‘\ ADITO

Customizing Manual

ADITO Software GmbH
Version 2024.1.4 | 2025-03-04

This document is subject to copyright protection. Therefore all contents may only be

used, saved or duplicated for designated purposes such as for ADITO workshops or

ADITO projects. It is mandatory to consult ADITO first before changing, publishing or

passing on contents to a third party, as well as any other possible purposes.

Version

2024.1.4

2024.1.3

Changes

Chapter Debugging vs. temporary logging improved and enhanced.

Chapter Liquibase update: Updated screenshot and text, including an

additional remark, regarding option "example".
Bugfix: Names of various libs updated.
References to AID123 Modularization included.

Various minor optimizations.

New chapter Context filter (content search), describing the behavior of the

content search bar, which is available in various ViewTemplates.
Chapter FilterExtensionSet improved by example that is easier to understand.

Chapter IndexRecordContainer reduced to a short introduction, followed by a
reference to AID093 Indexsearch, where all required information is included

now.

Chapter Add Dashlets improved by 2 screenshots showing configuration of

property "fragment".
Appendix LoadEntity and WriteEntity: New chapter getRow vs. getRows

Appendix System variables improved by additional explanations to Sglobal

variables and other system variable types.
Bugfix in chapter Adding an ATTRIBUTES tab: Attribute_lib = AttributeUtil_lib

Various minor optimizations.

Version Changes

2024.1.2 ® New chapter Adding Tasks.
® New sub-chapter on Renderer MULTISELECTCOMBOBOX.
® New sub-chapter Export of a subordinated Entity.
® New sub-chapter on variable Slocal.lookupFieldName.
® New appendix LexoRank, with reference in chapter TreeTable.
® Chapter Structure of ADITO projects: Added info box about modularization.

® |Improved description of automatisms in the Database Recordcontainer, e.g., at
the end of chapter Connecting EntityFields with database columns

(RecordContainer).
® |mproved description of adding an Observation.

® \/arious minor optimizations.

Summaries of changes in previous versions of this document can be found in appendix Version history.

Character Formatting

The following signs will point you to specific sections:

o Hints and notes.

Tips and tricks.

o This is important!

A Warning! These actions are dangerous and can result in data loss!

The following font formatting applies:

Font type Meaning
Mask The mask, table or button to which the section refers
"Mask" Terms that originate from the system and that need to be emphasized in

the reading flow

code(); Code and program parts

Index

A

Preface

1. Introduction

2. Overview

2.2. Logical hierarchy

3. Prerequisites

3.1. Documentation

3.4. ADITO database

3.5. ADITO server

3.7. Logging

4. JDito

4.1. What is JDito?

4.2. How to use JDito

7. Creating Entities

8.4. Liquibase update

Character Formatting 3
15
15
17
2.1. Structure of ADITO projects 17
19
21
21
3.2. ADITO Web Client 22
3.3. ADITO platform and xRM project 22
23
26
3.6. Instance configuration 29
30
3.7.1. Predefined logging 31
3.7.2. Customized logging 32
3.7.3. Logging in "catch" section 33
3.7.4. Debugging vs. temporary logging 34
35
35
36
4.3. Further information 37
5. Core tables of the xRM project 40
6. Modelling the data structure 44
47
7.1. Configuring Entities 50
7.2. Configuring EntityFields 53
8. Creating database tables and columns 57
8.1. Creating a folder for your xml files 58
8.2. Creating an xml file for every table 58
8.3. Including xml files in changelog 60
61
8.5. Updating the Alias Definition 65
8.6. Connecting EntityFields with database columns (RecordContainer) 67
8.7. Using database views 69
73

