO manual AID005_Userhelp.pdf.

© 2025 ADITO Software GmbH 113 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID005_EN_Userhelp.pdf

14.4. Plugin Git

Also the ADITO Designer in theory has a version control tool in the menu group "Team". However, this

tool is not used in most cases. Instead, nearly all ADITO projects with more than one developer use Git

an are mostly hosted on GitLab repositories or on web sites like GitHub.

At a high level, GitHub is a website and cloud-based service that helps developers store and manage

their code, as well as track and control changes in their code. It is a version control tool and a way to

manage code across multiple developer devices.

When the Git plugin is not installed you will find the following under "Team".

If Git is installed, the content of this menu group changes as follows:

© 2025 ADITO Software GmbH 114 / 170

(At first start, in some cases, you first need to execute option "Init" in order to initialize the Git folder

".git" in your local project directory.)

In this menu you find nearly all options you need to operate Git via the Designer. The exact way Git is

used may vary from project to project.

For comprehensive information on the use of each individual option please refer to the official Git

documentation. The following explanations are only a rough introduction.

One function that is handled via the Git plugin, is the option "History".

Here all changes made to the code are documented and made revertable. All of these changes are

made either locally, but then only the local computer can see them in the history tab or via a Git

commit. As soon as the commits are "pushed" (Option "Push"), they will show up on any computer

using the same Git branch (as soon as the others have executed the Git option "Pull"), no matter where

or by whom the changes were made.

"Revision", "User", and "Message" will be the Git user who committed the changes with the commit

message as "Message". By using the arrows the changes can be reverted to the old state. The old state

will always be shown on the left side.

In addition to the file changes, the whole project history can be made visible with the button

© 2025 ADITO Software GmbH 115 / 170

https://git-scm.com/doc
https://git-scm.com/doc

This will open the following view:

Here are three major parts.

First:

Every line on the left side represents a branch. At the moment when a branch gets merged into the

main branch this will also happen in the picture (see the line "Merge remote tracking branch…), when a

new branch is made this will also show the same but turned upside down. Each dot on the other hand

shows a commit made in the project, together will the commit message next to it. The next line would

show the username of the person which made the commit and the exact date the commit was made

© 2025 ADITO Software GmbH 116 / 170

on the right side.

If you want to revert to a old state, you have the option to do this here. Right click on a commit and

select one of the following options.

Compare with HEAD Shows all differences in all files from the local state to the state of the

commit.

Reset current Branch to

here

Resets the current branch! You lose all changes made when doing a

hard reset.

Add Tag Add a tag to a commit (the green flags)

Delete Tag Delete a added tag

Cherry Pick Select all files which should be merged into the current project with a

dialogue on how to manage individual merge conflicts

Second:

This view shows all files where changes where made in a tree. With a double click another window will

open which compares the current and old file.

Third:

Here the commiter and the commit message will be shown again.

In addition to the toolbar windows, you may also access git for single files with a right click in the menu

© 2025 ADITO Software GmbH 117 / 170

"Git". Below the normal Git actions like pull/push there are some more options.

Diff local changes Shows a side by side comparison between the current and former

local file

Show local changes Shows all locally changed files in a treetable

Show file history Shows the files history in the same way as shown in "First" above

Stash local changes Temporarily save your changes(stash) when you are not ready to

commit yet (see Git documentation)

Un-stash changes Un-stash your changes

Revert file(s) Undo all changes in your open files

Resolve conflicts Resolve merge conflicts which might appear when pulling a project

14.4.1. Auto-Merging

As mentioned in the table above you might encounter merge conflicts that have to be resolved. These

conflicts are more likely to occur in Language and Liquibase files than any other file types. Therefore

you can use the function "Auto-Resolve" in order to automatically merge these files. If there a conflicts

that can’t be solved automatically, the normal merge dialog will appear and you have to manually

merge.

© 2025 ADITO Software GmbH 118 / 170

At the moment you can expect the following auto-resolving to work with:

● Same changes

● Changes in which one side is contained in the other

● Word-based (instead of line-based) resolution of conflicts

● Imports: here the imports from both pages are merged together

● Liquibase: if different changelog files have been added, simply add all of them

● Language: in language files the conflicts are resolved if the "name" of the entries is different

© 2025 ADITO Software GmbH 119 / 170

14.5. Plugin Liquibase

14.5.1. Basics

Liquibase is an open-source database-independent library for tracking, managing, and applying

database schema changes (see https://en.wikipedia.org/wiki/Liquibase). The Designer plugin

encapsulates its original commandline calls and integrates its functionality into the ADITO Designer.

Liquibase is very well-documented at https://docs.liquibase.com. Therefore, this manual contains only

essential information.

Liquibase works by defining database structure and database content (datasets) in XML files, which are

called "changelogs". Each changelog file contains

● XML "include" tags pointing to other (sub-)changelog files, or

● one or multiple so-called "changeSets", which XML nodes containing the actual configuration of

database structure (e.g., create table, add column, etc.) or datasets (e.g., insert, update, or

delete)

The core "job" of Liquibase is to convert these XML-based configuration into SQL commands - always

starting with the master (top-level) "changelog.xml", which resides directly under the sub-nodes of

project node "alias" (e.g., under alias > Data_alias) and points to "changelog.xml" files in sub-folders,

which in turn point to the changelog files including the actual database change configurations.

As the changelog XML files are part of the ADITO project, they can also be versioned via Git. Liquibase

is able to compare the current database with the definitions in the XML files, enabling to update the

database accordingly.

The file names (not the content) of these XML files and the related folders must NOT

contain any special characters, such as blanks, German "umlauts", French accents,

Danish characters "å", "ø", etc. Otherwise, the Liquibase action might fail, resulting

in an incomplete execution and a respective error message.

14.5.2. How to use Liquibase

The plugin adds a new menu item "Liquibase" to the context menu of the nodes under node "alias"

(e.g. alias > Data_alias).

This item is a submenu, containing the following actions:

1. Update

Checks the selected database against the configuration defined in the XML files and updates the

database, if there are differences.

© 2025 ADITO Software GmbH 120 / 170

https://en.wikipedia.org/wiki/Liquibase
https://docs.liquibase.com

2. Drop All

Deletes all tables of the database.

3. Drop All & Update

Drops all database tables and (re-)creates all tables and datasets according to the XML files.

Depending of your project’s size, these actions can take several minutes, resulting in a "timeout" dialog

to be shown, possibly several times. Simply confirm these dialogs, in order to continue the execution of

the Liquibase action. (If this bothers you, you can increase the timeout value in the "default options" of

the Designer’s startup file - see sub-chapter "Configuration" of chapter Startup.)

If, during your project’s development phase, you have destroyed or confused your

database tables or their datasets, you simply need to choose "Liquibase > Drop all &

update", and in a few seconds your database will be reset to the original state,

including the (demo) datasets that you may have defined in the XML files.

The Liquibase plugin does not provide any "undo" functionality. Once you have

executed "Drop All" or "Drop All & Update", your complete database and all its

datasets will be deleted permanently without any possibility to restore them!

14.5.2.1. Creating and naming changelog files

To create a new Liquibase changelog XML file, choose option "New" > "New Changelog" from the

context menu of the nodes under node "alias" (e.g. alias > Data_alias). Name it according to the

spelling conventions, e.g.,

● just "changelog.xml", if it is a file that only points to other (sub-)changelog files.

● according to their function, e.g., "insert_<whatIsToBeInserted>.xml",

"alter_<whatIsToBeAltered>.xml", or "delete_<whatIsToBeDeleted>.xml", if database structure

or datasets are created, altered, or deleted. Simply scan through the existing changelog files of

the ADITO xRM project, in order to find out an suitable name.

Both types of XML files are commonly called "changelog files" - not only those that

have the word "changelog" in their file name.

14.5.2.2. Creating folders

For a better overview, it is helpful to group the changelog files into several folders, with

● one file named "changelog.xml" in each folder, whose "include" tags point to each single

changelog file in the folder (e.g., create_MyTable.xml, init_myTable.xml, etc.)

© 2025 ADITO Software GmbH 121 / 170

● one master file named "changelog.xml" on top-level, i.e., directly under "Data_alias". It contains

"include" tags pointing to the (sub-)"changelog.xml" files of each folder.

This top-level "changelog.xml" file must be exactly named like this, as it is the

hard-coded starting point of every Liquibase logic (except for "drop", which

functions independently from the XML files and simply deletes the complete

database). If this master file does not exist or is named differently from

"changelog.xml", every Liquibase "update" logic will fail.

To create a new Liquibase folder, choose option "New" > "New Folder" from the context menu of the

nodes under node "alias" (e.g. alias > Data_alias). Folder names should be self-explanatory, e.g., the

name of the database table that is affected by the changeSets in the changelog files of this folder. You

may also create sub-folders by choosing option "New" > "New Folder" from the context menu of a

folder.

14.5.2.3. Liquibase folder structure

14.5.2.3.1. Common structure pattern

A common way to structure the Liquibase folders follows the following pattern:

(…)

<Name of Feature>

- data

- struct

- changelog.xml (sometimes also named init.xml)

● "struct" contains the changelog files that define the database tables for this feature

● "data" contains changelog files to insert datasets required for the initial status of this table or

required new datasets in other tables (e.g., new keywords that are essential for this feature).

● "changelog.xml" points to every single changelog files in the "struct" and "data" folders.

14.5.2.3.2. Liquibase folder structure of the ADITO xRM project

In the ADITO xRM project, the changelog files are structured according to each single ADITO version.

Existing Liquibase folders and changelog files are never changed, but whenever a new ADITO version is

released, the folder structure is extended by new folders with new changelog files, specific for this new

version. Even if, e.g., a database table is no longer required, its creation changelog file is not removed,

but a delete changelog file is added. This means, whenever you execute Liquibase > Drop All & Update,

the complete database history is worked through - starting from the database version of the first ADITO

version ever, then through every single later version, until the current version. The advantage of this

© 2025 ADITO Software GmbH 122 / 170

approach is that, if required, you can re-create the database state specific for every single ADITO

version of the past - simply by outcommenting the "include" tags of later versions in the master

"changelog.xml" file.

To avoid failures or inconsitencies, it is strongly recommended to follow this

principle for every further customizing-related database changes, be it related to

structure or content (datasets): NEVER change or delete any of the existing Liquibase

folder or changelog files, but ADD further folder or files according to your

requirements.

14.5.3. Changelog XML structure

The basic enclosing element of a changelog file is a tag named "databaseChangeLog":

<?xml version="1.1" encoding="UTF-8" standalone="no"?>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

</databaseChangeLog>

In this XML structure you can add <changeSet> tags (then you call this file a "feature changelog"), or

<include> tags pointing to other changelog files (then you call this file a "master changelog").

Example for adding a (sub-)master changelog to a master changelog:

<include relativeToChangelogFile="true"
file="basic/2021.0.3/changelog.xml"/>

Example for adding a feature changelog to the master changelog:

<include relativeToChangelogFile="true"
file="struct/create_product.xml"/>

Without the attribute relativeToChangelogFile="true" Liquibase is not able to locate

the referenced changelog files correctly.

 The file "changelog.xml" directly below the alias definition is called the master

© 2025 ADITO Software GmbH 123 / 170

changelog and contains only references (<include> tags) to (sub-)master changelog

files, separately for every feature or ADITO version.

14.5.4. Feature changelog XML structure

Feature changelog files are Liquibase XML files that include one or multiple <changeSet> tags, nested in

a <databaseChangeLog> tag. (Although, literally, a "changeSet" is an XML tag, some ADITO developers

also call the whole XML file "changeset", if it is a feature changelog file including at least one

changeSet.)

The basic structure of a feature changelog file is:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">
 <changeSet author="" id="">

 </changeSet>
</databaseChangeLog>

Here you have to manually set the author and id attributes.

● author should reflect who created and maintains this changeSet

● id has to be any unique string. Best you use a UUID generated by the Designer’s integrated UUID

Generator.

Within the <changeSet/> node you can add DDL nodes for structural changeSets or DML nodes for data

changeSet.

 It is not recommended to mix DDL and DML in a single changeSet.

The possible DDL and DML nodes are detailed below.

14.5.4.1. Data Definition Language (DDL)

14.5.4.1.1. CREATE

CREATE TABLE

E.g. createTable_info.xml

© 2025 ADITO Software GmbH 124 / 170

The following example of a create-file shows how to create a table with columntypes like CHAR,

VARCHAR, NVARCHAR, SMALLINT, INT, DOUBLE, BOOLEAN, CLOB, NCLOB, LONGBLOB, DATETIME, DATE,

TIME.

Primary key with multiple columns? You can’t do that inside the createTable tag

itself, but you can do it within the same changeSet as when the table is created.

<changeSet author="e.pollinger" id="1523697466364-1">
 <createTable tableName="INFO">
 <column name="INFOID" type="CHAR(36)">
 <constraints primaryKey="true"
primaryKeyName="PK_INFO_INFOID"/>
 </column>
 <column name="ORG_ID" type="CHAR(36)">
 <constraints foreignKeyName="FK_INFO_ORG_ID"
references="ORG(ORGID)"/>
 </column>
 <column name="USER_NEW" type="VARCHAR(50)">
 <constraints nullable="false"/>
 </column>
 <column name="NAME" type="NVARCHAR(255)">
 <constraints nullable="false" unique="true"
uniqueConstraintName="uqe_org_name"/>
 </column>
 <column name="TYPE" type="SMALLINT"/>"YYYY-MM-DD",
"hh:mm:ss" or "YYYY-MM-DDThh:mm:ss">
 <column name="AMOUNT" type="INT"/>
 <column name="PERCENT" type="DOUBLE"/>
 <column name="USEFUL" type="BOOLEAN"/>
 <column name="GOODTOKNOW" type="CLOB"/>
 <column name="INFOBIG" type="NCLOB"/>
 <column name="PICTURE" type="LONGBLOB"/>
 <column name="INFOMOMENT" type="DATETIME"/>
 <column name="INFODATE" type="DATE"/>
 <column name="INFOTIME" type="TIME"/>
 <column name="DATE_NEW" type="TIMESTAMP">
 <constraints nullable="false"/>
 </column>
 </createTable>
</changeSet>

If you want to have a composite constraint (like a composite primary key, unique

constraint, ..) you can add the "constraints" tag with the "primaryKey" attribute to

two columns.

© 2025 ADITO Software GmbH 125 / 170

When Liquibase is executed, Liquibase’s data types (as included in the xml files) are

mapped to data types proper to the specific database engine connected to the

ADITO project. For example, Liquibase’s data type NCLOB ((used for very large text

fields) remains a NCLOB for Apache Derby databases, but is mapped to a LONGTEXT

for MariaDB and MySQL, while in MicrosoftSQL it will be a NVARCHAR(MAX).

When customizing ADITO, you should always prefer the target data types of these

Liquibase mappings, even if you do not use Liquibase itself.

You can find a list of the preferable data types, according to database system, in the

document AID001 Coding Styles, chapter "Preferable data types".

CREATE INDEX

E.g. createIndex_org_name.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528803467864-1">
 <createIndex indexName="idx_org_name" tableName="ORG">
 <column name="NAME"/>
 </createIndex>
</changeSet>

By default, most DBMSs create all indices ascendingly. However, with respect to performance, the index

should be descending in specific cases. If, e.g., the datasets that are usually selected (= searched for)

are relatively new, you could set a descending index on the respective DATE column.

Here is an example, speeding-up the performance of the xRM project’s Context "Activity":

(...)
<createIndex indexName="IDX_ACTIVITY_ENTRYDATE" tableName=
"ACTIVITY">
 <column name="ENTRYDATE" descending="true"/>
</createIndex>
(...)

As the client user usually searches for recent Activities, the DBMS finds the data faster, because a

descending index is set on column ENTRYDATE.

In particular, descending indices can speed-up the performance when set on columns that are

date/time-related or holding sequential numbers.

© 2025 ADITO Software GmbH 126 / 170

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

14.5.4.1.2. ALTER

ADD COLUMN

E.g. addColumn_org_mailboxNumber.xml

The structure of this file could look like this:

<changeSet author="e.pollinger" id="1528803466371-1">
 <addColumn tableName="ORG">
 <column name="MAILBOXNUMBER" type="int"></column>
 </addColumn>
</changeSet>

Be careful if you want to set a "not nullable constraint" on the new column! If there

are already records in the table, you’ll not be able to add the column!

If you want to have a specific column order, have a closer look at the attribute

"beforeColumn" on this website: https://www.liquibase.org/documentation/

column.html

ADD PRIMARY KEY

E.g. addPrimaryKey_org_orgid.xml

The structure of this file could look like this:

<changeSet author="e.pollinger" id="1528703466371-1">
 <addPrimaryKey columnNames="ORGID" constraintName="pk_org"
tableName="ORG"/>
</changeSet>

You can also create a composite primary key by indicating two columns for the

attribute "columnNames" (e.g. "ORGID, RELATIONID").

ADD FOREIGN KEY CONSTRAINT

E.g. addForeignKey_pers_org.xml

The structure of this file could look like this:

<changeSet author="e.pollinger" id="1528803466371-1">
 <addForeignKeyConstraint baseColumnNames="ORG_ID"
 baseTableName="PERS"
 constraintName="fk_pers_org"

© 2025 ADITO Software GmbH 127 / 170

https://www.liquibase.org/documentation/column.html
https://www.liquibase.org/documentation/column.html

 referencedColumnNames="ORGID"
 referencedTableName="ORG"/>
</changeSet>

If you have a composite primary key you want to refer to, you can indicate two columns at the

attributes "baseColumnsNames" and "referencedColumnNames" (separated by a comma).

Be sure the two columns are the same type!

Here you could also add "onDelete" and "onUpdate" as a attribute.

ADD NOT NULL CONSTRAINT

E.g. addNotNull_org_name.xml

The structure of this file could look like this:

<changeSet author="e.pollinger" id="1528863466371-1">
 <addNotNullConstraint columnName="NAME" tableName="ORG"/>
</changeSet>

ADD UNIQUE CONSTRAINT

E.g. addUnique_org_customercode.xml

The structure of this file could look like this:

<changeSet author="e.pollinger" id="1528803466371-1">
 <addUniqueConstraint columnNames="CUSTOMERCODE" tableName="ORG"
constraintName="uqe_org_customercode"/>
</changeSet>

You can indicate two columns (separated by a comma) at the value of the attribute

"columnNames" to get a composite unique constraint.

14.5.4.1.3. DROP

DROP TABLE

E.g. dropTable_org.xml

<changeSet author="j.brunner" id="1598813466379-1">
 <dropTable tableName="org"/>
</changeSet>

© 2025 ADITO Software GmbH 128 / 170

Watch out if there’s a referential integrity constraint that refers to primary and

unique keys in the dropped table. Then you won’t be able to drop the table after all.