9. Making data visible

A

9.1. Creating Contexts 73
9.2. Views 73
9.2.1. Creating Views 74
9.2.2. Assigning layout and ViewTemplates 74
9.2.3. Blueprints 77
9.3. Extend the Global Menu 79
9.3.1. Creating new project roles 80
9.4. Deploy 81
9.4.1. Practically 81
9.4.2. Technically 83
9.5. A first test 84
9.5.1. Entering example data 85
9.6. Dashboard and Dashlet 87
9.6.1. Add Dashlets 87
9.6.2. Configure Dashboard defaults 89
9.6.3. Resetting Dashboards 91
9.6.3.1. Reset of a "public" Dashboard 91
9.6.3.2. Reset of a "private" Dashboard 91
9.6.4. Creating new Dashboards 93
10. Advanced functionality 94
10.1. Consumer and Provider: Connecting Entities 94
10.1.1. Example: Cars and car drivers in car reservations 98
10.1.2. Example: Car drivers and Persons 99
10.1.3. Retrieving pending records 100
10.1.3.1. Basics 100
10.1.3.2. Example 1 101
10.1.3.3. Example 2 102
10.1.3.3.1. EntityConsumerRowsHelper 103
10.1.3.3.2. Implicit refreshing 103
10.1.3.4. Further information 104
10.2. Using keywords (predefined values) 104
10.2.1. Example: Car colors 106
10.2.2. Example: Manufacturers 111
10.2.3. Example: Currency 112
10.3. Controlling the displayed value 112
10.3.1. displayValue of a RecordContainer field 112

10.3.1.1. Example: Driver’s name 114

A

10.3.1.2. Example: Manufacturer 115
10.3.1.3. Example: Car color 115
10.3.1.4. Example: Currency 115
10.3.2. displayValueProcess of an EntityField 116
10.3.2.1. Example: Car Color 116
10.3.2.2. Example: Currency 117
10.4. Complex dependencies 118
10.4.1. MasterDetailLayout 118
10.4.1.1. Example: Showing all reservations of a driver in the MainView 120
10.4.1.2. Example: Showing all reservations of a car in the MainView 123
10.5. Actions and ActionGroups 124
10.5.1. Configuration 124
10.5.2. Appearance 124
10.5.3. Example: Reserve this car 131
10.5.4. Example: Reserve car for this driver 133
10.5.5. Multi Selection Action 134
10.6. Calculated fields 135
10.6.1. expression (RecordContainer) 135
10.6.2. valueProcess (EntityField) 136
10.6.2.1. Common use cases 136
10.6.2.2. Warning 137
10.6.2.3. Conditional execution 137
10.6.2.4. Trigger 138
10.6.2.5. Examples 139
10.6.2.5.1. Example: Driving experience 139
10.6.2.5.2. Example: Age 139
10.6.2.5.3. Example: Sum of fines 142
10.6.2.5.4. Example: Sum of damages 145
10.6.2.5.5. Example: Mileage 146
10.6.2.5.6. Example: carValue 147
10.6.2.5.7. Example: Availability 148
10.7. AggregateFields 152
10.7.1. Appearance 152
10.7.2. Configuration 152
10.7.2.1. when using DbRecordContainer 152
10.7.2.2. when using JDitoRecordContainer 153