DROP COLUMN

E.g. dropcolumn_org_mailboxNumber.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528803466379-1">
 <dropColumn tableName="ORG" columnName="MAILBOXNUMBER"/>
</changeSet>

DROP FOREIGN KEY

E.g. dropForeignKey_pers_org_id.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1526703466389-1">
 <dropForeignKeyConstraint baseTableName="PERS"
constraintName="fk_pers_org"/>
</changeSet>

DROP INDEX

E.g. dropIndex_org_name.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528803466389-1">
 <dropIndex indexName="idx_org_name" tableName="ORG"/>
</changeSet>

DROP NOT NULL CONTRAINT

E.g. dropNotNull_org_name.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528803466389-1">
 <dropNotNullConstraint columnName="type" tableName="testtable"/>
</changeSet>

DROP PRIMARY KEY

© 2025 ADITO Software GmbH 129 / 170

E.g. dropPrimaryKey_org_orgid.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528803466389-1">
 <dropPrimaryKey constraintName="PK_ORG_ORGID" tableName="ORG"/>
</changeSet>

14.5.4.1.4. PRECONDITIONS

Preconditions are changelog or changeset tags that control the execution of an update based on the

state of the database.

Preconditions are typically used to:

● Document what assumptions the author of the changelog had when creating it.

● Enforce that those assumptions are not violated by users running the changelog.

● Perform data checks before performing an unrecoverable change such as dropTable.

● Control what changesets are run and not run based on the state of the database.

Example for using the tag "preConditions"

 <changeSet author="j.smith" id="d3ff85dc-278c-442a-8bde-
01e03b14ccb6">
 <preConditions onFail="MARK_RAN">
 <not>
 <tableExists tableName="MYTABLE" />
 </not>
 </preConditions>
 <createTable tableName="MYTABLE">
 <column name="MYTABLEID" type="CHAR(36)">
 <constraints nullable="false" primaryKey="true"
primaryKeyName="SQL0000000000-4191140c-017a-99e1-b89f-000014b5bcc5"
/>
 </column>
 <column name="MYCOLUMN1" type="VARCHAR(50)" />
 <column name="MYCOLUMN2" type="INTEGER" />
 </createTable>
 </changeSet>

In this example, tag "preConditions" makes sure that the changeSet can also be used for a Liquibase

"update", without preceding "drop" (otherwise Liquibase would throw an exception after failing to

create the same table a second time). The attributes and nested tags of this example mean:

© 2025 ADITO Software GmbH 130 / 170

● tableExists: Defines if the specified table exists in the database.

● not: You can apply conditional logic to preconditions using nestable <and>, <or>, and <not> tags.

If no conditional tags are specified, the default value is AND.

● onFail: Controls what happens if the preconditions check fails.

● MARK_RAN: Skips over the changeset but marks it as executed. Continues with the changelog.

Find more information on preconditions on the official Liquibase documentation web site, see

https://docs.liquibase.com/concepts/advanced/preconditions.html

14.5.4.1.5. RENAME

RENAME TABLE

E.g. renameTable_organisation.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1723617466364-1">
 <renameTable newTableName="organisation" oldTableName="org"/>
</changeSet>

RENAME COLUMN

E.g. renameColumn_org_ccode.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1723697466364-1">
 <renameColumn newColumnName="CCODE"
oldColumnName="CUSTOMERCODE" tableName="ORG"
columnDataType="INTEGER"/>
</changeSet>

 The attribute columnDataType of the renameColumn-tag is required!

RENAME CONSTRAINT

It is not possible to rename a constraint. You have to drop the constraint and make a new one.

14.5.4.2. Data Manipulation Language (DML)

The following file cutouts do just contain the <changeSet>-part. Do not forget to

add the <?xml>- and <databaseChangeLog>-Tags!

© 2025 ADITO Software GmbH 131 / 170

https://docs.liquibase.com/concepts/advanced/preconditions.html

All those files need to be in the "data" folder.

14.5.4.2.1. INSERT

E.g. insert_org_data1.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528875814576-1">
 <insert tableName="INFOO">
 <column name="INFOID" value="8796528b-c053-557a-b8d9-
11063d6a50ae"/>
 <column name="ORG_ID" value="198b8a8b-c053-447a-bc69-
17963b6a60ae"/>
 <column name="USER_NEW" value="j.brunner"/>
 <column name="NAME" value="Infoblatt"/>
 <column name="TYPE" valueNumeric="1"/>
 <column name="AMOUNT" valueNumeric="16"/>
 <column name="PERCENT" valueNumeric="15.2"/>
 <column name="UNIQUE" valueBoolean="1"/>
 <column name="GOODTOKNOW"
valueClobFile="data\clob\example.txt" />
 <column name="GOODTOKNOW2"
valueClobFile="C:\Users\J.Brunner\Documents\AditoProjects\xRM-Basic

5.1\others\db_changes\data\clob\example.txt"/>
 <column name="PICTURE" valueBlobFile="data\blob\DS1.png"/>
 <column name="INFOMOMENT" valueDate="2007-08-09T13:14:15"/>
 <column name="INFODATE" valueDate="2007-08-09"/>
 <column name="DATE_NEW" valueDate="2007-08-09T13:14:15"/>
 </insert>
</changeSet>

Date and/or Time value to set the column tag valueDate. The value is specified in

one of the following forms: "YYYY-MM-DD", "hh:mm:ss" or "YYYY-MM-

DDThh:mm:ss".

14.5.4.2.2. UPDATE

E.g. update_org_data1.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528875814530-1">
 <update tableName="ORG">

© 2025 ADITO Software GmbH 132 / 170

 <column name="type" valueNumeric="1"/>
 <where>ORGID = '29990305-4ac6-4876-94b9-
0300ce6cefaa'</where>
 </update>
</changeSet>

14.5.4.2.3. DELETE

E.g. delete_org_data1.xml

The structure of this file could look like this:

<changeSet author="j.brunner" id="1528875814544-1">
 <delete tableName="ORG">
 <where>ORGID = '29990305-4ac6-4876-94b9-
0300ce6cefaa'</where>
 </delete>
</changeSet>

If you try to delete a record, whose primary key is used in another table, the

statement will probably not be executed because of the foreign key contraint and

the fact, that onDelete is "RESTRICT" on default. That doesn’t allow you to delete

records whose primary keys are as a foreign key in another table.

You could set the value of the attribute onDelete of the Tag

<addForeignKeyConstraint> "CASCADE", "SET NULL", "SET DEFAULT",

"RESTRICT" or "NO ACTION"

CLEAR TABLE

As there is no Truncate in Liquibase, you simply have to run a delete-skript without a where-tag. E.g.:

 <changeSet author="j.brunner" id="1528995814544-1">
 <delete tableName="org"/>
 </changeSet>

14.5.4.3. PREPARED STATEMENTS

If you want to execute a delete/an update with the where-clause as prepared statement, the XML could

look like that:

<changeSet author="j.brunner" id="1528875814830-1">
 <delete tableName="ORG">

© 2025 ADITO Software GmbH 133 / 170

 <where>ORGID = ?</where>
 <whereParams>
 <param value="29990305-4ac6-4876-94b9-0300ce5cefaa"/>
 </whereParams>
 </delete>
</changeSet>

Update works analog to delete

14.5.5. ROLLBACKS

Liquibase allows you to undo changes you have made to your database, either automatically or via

custom rollback SQL. Rollback support is available in command_line, Ant, and Maven (in our case:

command_line).

Many refactorings such as “create table”, “rename column”, and “add column” can automatically create

rollback statements. If your change log contains only statements that fit into this category, your rollback

commands will be generated automatically.

Other refactorings such as “drop table” and “insert data” have no corresponding rollback commands

that can be automatically generated. In these cases, and cases where you want to override the default

generated rollback commands, you can specify the rollback commands via the tag within the changeSet

tag. If you do not want anything done to undo a change in rollback mode, use an empty tag.

Auto Rollback No Auto Rollback

RenameColumn Insert

RenameTable Update

CreateTable Delete

CreateIndex DropColumn

AddColumn DropTable

AddPrimaryKey DropIndex

AddForeignKey DropPrimaryKey

AddNotNull DropForeignKey

© 2025 ADITO Software GmbH 134 / 170

Auto Rollback No Auto Rollback

AddUniqueConstraint DropUniqueConstraint

DropNotNullConstraint

So if you create a statement where no Auto Rollback can be created, you have to proceed like that:

For example if you want to drop a table, you can reference to the changeSet which originally created

the statement:

<changeSet id="1523697466364-2" author="jbrunner">
 <dropTable tableName="info"/>
 <rollback changeSetId="1523697466364-1"
changeSetAuthor="jbrunner"/>
</changeSet>

So 1523697466364-1 is the id of the "create" changeSet of the table info.

If you create an "insert" changeSet, you put a "delete" changeSet in a rollback tag and vice versa.

If you create a "dropColumn" changeSet, you put the "addColumn" changeSet in a rollback tag.

If you create a "dropTable" changeSet, you put the "createTable" changeSet in a rollback tag.

If you create a "dropIndex" changeSet, you put the "createTable" changeSet in a rollback tag.

If you create a "dropPrimaryKey" changeSet, you put the "addPrimaryKey" changeSet in a rollback tag.

If you create a "dropForeignKey" changeSet, you put the "addForeignKey" changeSet in a rollback tag.

If you create a "dropUniqueConstraint" changeSet, you put the "addUniqueConstraint" changeSet in a

rollback tag.

If there is no changeSet which could reverse your new changeSet or you create a "update" ChangeSet,

just reverse the statement by your own. Set it to the value it has been before.

For example an "update" changeSet:

<changeSet author="j.brunner" id="1528875814530-1">
 <update tableName="ORG">
 <column name="type" valueNumeric="1"/>
 <where>ORGID = '29990305-4ac6-4876-94b9-

© 2025 ADITO Software GmbH 135 / 170

0300ce6cefaa'</where>
 </update>
 <rollback>
 <update tableName="ORG">
 <column name="type" valueNumeric="0"/>
 <where>ORGID = '29990305-4ac6-4876-94b9-
0300ce6cefaa'</where>
 </update>
 </rollback>
 </changeSet>

Or an dropPrimaryKey-changeSet:

<changeSet author="j.brunner" id="1528803466389-1">
 <dropPrimaryKey constraintName="PK_ORG_ORGID" tableName="ORG"/>
 <rollback>
 <addPrimaryKey columnNames="ORGID"
constraintName="PK_ORG_ORGID" tableName="ORG"/>
 </rollback>
</changeSet>

14.5.6. BLOB/CLOB

If you want to insert data in a table and one of the columns are type "CLOB" or "BLOB", you need to

store the value of the data in a separate file. Therefore add two folders ("blob" and "clob") in you

"data" folder and store your pictures, textfiles, etc. in these.

In your insert-statement you need to indicate the file path as a relative or absolute path for the

"BLOB"/"CLOB" data. An example for both:

Relative:

valueClobFile="data\clob\example.txt"

Absolute:

valueClobFile="C:\Users\J.Brunner\Documents\AditoProjects\xRM-Basic
5.1\others\db_changes\data\clob\example.txt"

14.5.7. XML special characters

Adding control characters ('<', '>', ''', '"', '&') into xml data can cause the parser to miss understand the

resulting data. The solution is to escape the control characters so that the parser can interpret them

© 2025 ADITO Software GmbH 136 / 170

correctly as data, and not confuse them for markup.

Characters Escape String

< <

> >

& &

" "

' '

Example:

Data In XML

He said "OK" attributeName="He said "OK""

For any further, more complicated examples, google "escaping xml data examples". You’ll find plenty of

them.

14.5.8. Enabling demo data

The Liquibase files of the ADITO xRM project include the configuration of demo data, e.g., example

persons or companies. However, by default, these demo datasets are excluded from any Liquibase

operations, by being commented out in the master "changelog.xml" file:

changelog.xml (under alias > Data_alias) with deactivated demo data

<databaseChangeLog>

...

 <!--enable this only when you definetly want to overwrite the existing data with demo records:-->

 <!--<include relativeToChangelogFile="true" file="basic/_demoData/changelog.xml" context="example"/>-->

</databaseChangeLog>

As you can already read in the remark of the xml code, activating (uncommenting)

the demo data will result in a complete loss of any productive data - even if you

only choose option "Liquibase - update" (without "drop all"). Therefore, this xml

line must NEVER be activated (= uncommented) in a productive system or whenever

© 2025 ADITO Software GmbH 137 / 170

you have entered own data that must not be deleted.

As we want to use the demo data for our carpool project, we uncomment the corresponding xml line:

changelog.xml (under alias > Data_alias) with activated demo data

...

 <!--enable this only when you definetly want to overwrite the existing data with demo records:-->

 <include relativeToChangelogFile="true" file="basic/_demoData/changelog.xml" context="example"/>

</databaseChangeLog>

But do not forget to deactivate (comment out) this line again, as soon as you have performed the

Liquibase update. Otherwise data loss is possible (see warning above).

14.5.9. Create Liquibase files automatically

The ADITO Designer includes some very helpful functionality that simplifies the generation of new

Liquibase files and thus reduces the probability of "copy & paste" mistakes.

14.5.9.1. Create empty changelog

You can create a new changeLog file with the "author" attribute and a UUID already set by right-clicking

on a Liquibase folder and choosing "New with Blueprint" > "Create empty changeLog". A dialog will

then be opened, requesting the name of the new file and (optionally) the name of the author.

14.5.9.2. Create changelog with new DB table

You can create a new changeLog file for defining a new table, including primary key column, "author"

attribute and UUID by right-clicking on a Liquibase folder and choosing "New with Blueprint" > "Create

changeLog with new DB table". A dialog will then be opened, requesting the name of

● new file

● author (optional)

● table

● primary key column (optional)

● standard column (USER_NEW, USER_EDIT, DATE_NEW, DATE_EDIT; optional)

14.5.9.3. Changelog to SQL

If you want to get the SQL statements

● that Liquibase generates on the basis of a specific changelog XML file,

© 2025 ADITO Software GmbH 138 / 170

○ right-click on that file and choose "Liquibase" > "Generate Update SQL".

○ A dialog will open requesting you to select the corresponding database alias (e.g. "…

Data_alias…").

○ Section "Available contexts": In addition, you can (if present) check checkboxes to include

those tags having a specific "context" attribute, e.g., "example":

(...)

 <include relativeToChangelogFile="true" file="basic/2021.0.1/changelog.xml"/>

 <include relativeToChangelogFile="true" file="basic/2021.0.2/changelog.xml"/>

 <include relativeToChangelogFile="true" file="basic/2021.0.3/changelog.xml"/>

 <include relativeToChangelogFile="true" file="basic/_demoData/changelog.xml" context="example"/>

(...)

If, in this case, the checkbox "Available contexts > example" is not checked, then the line

 <include relativeToChangelogFile="true" file="basic/_demoData/changelog.xml" context="example"/>

would be skipped, when a Liquibase "Update" action is executed.

○ After selecting and clicking "OK", a popup window shows you the requested SQL

statements.

● for rolling back the "Update" actions related to a specific changelog XML file, right-click on that

file and choose "Liquibase" > "Generate Future Rollbqack SQL". A dialog will open requesting

you to select the corresponding database alias (e.g. "…Data_alias…"). After selecting and clicking

"OK", a popup window shows you the requested SQL rollback statements.

14.5.9.4. DB to changelog

In earlier chapters, you have already learned how to use Liquibase XML files, in order to create

database structure (tables and columns) and insert data into tables.

In practice, it can sometimes be easier to do it the other way round:

● You first create the database structure manually (via the ADITO database editor, via the Alias

Definition, or directly via SQL commands) and then you create the Liquibase files. The latter can

be done automatically.

● In the same way, you can also first insert data (example data etc.) manually (via the ADITO client

or directly via SQL commands) and then you create the Liquibase files. The latter can also be

done automatically.

You can easily generate changelog XML files from an existing database table: Open the ADITO database

© 2025 ADITO Software GmbH 139 / 170

editor (e.g., via double click on system > default > Data_alias > ADITO > Tables) and right-click on the

respective database table. In the context menu, choose "Generate changelog". A dialog will appear that

allows you to select path and name of the changelog file to generate, fill in the author’s name and, if

required, select options to include (as required for some database management systems) catalog or

schema. In section "Types" check

● "Table structure", if you want a changelog file for creating the database table’s structure, i.e., its

name, columns (with data type), contraints, indices, etc.

● "Data", if you want a changelog file for inserting the database table’s datasets.

● You can combine both types by checking both checkboxes. Then the database table will first be

generated and then be filled with datasets.

Example of a Liquibase XML file automatically generated on the basis of an existing database table

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">

 <changeSet author="j.smith" id="d3ff85dc-278c-442a-8bde-01e03b14ccb6">

 <preConditions onFail="MARK_RAN">

 <not>

 <tableExists tableName="MYTABLE" />

 </not>

 </preConditions>

 <createTable tableName="MYTABLE">

 <column name="MYTABLEID" type="CHAR(36)">

 <constraints nullable="false" primaryKey="true" primaryKeyName="SQL0000000000-4191140c-017a-99e1-b89f-000014b5bcc5" />

 </column>

 <column name="MYCOLUMN1" type="VARCHAR(50)" />

 <column name="MYCOLUMN2" type="INTEGER" />

 </createTable>

 </changeSet>

</databaseChangeLog>

As you can see, this XML file includes a tag called "preConditions" that makes sure that the file can also

be used for a Liquibase "update", without preceding "drop" (otherwise Liquibase would throw an

exception after failing to create the same table a second time). The attributes and nested tags of this

tag mean:

● tableExists: Defines if the specified table exists in the database.

● not: You can apply conditional logic to preconditions using nestable <and>, <or>, and <not> tags.

If no conditional tags are specified, the default value is AND.

● onFail: Controls what happens if the preconditions check fails.

● MARK_RAN: Skips over the changeset but marks it as executed. Continues with the changelog.

Find more information on preconditions on the official Liquibase documentation web site, see

https://docs.liquibase.com/concepts/advanced/preconditions.html

See also chapter PRECONDITIONS.

© 2025 ADITO Software GmbH 140 / 170

https://docs.liquibase.com/concepts/advanced/preconditions.html

14.5.10. Liquibase functions outside the Designer

As already mentioned, you can find a detailed documentation of all Liquibase functions on the

developer’s web site, see https://docs.liquibase.com/ . Besides the functionality already integrated in

the Designer, there are several further features that are available outside the Designer, to be executed

via the command line. For example, it is possible to generate a "diff" between different database

snapshots (see Liquibase web site). This requires Liquibase to be installed from the developer’s

website, https://www.liquibase.org/ . (Having the ADITO plugin installed is not enough!)

14.5.11. Liquibase with audit and offline synchronisation

 Ignoring this chapter can result in data inconsistency!

If you execute a Liquibase function on a database table that is included in

● audit with or without

● offline synchronisation

warning messages will be shown, which need to be confirmed with "OK", before Liquibase will actually

be executed. (Alternatively, you may choose "Cancel".)

The reason of these warnings is that Liquibase does not communicate its database changes to ADITO’s

audit layer - neither changes of structure, nor changes of content (datasets). Therefore, if audit is

active, a warning message will be shown in white font color, meaning you will have an incomplete audit

protocol unless you perform manual adjustments of table ASYS_AUDIT subsequently.