10.7.3. displayValueProcess of an AggregateField 154

10.7.4. Usage in filter

A

154

10.7.5. Usage in Consumer

155

10.7.6. Properties allowing AggregateFields

155

10.8. Field Groups

157

10.9. Advanced filter options

158

10.9.1. Dynamic filter values

159

10.9.2. Filter presets

160

10.9.2.1. FilterBuilder

160

10.9.2.2. initFilterProcess

167

10.9.2.3. neon.setFilter

168

10.9.3. FilterExtension

169

10.9.3.1. General example

169

10.9.3.1.1. Creating a new FilterExtension

169

10.9.3.1.2. General properties

169

10.9.3.1.3. filterValuesProcess

170

10.9.3.1.4. useConsumer/consumer

170

10.9.3.1.5. filterConditionProcess

171

10.9.3.1.6. groupQueryProcess

173

10.9.3.1.7. supportsFilterExtensionGrouping

175

10.9.3.2. Specific example task

175

10.9.3.2.1. Creating a new FilterExtension

176

10.9.3.2.2. Setting the FilterExtension’s properties

176

10.9.4. FilterExtensionSet

177

10.9.4.1. Example

177

10.9.4.1.1. Creating Consumer for gender-related field
10.9.4.1.2. filterFieldsProcess

178

178

10.9.4.1.3. filterValuesProcess

179

10.9.4.1.4. filterConditionProcess

180

10.9.4.1.5. groupQueryProcess

182

10.9.4.2. Further examples

183

10.9.4.3. Available local variables

183

10.9.4.4. useConsumer

183

10.9.4.5. groupQueryProcess

184

10.9.5. EntityRecordsRecipe

185

10.9.5.1. Technical background

185

10.9.5.2. General usage

185

10.9.5.3. Usage in "openContextWithRecipe"

186

A

10.9.6.1. Availability

10.9.6.2. Evaluation

10.10. RecordContainers

10.10.1.1. COUNT queries

10.10.1.1.1. Purpose

10.10.2.1. Introduction

10.11. Tags

10.12.1. Basics

10.12.2. Setup

10.12.2.2. Observation

10.14. Adding a LOGS tab

10.15. Adding Tasks

10.17. PreviewMultiple

10.18. Paging

10.9.5.4. Usage in "LoadEntity" 188
10.9.5.5. Usage in customized methods 188
10.9.5.6. Ssys.selectionsRecordsRecipe 189
10.9.5.7. Example: Notifications 190
10.9.6. Context filter (content search) 192
193
194
195
10.10.1. Database RecordContainer 195
195
195
10.10.1.1.2. minimizeCountQueries 196
10.10.1.1.3. Caching not required 196
10.10.2. JDitoRecordContainer 196
196
10.10.2.2. Advanced explanations 197
10.10.2.3. Step-by-step example 201
10.10.2.4. Filtering a JDitoRecordContainer 205
10.10.3. IndexRecordContainer 206
10.10.4. DatalessRecordContainer 207
209
10.12. Notifications and observations 211
211
211
10.12.2.1. Manually triggered notifications 212
212
10.12.2.2.1. Observation of selected datasets 213
10.12.2.2.2. Observation of filtered datasets 214
10.12.3. Notifications with multiple ADITO servers 214
10.13. Adding an ATTRIBUTES tab 219
221
227
10.16. Auto-generated Primary Keys 232
233
235
10.18.1. Paging with a DbRecordContainer 235
10.18.2. Paging with a JDitoRecordContainer 235

A

10.18.3. Further information 236
10.19. Storing user-specific data outside ASYS_USERS 237
10.20. Lookup for translated values 237
10.21. Export 238
10.21.1. Export of a subordinated Entity 240
11. Controlling the design 241
11.1. Themes 242
11.2. Layouts 243
11.2.1. Nonelayout 243
11.2.2. Drawerlayout 243
11.2.3. BoxLayout 244
11.2.4. Grouplayout 244
11.2.5. HeaderFooterlLayout 245
11.2.6. GridLayout 245
11.2.6.1. Properties 246
11.2.7. MasterDetailLayout 246
11.3. ViewTemplates 247
11.3.1. ActionlList 247
11.3.2. Actions 248
11.3.3. Card 248
11.3.4. CardTable 249
11.3.5. DragAndDrop 249
11.3.6. DynamicForm 249
11.3.7. DynamicMultiDataChart 251
11.3.8. DynamicSingleDataChart 252
11.3.9. Favorite 253
11.3.10. Gantt 256
11.3.11. Generic 257
11.3.12. GenericMultiple 258
11.3.13. IndexSearch 261
11.3.14. Lookup 261
11.3.15. Map 262
11.3.15.1. MapTiler 265
11.3.15.2. General information on the required structure of map data sources 266
11.3.15.2.1. Requirements 266
11.3.15.2.2. Property "configField" 266

11.3.15.2.3. URL 267

A

11.3.15.2.4. Server flexibility 268
11.3.16. SingleDataChart 269
11.3.16.1. Overview 269
11.3.16.2. Advanced explanations 269
11.3.16.2.1. Properties 270
11.3.16.2.2. Example 271
11.3.17. MultiDataChart 275
11.3.17.1. Overview 275
11.3.17.2. Advanced explanations 276
11.3.17.2.1. Properties 276
11.3.17.2.2. Example 278
11.3.18. MultikEditTable 280
11.3.19. Picture 281
11.3.20. Report 282
11.3.21. ResourceTimeline 283
11.3.21.1. Advanced explanations 284
11.3.21.1.1. Important properties 284
11.3.21.1.2. Outlining the Entities 286
11.3.21.1.3. Example: Implementing the basic functions 288
11.3.21.2. Specific color constants 295
11.3.22. ScoreCard 296
11.3.23. Signature 297
11.3.24. Stepper 297
11.3.25. Table 303
11.3.26. Timeline 304
11.3.27. Tiles 304
11.3.28. TitledList 305
11.3.29. Tree 305
11.3.30. TreeTable 306
11.3.31. Tree and TreeTable: Advanced explanations 307
11.3.31.1. Important properties - Tree 308
11.3.31.2. Important properties - TreeTable 309
11.3.31.3. Building a Tree/TreeTable 310
11.3.31.4. Examples 311
11.3.31.4.1. Simple Tree of organizations and their persons 311
11.3.32. WebContent (IFrame) 313
11.3.32.1. Advanced explanations 313