If, in addition to audit, the offline sychronization is active, then subsequent adjustments of ASYS_AUDIT

are compulsory. If you miss to do this, you will encounter data inconsistencies on devices having been

offline during the execution of Liquibase. Therefore, a warning message will be shown in red font color.

© 2025 ADITO Software GmbH 141 / 170

https://docs.liquibase.com/
https://www.liquibase.org/

14.5.12. Using Liquibase files for multiple database types

All Liquibase files are database type-specific, i.e., you cannot 1:1 use files created for, e.g., a Derby

database also for an Oracle database - and vice versa. However, in many cases, only minor changes of

the xml content is required, in order to meet the specifications of other database types (e.g., change

the name of the column type).

14.5.13. Liquibase troubleshooting

14.5.13.1. Updated database structure is not accessible

Whenever you change the structure of the database (e.g., add a new table or a new column), you need

to clear the server’s cache (which has been implemented in order to optimize the system’s

performance):

● If you have started the server in the Designer,

○ click the garbage bin button in the vertical button bar in the left part of the output

window "Server:default" or

○ right-click into the same window and choose "Clear cache" (do not mistake this option

with another option called "Clear", which only clears the displayed log entries).

© 2025 ADITO Software GmbH 142 / 170

● Otherwise, clear the cache via the ADITO Web Manager (see button "Clear cache" in menu

"Overview"; find more details on the Web Manager in the Operating Manual).

If you miss to clear the cache, the structure (new table, new column, etc.) will not be accessible by your

Entities, but you will get an error message.

14.5.13.2. Handling Liquibase failures

If the execution of a Liquibase "Update" action fails, please inspect the error message in the ADITO

Designer’s log (not the ADITO server log!). In most cases you will find hints about the problem, e.g.,

messages like

liquibase.exception.ChangeLogParseException: The file .liquibase/Data_alias/basic/myFolder/mySubfolder/myChangelogFile.xml was not

found

(which, in this example, most probably means that a file named "myChangelogFile.xml" was referenced

in a "changelog.xml" file, but a file of that name does not exist.)

What happens to the database state, if a Liquibase "Update" action fails while processing a specific

changeLog file?

● Liquibase attempts to execute each changeSet in a transaction that is committed at the end, or

rolled back if there is an error. Some databases will auto-commit statements which interferes

with this transaction setup and could lead to an unexpected database state. Therefore, it is best

practice to have just one change per changeSet unless there is a group of non-auto-committing

changes that you want to apply as a transaction such as inserting data (see

https://docs.liquibase.com/concepts/basic/changeset.html).

● changeSets (meaning changeSet nodes in a changeLog file) preceding the erroneous changeSets

are NOT rolled back.

● changelog files that have been executed before the changelog file including the errorours

changeSet are NOT rolled back.

● Subsequent changelog files are not executed.

Thus, your database will be in an incomplete, not-functioning condition, if a Liquibase "Update" actions

fails - especially after action "Drop All & Update". In most cases, you can fix this by

● tracing and repairing the errorours changelog file;

● executing "Liquibase > "Update" - "Drop" should not be required, because Liquibase will

automatically detect which of the changeSets have already been executed before and which of

them still need to be executed.

© 2025 ADITO Software GmbH 143 / 170

https://docs.liquibase.com/concepts/basic/changeset.html

There is an optional attribute available for the changeSet tag: "failOnError". This

defines whether the whole Liquibase "Update" action will fail (= stop) if an error

occurs while executing the changeSet. (Default value is true.) Example:

 <changeSet id="3" author="j.smith" failOnError="false" dbms="oracle">
 (...myChanges...)
 </changeSet>

This can be helpful if you know in advance that in some cases a specific changeSet

might fail - without that being a reason to stop the whole Liquibase "Update" action:

If the statement resulting from the changeSet throws an error, the changeSet will

still be marked as ran, and the rest of the "Update" action will continue. The

downside of this approach is that the changeSet will also be marked as ran and

continue if it fails for some reasons you had not expected (e.g., bad permissions,

connection failure, invalid SQL, etc.). Therefore, the more accurate approach is to

prevent Liquibase failures by defining so-called preconditions: Preconditions are

changeSet tags that control the execution of a Liquibase "Update" action, based on

the state of the database. Find more information at https://docs.liquibase.com/

concepts/advanced/preconditions.html

© 2025 ADITO Software GmbH 144 / 170

https://docs.liquibase.com/concepts/advanced/preconditions.html
https://docs.liquibase.com/concepts/advanced/preconditions.html

14.6. Plugin Cloud Support

ADITO’s cloud plugin simplifies the connection of the ADITO Designer to an ADITO cloud system, as well

as the customizing of it. If the cloud system is integrated in ADITO’s Self-Service Portal (SSP) and you

have access to the SSP, then the approach is very simple - if not, you have to do several configuration

steps.

Prerequisite is that you have installed the Plugin either at the initial Designer start or via menu Tools >

Plugins > Available Plugins > Cloud Support > Install.

For performance reasons, we recommend you not to open more than one cloud

system in the Designer at the same time.

If you only want to exchange the default background image or logo of the login web

page, you can do this directly in the SSP, via Action "Change login screen" (see Action

button in your system’s PreviewView). No further customizing required.

14.6.1. With SSP access

14.6.1.1. Connection via "load cloud system"

If the cloud system is integrated in ADITO’s Self-Service Portal (SSP) and you have access to the SSP, you

can simply download the corresponding project from the cloud and immediately start to customize it

and deploy your changes. Just proceed as follows:

● File > New Project > load cloud system

● Enter your credentials (username and passwort) for accessing the SSP - these are the same as

those for accessing the SSP via the web client (https://ssp.adito.cloud/client/Home/full).

Actually, the credentials are identical with credentials for accessing ADITO’s GitLab.

● If you click on the "refresh" button to the right of the password field, all SSP cloud systems that

you have access to are shown in the large field below:

© 2025 ADITO Software GmbH 145 / 170

https://ssp.adito.cloud/client/Home/full

Figure 17. Selection box of available cloud systems

● Choose the cloud system that you want to connect with.

● By checking/unchecking the checkbox "Load Deployed System State", you can choose the

required state of the new local project that you want to load from the cloud system:

○ Leave the checkbox empty, if you want to checkout the Git branch with which the system

was originally set up.

○ Select "Load Deployed System State", if you want to have the system "as it is" on the

server. This will also check out the Git branch that was active when the last deploy was

made.

○ Technical details: When a user performs a deploy, the currently active Git branch is stored

in the system database. When the "Load Deployed System State" checkbox is selected,

that information is read from the database and the branch is checked out. Afterwards, the

files are overridden with the files of the system database (ASYS_SYSTEM etc.). This way,

changes that were deployed but not yet committed to the Git repository can be retrieved.

● If required, change the default project name or the default project location.

● Click "Finish"

● A popup dialog will appear, in which you must enter the location of the file holding your SSH key

(RSA private key, usually a file named "id_rsa") as well as the corresponding password and then

press "Save". Then, these credentials are saved (cashed), and you will not be prompted to enter

them a second time.

● Possibly, a warning dialog appears that tells you that the SSH fingerprint of the server is

unknown. As this is probably your first time connecting to the server you can safely ignore this

warning.

● The download of the project of your cloud system will take several minutes, depending on the

speed of your internet connection.

© 2025 ADITO Software GmbH 146 / 170

● After the download is finished, the project will appear in the "Projects" window of the Designer.

This project contains the same data as the corresponding cloud system (i.e., identical to the

content of the cloud system’s system database table ASYS_SYSTEM).

● The connection of your project with the cloud system is established via a "tunnel": Navigate to

your system (e.g., system > default) and choose "Open Tunnels" in the context menu.

(Sometimes, option "Open Tunnels" is only active, if you open the context menu a second time.)

● Watch the tunnel icon to the left of the system name: Its color will change to yellow (= tunnel

connection in progress) and then to green (= tunnel connection successfully established).

● See also appendix Tunneling.

● Possibly, a warning dialog appears (see above).

● Now you can start with your customizing work. You are always connected to the cloud - no local

server is running.

● In order to see the server log in the Designer’s window "Output", choose "Cloud Server -

<system name>" (e.g., "Cloud Server - default") from the combobox in middle of the button bar

and press the green "triangle" button to the right of it. After a few seconds, you can read a

confirmation of the connection in a sub-window of window "Output", e.g., titeled "Cloud Server:

default").

● If you click on the "Deploy" button in the button bar, the changes of your local project will be

deployed into the cloud system. If you do this for the first time, the deploy dialog will also show

changes that you have not caused. If you double-click on them, you can see that these are tiny

changes (e.g., that an empty value process has been reset to default state) caused by internal

automatisms, which you can ignore - just include them in the deploy, then they will not appear

in the next deploy.

● You can open the client browser, connected to your cloud system, by choosing "Web Client

(Neon) Cloud - <system name>" (e.g., "Web Client (Neon) Cloud - default") from the same

combobox. If this URL leads to an error, remove the port information ":8443" from the URL in

the address line of your browser and then call the URL in your browser again. Then you will

reach the ADITO login page. Here, enter "admin" as user and below the admin password of your

SSP system: In the SSP, click on your system and then press button "Copy admin password" in the

PreviewView. Then the password is in the clipboard, from which you can simply paste it into the

password window.

© 2025 ADITO Software GmbH 147 / 170

Figure 18. Overview of functionality provided by plugin Cloud Support

14.6.1.2. Connecting a local project to a cloud system

Even if you have not downloaded the cloud system into your designer (see previous chapter), you can

connect any local project to any cloud system, simply by setting property "cloudSystemId" in the

properties of your system (e.g., system > default) and establishing a tunnel connection. (See also

appendix Tunneling.)

The cloud system ID cannot be entered directly, but you need to use option "Link to Cloud System" in

the context menu of your system (e.g., system > default). Then, proceed similar to "load cloud system"

(see previous chapter):

● Enter your credentials (username and password) for accessing the SSP - these are the same as

those for accessing the SSP via the web client (https://ssp.adito.cloud/client/Home/full).

Actually, these credentials are identical with credentials for accessing ADITO’s GitLab.

● If you click on the "refresh" button to the right of the password field, all SSP cloud systems that

you have access to are shown.

© 2025 ADITO Software GmbH 148 / 170

https://ssp.adito.cloud/client/Home/full

Figure 19. Selection box of available cloud systems, including the option to download the config

files

● Choose the cloud system that you want to connect with.

● If you have not yet downloaded and referenced the cloud system’s config files in your system’s

properties (e.g., system > default), check option "Also download tunnel and server config".

● After clicking the OK button

○ The cloud system ID will then automatically be inserted in property "cloudSystemId". This

means, your local project is now linked to this cloud system.

○ The 2 config files (tunnelconfig and serverconfig) will then automatically be downloaded

into the project folder "…\data\config". (If there are already config files in this folder, you

can overwrite them on request. But if you want to continue working with a local system at

a later time, you should backup the local system’s serverconfig file to some other location

first, before overwriting it.) Make sure that the downloaded files are referenced correctly

in property "serverConfigPath", and "tunnelConfigPath", respectively (see the properties

of your system, e.g., system > default).

● Now you can establish the required tunnel connection - please proceed as described in the

previous chapter. (See also appendix Tunneling.)

● You can view the cloud system’s server log in the Designer’s "Output" window, if you choose

"Cloud Server - default" from the combobox in middle of the button bar and press the green

"triangle" button to the right of it.

● Depending on your system configuration (serverconfig file), any deploy will, from now on, not be

directed to your local database, but to the database of the cloud system.

© 2025 ADITO Software GmbH 149 / 170

Any deploy will overwrite the current condition (database content) of your cloud

system without any warning. There are no plausibility checks or similar security

mechanisms. This means, if your cloud system contains unversioned/unbackuped

data, these will be completely lost after the deploy, without any "undo" option.

Therefore, be very careful when selecting the correct cloud system to connect with.

Of course, it is possible to revert the connection to your cloud system:

To disconnect from the cloud system

● temporarily:

○ Choose option "Close opened tunnels" in the context menu of your

system (e.g., system > default).

○ You may choose "Open Tunnels" later, if you want to re-establish the

connection.

● permanently:

○ Remove the cloud system ID by right-clicking on property

"cloudSystemId" (see the properties of your system, e.g., system >

default) and choosing "Restore Default Value" in the context menu.

○ If you want to continue working with a local system, remember to

reference your local system’s "serverconfig" file in property

"serverConfigPath" again (see properties of your system, e.g., system >

default).

14.6.2. Without SSP access

If you have no access to ADITO’s Self-Service Portal (SSP) you have to do several configuration steps.

Please contact ADITO for further instructions.

© 2025 ADITO Software GmbH 150 / 170

14.7. Plugin NodeJS & TypeScript

The plugin NodeJS & TypeScript provides

● syntax highlighting, autocomplete, and go-to actions in js/ts files

● ScanServices and hints in the context of js/ts files

● npm install/npm clean install actions executed on package.json

● comment/uncomment actions

If the plugin has been installed and set active (and the ADITO Designer has been restarted), new

buttons will appear on top of the code editor:

Check the buttons' tooltips to understand their function.

Additional information on Comment/Uncomment:

If you have marked one or multiple lines and press button "Comment", then a double slash ("//") is

appended in every marked line before the first non-whitespace character - independent from whether

the line was already marked as comment or not. This enables you to deactivate lines including both

comments and code - and later, via the "Uncomment" button, restore the original state of the code:

The "Uncomment" button works exactly opposite to the "Comment" button; in every marked line, it

removes the first instances of "//". If, e.g., there are 4 slashes in a code line, the button must be

pressed twice in order to activate the code again. If a line does not start with at least 2 slashes before

the first non-whitespace character, "Uncomment" will ignore this line.

© 2025 ADITO Software GmbH 151 / 170

14.8. Plugin ESLint

The plugin ESLint integrates the linter ESLint into the ADITO Designer. It is a very valuable tool that

helps you to optimize your JavaScript code quality. Please find detailled information in chapter ESLint

support.

14.9. Plugin SQL Formatter

The Plugin "SQL Formatter" enables you to easily format SQL code. To use it, it must first be installed

via the Designer’s plugin portal: Tools > Plugins > Available Plugins > SQL Formatter > Install.

14.9.1. Functionality

Once installed, you can execute the plugin’s functionality directly in every SQL window, via the context

menu (right-click in the SQL window). There are 2 options related to the SQL Formatter plugin:

● Format (shortcut: SHIFT+ALT+F): Formats the SQL code according to the current settings (see

below)

● Copy to JS String: The SQL code will be

○ "cut" into concatinated Strings, line by line, and

○ copied to the clipboard, ready to be inserted in JDito/JavaScript code.

14.9.2. Settings

The formatting options can be set in menu Tools > Options > Editor > SQL Formatter:

© 2025 ADITO Software GmbH 152 / 170

https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/ESLint

Figure 20. Options of the SQL Formatter

● Formatting

○ Word Case: Setting whether the names of tables and columns are to be formatted in

uppercase or lowercase letters.

○ Keyword Case: Setting whether SQL keywords (e.g. "select") are to be formatted in

uppercase or lowercase letters.

○ Case on single line: If set to true, then "case" statements are written in one single line.

○ Newline before comma: If set to true, then a newline will be set before every comma (i.e.,

commas will then be on the left).

In the "before" and "after" windows (with the first being editable) you can watch a

preview of the effects of the currently set formatting options.

© 2025 ADITO Software GmbH 153 / 170

● CopyToString

○ Plus on the right: If set to true, then the "plus" sign used for concatinating the SQL code

lines, will be set to the right - otherwise to the left.

○ Gap inside quotes: Indentations will be inserted inside the quotation marks.

The source code of this plugin is publicly available on ADITO’s GitHub and can, if

required, be used as template for building further plugins.

14.10. Plugin Grouped Tabs

The Plugin "Grouped Tabs" helps you to keep a good overview over the tabs that you have opened in

the Editor area of the Designer. Thin colored horizontal bars are being placed on top of each tab, with

the color being the grouping criterion: Tabs that logically belong together show the same color, e.g.,

● Views and processes of the same Context (e.g. PersonFilter_view, PersonEdit_view and

Person_entity.db.conditionProcess)

● processes of the same variant (e.g. the libraries Organisation_lib and Person_lib)

You can modify the grouping manually:

● Click on a tab, in order to move it to the foreground.

● Right-click on the tab, to open its context menu, and here choose "Group".

● Then, the groups of all currently opened tabs are shown, along with the corresponding colors.

● You can now change the group assignment (including the color) of the current tab by selecting

another group of your choice.

© 2025 ADITO Software GmbH 154 / 170

In the above screenshot, you see an option "Deploy n opened model(s)". Although

this option is located directly above the group-related options, it does not refer to a

group, but deploys all opened models of all groups.

You can close all tabs of a specific group in one step, if you

● click on any tab of the respective group, in order to move it to the foreground;

● right-click on the tab, to open its context menu, and here choose "Close group".

© 2025 ADITO Software GmbH 155 / 170

If you want to sort the tabs, to make tabs of the same group being placed together, right-click on any

open tab and then choose "Sort tabs" from the context menu.

After the automated sorting, the tab order is as follows:

● The groups are sorted by model type, e.g.,

© 2025 ADITO Software GmbH 156 / 170

1. Dashboards

2. processes

3. Context-related models

● Groups related to the same type of model are sorted in alphabetical order, e.g.

"Organisation_xxx" will be sorted before "Person_xxx".

● Inside each group, the order is as follows:

○ Context-related models:

1. Entity

2. Views

3. processes

○ All other sorting (e.g., among libraries, or among Views of the same Context) is done in

alphabetical order.

The above example appears after sorting like this:

Models are colored via an algorithm using the group name (e.g., the Context name),

i.e., if 2 different Designer users

● open, e.g., Person_entity, their tabs will get the same color.

● create a new Entity with the same name, their tabs will also get the same

color.

The number of colors is limited to about 25. This means, if you open a very large

number of tabs, it is possible that 2 different groups have the same color.

Nevertheless, they will be treated differently when being sorted.

There are shortcuts available:

● Close group: Ctrl+Alt+W

● Sort tabs: Ctrl+Alt+S

© 2025 ADITO Software GmbH 157 / 170

Appendix A: Configuration helpers

In the Designer there are various mechanisms to simplify the creation and configuration of new

models.

A.1. "+ New …"-Button

With ADITO 2022.2.1 you have a new button to create a new model in an Entity. This button contains

all the "New"-actions that were otherwise available when right-clicking on the entity node in the

Navigator and that are located above "New with Blueprint". The right-click actions on the entity node

still work.For modularized projects, the last two actions "New Extension Point" and "New Service" are

still available in addition. For non-modularized projects, these two points are missing.

A.2. Blueprints

"Blueprint" is a functionality to simplify the creation of ADITO models, e.g., Entities, EntityFields,

Contexts, and Views. You can execute Blueprints in the "Projects" window, via the context menu of the

nodes "context" or "entity", respectively. Please find details in chapter "Blueprints" of the Customizing

Manual.

Besides, you can create additional Blueprints, according to your own requirements. This will be

explained in a separate manual, to be released soon. (If you need this information in advance, please

contact ADITO).

A.3. Combobox content search

Some properties can be set via selection from a combo box, e.g., property "icon" (included in various

ADITO models), or "recordfield" (in "xxx.value" and "xxx.displayValue" nodes of the RecordContainer).

Now, instead of searching for the required list item by scrolling down the long list of combo box

© 2025 ADITO Software GmbH 158 / 170

content, you can simplify the search by using a wildcard.

Example:

You can quickly find a suitable icon, if you filter the "icon" combo box using the starlet ("*") as

preceding wildcard.

Example: You are looking for an icon that has something to do with a "circle". To find all possibly suiting

icons, proceed as follows:

1. Open the "icon" combo box by clicking on the small "arrow" to the left of the 3-points button: A

long list of all icon names, along with a preview of all icons, will appear.

2. Type the following string: *circle

→ The focus will jump to the first icon with its name containing the word "circle"

3. Use the arrow keys (down/up) to navigate to all other icons having names containing "circle".

(This is better than scanning the whole list using the scroll bar.)

4. Press the "Enter" key to select the icon of your choice.

© 2025 ADITO Software GmbH 159 / 170

Appendix B: Create and upgrade system tables

Besides creating system tables via Liquibase (see chapter Plugin Liquibase), ADITO includes a tool

named "ADITOdatabase" that enables you to create and upgrade system tables via command line or

batch file.

B.1. Benefits

The advantage of using this tool is that, in this case, the ADITO platform (core) determines the structure

of the system tables. Thus, there is no need for additional maintenance on customizing side, and it is

guaranteed that the latest structure version is being applied. Another advantage is the possibility to

automatize the creation and upgrade of system tables - like, e.g., it is done in ADITO’s "Self-Service

Portal" (SSP).

B.2. Execution

The tool ADITOdatabase can be installed via the ADITO installer. Depending on your operating system,

you will find the following executable file in sub-directory "bin":

● under Windows 32 bit: "ADITOdatabase.exe"

● under Windows 64 bit: "ADITOdatabase64.exe"

● under Linux and Mac: "ADITOdatabase"

B.2.1. Parameter

Table 2. Parameter for creating tables

Parameter Call

Serverconfig shortName = 's',

longName = "serverconfig"

Tables for creation longName = "createTables"

Table 3. Parameter for upgrading tables

Parameter Call

Serverconfig shortName = 's',

longName = "serverconfig"

© 2025 ADITO Software GmbH 160 / 170

Parameter Call

Projecthome shortName = 'p',

longName = "projecthome"

Tables for upgrade longName = "upgradeTables"

B.2.2. Examples

The following examples are based on a Windows 64 bit operating system.

B.2.2.1. Creating system tables

Create all system tables

./ADITOdatabase64.exe

 --serverconfig="C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\config\serverconfig_default.xml"

 --createTables=""

Create only system tables ASYS_SYSTEM and ASYS_ALIASCONFIG

./ADITOdatabase64.exe

 --serverconfig="C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\config\serverconfig_default.xml"

 --createTables="ASYS_SYSTEM,ASYS_ALIASCONFIG"

B.2.2.2. Upgrading system tables

Upgrade all system tables

./ADITOdatabase64.exe

 --serverconfig="C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\config\serverconfig_default.xml"

 --projecthome="C:\Users\j.smith\Documents\AditoProjects\myProjectName"

 --upgradeTables=""

Upgrade only system tables ASYS_SYSTEM and ASYS_ALIASCONFIG

./ADITOdatabase64.exe

 --serverconfig="C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\config\serverconfig_default.xml"

 --projecthome="C:\Users\j.smith\Documents\AditoProjects\myProjectName"

 --upgradeTables="ASYS_SYSTEM,ASYS_ALIASCONFIG"

B.2.2.3. Using short names

Whenever the short name of a parameter is used, the equality sign (“=”) must not be written.

Example:

© 2025 ADITO Software GmbH 161 / 170

--serverconfig="C:\Users\j.smith\Documents\AditoProjects\myProjectNa
me\data\config\serverconfig_default.xml"

is equivalent to

-s"C:\Users\j.smith\Documents\AditoProjects\myProjectName\data\confi
g\serverconfig_default.xml"

B.2.3. Exit codes

The following exit codes of the tool are a useful feedback in order to verify the success of the

execution, and to react accordingly - especially when you want to automatize the creation of the

system tables.

B.2.3.1. General exit codes

Table 4. General exit codes

Exit code Meaning

0 Success

50 parameters "createTables" and "upgradeTables" are both missing

51 parameter "createTables" and "upgradeTables" have both been

specified (this is not possible; you can only specify one of this

parameters)

100 path to serverconfig file missing

101 specified path to serverconfig file does not exist

102 specified path to serverconfig file is a directory, not a file

103 specified serverconfig file could not be read (invalid format)

200 other error (error message will be logged)

© 2025 ADITO Software GmbH 162 / 170

B.2.3.2. Exit codes of createTables

Table 5. Exit codes of createTables

Exit code Meaning

10 Success, but at least one of the tables had already existed

150 at least one table could not be created

B.2.3.3. Exit codes of upgradeTables

Table 6. Exit codes of upgradeTables

Exit code Meaning

160 parameter projecthome has not been specified

161 the specified projecthome does not reference a valid ADITO projekt

162 at least one of the specified tables could not be upgraded, because it

does not exist

163 at least one of the specified tables could not be upgraded, because it is

not a system table

© 2025 ADITO Software GmbH 163 / 170

Appendix C: Setting the path variables

You can specify different paths in the properties of a system. These paths can also be set at any time

with the Java VM variables:

● -Dadito.home and

● -Dadito.data

In the properties of a system these are available as properties:

● aditoHomePath

● aditoDataPath

The following path variables can be used in the above properties:

1. $PROJECT HOME

Home directory of the project. Usually created in the development system for the aditoDataPath and

points to $ PROJECTHOME / data.

2. $ADITOHOME

The ADITO home directory. In development systems, the Designer’s home directory if the server is

started inside the Designer.

3. $ADITODATA

Refers to the directory set in aditoDataPath or -Dadito.data. In aditoDataPath or -Dadito.data this

variable can not be set.

© 2025 ADITO Software GmbH 164 / 170

Appendix D: UUID Generator

Most of ADITO datasets are identified by a random 36-digit hexadecimal "Universally unique identifier"

(abbreviated as "UUID", "UID", or "GUID"), see https://en.wikipedia.org/wiki/

Universally_unique_identifier. This identifier is generated automatically for every new dataset, if you

have set flag "UID column" to true, in property "linkInformation" of a dbRecordContainer (see

Customizing Manual, chapter "Connecting EntityFields with database columns (RecordContainer)").

However, for some tasks you need to generate a UUID manually - e.g., if you create a Liquibase XML

file. Now, instead of using online UUID generators available on several web sites, you can also use the

Designer-integrated UUID generator, which is accessiable via the following ways:

● menu "Tools" > "Generate UUID" (will be copied into the clipboard)

● shortcut: CTRL + Shift + U (will be copied into the clipboard)

● A direct insert of a UUID into a code window is available via the "Generate" menu: Alt + Ins >

UUID.

Appendix E: Tunneling

The Designer supports tunneling to remote servers in various use cases, e.g., in combination with

ADITO’s Self-Service Portal (SSP), see sub-chapter With SSP access, and chapter Debugger.

Currently, the ADITO Designer supports the following authentication schemes:

● Basic auth (user has to provide a username and a password)

● Key auth (user has to provide a SSH key)

The user can choose which authentication method is used by selecting the wanted scheme with the

radio buttons in the auth dialog.

© 2025 ADITO Software GmbH 165 / 170

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

The selected auth method has to be supported by the server, the SSP only supports

basic auth at the moment

>>>

© 2025 ADITO Software GmbH 166 / 170

Appendix F: Version history

Version Changes

1.7 ● New chapter Installation

● New chapter Ports

● Chapter alias: New note box explaining how to maintain ERD diagrams

● New chapter about option Janitor

● Chapter Internationalization: New sub-chapter Translation of source code

● Chapter Connection via "load cloud system" improved

● Chapter Process refactored and extened

● Chapter Deploy refactored, including new sub-chapters Deploy of selected

data models and Deploy of opened data models

● Chapter Find unused keys extended

● New Chapter Plugin Grouped Tabs

● Chapter New - New Project: Warning box regarding invalid project names

● New chapter Plugin NodeJS & TypeScript

● Chapter Plugin AsciidoctorJ renewed, including a reference to AID005

Userhelp.

1.6 ● Chapter Export Keys with Place of Use: working with language files and there

usage for modularization

● Chapter Refactor: Warning box regarding refactoring dialog optimized

● New chapter Code quality support, including sub-chapter ESLint support

● Info box about one [userDirectory] being generated for every ADITO version

(major/minor/hotfix)

● Chapter Configuration: New -D parameter for deactivating non-supported

authentication methods when using a proxy

● Chapter Watches: new debugger information added

● Chapter Auto-Merging: new feature of the Git plugin

● Chapter Deletion of a context

● New images, typo fixes

© 2025 ADITO Software GmbH 167 / 170

Version Changes

1.5 ● chapter Deploy Tool: explanation of Exit codes

● appendix "Create system tables" renamed to Create and upgrade system

tables and extended by description of how to upgrade system tables

● chapter Deploy extended by remark on how to use short names

● chapter Plugin Liquibase

○ sub-chapter "Basics": Warning of using special characters in XML file

names included

○ sub-chapter How to use Liquibase extended by advice on how to avoid

timeout dialogs

● chapter Startup, sub-chapter "Configuration": Extended description of how to

set the timeout value

● chapter Debugger updated: No restart of the Designer required, code

execution stops not before the second execution, orange color requires click

into code window.

● chapter CREATE extended by description of how to create a sorted index

(ascending or descending)

● new chapter Plugin SQL Formatter

● chapter Project Structure updated, including description of ERD/adoc export

function of Alias Definition in sub-chapter about [AliasDefinition]

● chapter Internationalization:

○ new sub-chapter User help, including reference to AID005

○ new sub-chapter Special functions, describing how to simplify the

setting and translation of column "Value" for existing and new language

files

○ Update of chapter Automated translation: Values are translated instead

of (in earlier versions) the keys.

© 2025 ADITO Software GmbH 168 / 170

Version Changes

1.4.1 ● chapter Connection via "load cloud system": description of option "Load

Deployed System State"

● chapter Plugin Liquibase extended by description of preferable data types,

including reference to AID001 Coding Styles

● chapter View: paragraph "run" extended by description of run configs,

especially those of NodeJS scripts

● new appendix Tunneling

● adaptions regarding new "import" syntax of version 2022.0

1.4 ● new chapter Liquibase with audit and offline synchronisation

● chapter Plugin Git: updates, explanation of option "init" added

● new chapter Startup, including description of Designer startup configuration

parameters in file "ADITOdesigner.conf"

● chapter Debugger extended by notes that property "jditoDebuggerEnabled"

must be activated for local servers and that both server and Designer need to

be restarted.

● new appendix [Create system tables], explaining command line tool

"ADITOdatabase" for automated creation of system tables.

● description of conditional execution of Liquibase functions via tag

"preConditions", included in chapters

○ PRECONDITIONS (sub-chapter of chapter Data Definition Language

(DDL)) and

○ DB to changelog (sub-chapter of chapter Create Liquibase files

automatically)

● chapter Automated translation extended by notes on settings required for

DeepL API.

● reference to the new appendix in chapter Maintaining system tables

© 2025 ADITO Software GmbH 169 / 170

Version Changes

1.3 ● chapter Tools revised and extended by option "Export Project Structure"

● chapter Updates: Restructured and enhanced by sub-chapter on upgrading

system tables

● chapter Debugger: Included info box on debugging cloud systems

● chapter Deploy Tool: Revision, update (new parameter "userhelp"), description

of differences between execution under Windows and Linux

● chapter "Language" renamed to Internationalization, refactored, and

enhanced by including a reference to the DeepL API.

1.2 ● new chapter Connecting a local project to a cloud system

● chapter Plugin Liquibase:

○ content partly updated and restructured;

○ new sub-chapter Create Liquibase files automatically

○ new sub-chapter Liquibase troubleshooting

● new appendix UUID Generator

● chapter [Scan services] extended (deactivation option, description of

"Indexing" phases)

1.1 ● new chapter Plugin Cloud Support, on how to connect the Designer with a

cloud system

● new appendix Configuration helpers; improved overview of how to create new

ADITO models

● chapter Plugin concept: added note on firewall problems when installing

plugins

● Preface added

● version history table: hyperlinks to chapters added; formatting optimized

● restructuring, renaming

1.0 ● first official version

© 2025 ADITO Software GmbH 170 / 170

	Designer Manual
	Character Formatting
	Preface
	Index
	1. Introduction
	1.1. Relation to NetBeans
	1.2. General Overview
	1.3. Plugin concept

	2. Installation
	2.1. Connecting Designer and server
	2.1.1. All operating systems
	2.1.2. Additional steps for Linux and Mac

	2.2. Start menu

	3. Startup
	3.1. Execution
	3.2. Initialisation
	3.3. Configuration
	3.4. Ports

	4. Menu bar
	4.1. File
	4.1.1. New - New Project
	4.1.2. Import/Export Project

	4.2. Edit
	4.3. View
	4.4. Navigate
	4.5. Source
	4.6. Refactor
	4.7. Team
	4.8. Tools
	4.8.1. Overview
	4.8.2. Export Project Structure
	4.8.3. Options
	4.8.3.1. ADITO
	4.8.3.2. iReport
	4.8.3.3. Other options
	4.8.3.3.1. Janitor

	4.9. Window
	4.10. Help

	5. Toolbar
	6. Project Structure
	6.1. System
	6.1.1. Create a new System
	6.1.2. Overview
	6.1.3. Users
	6.1.4. System Configuration

	6.2. Preferences Project
	6.3. Classic
	6.4. Neon
	6.4.1. Deletion of a context

	6.5. Process
	6.6. test
	6.7. report
	6.8. Internationalization
	6.8.1. Basics
	6.8.2. Special functions
	6.8.3. Automated translation
	6.8.4. Find unused keys
	6.8.5. Export Keys with Place of Use
	6.8.6. User help
	6.8.7. Translation of source code

	6.9. Roles
	6.9.1. Internal roles
	6.9.2. Project roles

	6.10. alias
	6.11. Others

	7. Output Window
	8. Execute SQL
	9. Debugger
	9.1. Preparations
	9.2. Debugging options
	9.3. Evaluate Expressions
	9.4. Breakpoint Menu
	9.5. Watches

	10. Code quality support
	10.1. Autocompletion
	10.2. JSDoc
	10.3. Errors and warnings
	10.4. ESLint support
	10.4.1. Prerequisites
	10.4.2. Configuration
	10.4.3. Executing ESLint
	10.4.3.1. Analyze
	10.4.3.2. Fix all

	10.4.4. Examples of hints and solutions

	10.5. Scan Services
	10.5.1. Preferences
	10.5.2. Result

	11. Deploy
	11.1. Deploy of selected data models
	11.2. Deploy of opened data models
	11.3. Deploy Tool
	11.3.1. Prerequisites
	11.3.2. Configuration and execution
	11.3.3. Exit codes

	12. Local Data
	13. Updates
	13.1. Update the ADITO project
	13.1.1. Basics
	13.1.2. Update of single ADITO models

	13.2. Update the database
	13.2.1. Basics
	13.2.2. Maintaining system tables
	13.2.2.1. ASYS_VERSIONHISTORY
	13.2.2.2. List of system tables
	13.2.2.3. Faulty system tables
	13.2.2.4. Missing entry in ASYS_VERSIONHISTORY
	13.2.2.5. Wrong structure
	13.2.2.6. Table upgrade
	13.2.2.7. Table missing

	13.2.3. Action toolbar
	13.2.4. Information area
	13.2.5. Server startup prerequisites

	14. Plugins
	14.1. Installation
	14.2. Advantages
	14.3. Plugin AsciidoctorJ
	14.4. Plugin Git
	14.4.1. Auto-Merging

	14.5. Plugin Liquibase
	14.5.1. Basics
	14.5.2. How to use Liquibase
	14.5.2.1. Creating and naming changelog files
	14.5.2.2. Creating folders
	14.5.2.3. Liquibase folder structure
	14.5.2.3.1. Common structure pattern
	14.5.2.3.2. Liquibase folder structure of the ADITO xRM project

	14.5.3. Changelog XML structure
	14.5.4. Feature changelog XML structure
	14.5.4.1. Data Definition Language (DDL)
	14.5.4.1.1. CREATE
	14.5.4.1.2. ALTER
	14.5.4.1.3. DROP
	14.5.4.1.4. PRECONDITIONS
	14.5.4.1.5. RENAME

	14.5.4.2. Data Manipulation Language (DML)
	14.5.4.2.1. INSERT
	14.5.4.2.2. UPDATE
	14.5.4.2.3. DELETE

	14.5.4.3. PREPARED STATEMENTS

	14.5.5. ROLLBACKS
	14.5.6. BLOB/CLOB
	14.5.7. XML special characters
	14.5.8. Enabling demo data
	14.5.9. Create Liquibase files automatically
	14.5.9.1. Create empty changelog
	14.5.9.2. Create changelog with new DB table
	14.5.9.3. Changelog to SQL
	14.5.9.4. DB to changelog

	14.5.10. Liquibase functions outside the Designer
	14.5.11. Liquibase with audit and offline synchronisation
	14.5.12. Using Liquibase files for multiple database types
	14.5.13. Liquibase troubleshooting
	14.5.13.1. Updated database structure is not accessible
	14.5.13.2. Handling Liquibase failures

	14.6. Plugin Cloud Support
	14.6.1. With SSP access
	14.6.1.1. Connection via "load cloud system"
	14.6.1.2. Connecting a local project to a cloud system

	14.6.2. Without SSP access

	14.7. Plugin NodeJS & TypeScript
	14.8. Plugin ESLint
	14.9. Plugin SQL Formatter
	14.9.1. Functionality
	14.9.2. Settings

	14.10. Plugin Grouped Tabs

	Appendix A: Configuration helpers
	A.1. "+ New …"-Button
	A.2. Blueprints
	A.3. Combobox content search

	Appendix B: Create and upgrade system tables
	B.1. Benefits
	B.2. Execution
	B.2.1. Parameter
	B.2.2. Examples
	B.2.2.1. Creating system tables
	B.2.2.2. Upgrading system tables
	B.2.2.3. Using short names

	B.2.3. Exit codes
	B.2.3.1. General exit codes
	B.2.3.2. Exit codes of createTables
	B.2.3.3. Exit codes of upgradeTables

	Appendix C: Setting the path variables
	Appendix D: UUID Generator
	Appendix E: Tunneling
	Appendix F: Version history