11.3.32.2. Common mistakes

A

314

11.3.33. Further ViewTemplate types

316

11.4. Renderers

317

11.4.1. NUMBERFIELD

317

11.4.2. BADGE

318

11.4.3. MULTISELECTCOMBOBOX

319

11.4.3.1. Basics

319

11.4.3.2. Configuration

320

11.4.3.3. Value format

321

11.5. Device-specific designs

322

11.6. Further design elements

323

11.6.1. Icons

323

11.6.1.1. Predefined icons

323

11.6.1.2. Icons from user’s resources

324

11.6.1.3. Variable icons

325

11.6.1.4. Avatars

326

11.6.1.5. Using gif files

329

11.6.2. Client navigation helpers

330

11.6.2.1. QuickEntry

330

11.6.2.2. linkedContext

330

11.6.3. Color

331

11.6.4. Login web page

333

11.7. Automatisms

334

11.7.1. Visibility of tabs

334

12. 360Degree Context

335

13. Internationalization

336

13.1. Language files

336

13.1.1. Refresh

336

13.1.2. Extract keys

336

13.1.3. Find unused keys

337

13.1.4. Export/import

337

13.1.5. Translate all

337

13.2. User help

340

13.3. Validation of address and communication data

14. Further information

340

343

15. Troubleshooting

344

15.1. Built-in Designer help

344

15.2. ScanServices

A

15.3. Bug tracking

15.4. Specific problems

A.1l. System modules

A.2. System variables

C.1. Load

C.2. Save

F.1. Synchronization

F.4. Sthis.value

F.7. Slocal.value

H.1. LoadEntity

H.1.1. Benefits

345
346
353
15.4.1. Low performance 353
15.4.2. Changes are not visible in the client 353
15.4.3. New database structure is not accessible 355
Appendix A: JDito system modules and variables 356
356
360
Appendix B: Database Access 364
B.1. Basic SQL Statement 364
B.2. Commit after database changes 365
B.3. SQL Helper Functions 365
B.3.1. Example: contentTitleProcess of CarDriver_entity 366
B.3.2. Example: valueProcess of EntityField availability 368
B.3.3. Example: conditionProcess of CarReservation_entity’s RecordContainer 369
B.3.4. Example: Driver’s name 370
B.3.5. Example: Manufacturer 372
Appendix C: Order of execution of Entity processes 373
373
375
Appendix D: Requirements for customized Theme 378
Appendix E: Checklist for new fields 379
Appendix F: Accessing the value of an EntityField 382
382
F.2. How does an EntityField value get set? 382
F.3. How does a "Sfield" variable get its value? 382
383
F.5. Sthis.value vs. Sfield.MYFIELD 384
F.6. Sthis.value and Sfield.MYFIELD in valueProcess 384
386
F.8. Slocal.rowdata and Slocal.initialRowdata 387
Appendix G: Operating state vs. record state 388
Appendix H: LoadEntity and WriteEntity 390
391
393
394

H.1.2. Example

A

H.1.3. getRow vs. getRows 395
H.2. WriteEntity 396
H.2.1. Benefits 400
H.2.2. Examples 401
H.3. Usage in server processes 405
H.4. Skipping prevalidation 405
Appendix I: RecordContainerCache 407
[.1. Basics 407
I.2. Setup 408
1.2.1. cacheType 408
[.2.2. cacheKeyProcess 408
[.2.2.1. Helper functions 409
[.2.2.2. Examples in the XRM project 410
1.2.2.3. Logged example 411
[.2.3. Cache invalidation 412
[.2.3.1. Automatic 413
[.2.3.1.1. RecordContainer-specific 413
[.2.3.1.2. Timespan-related 413
[.2.3.2. Manual 414
[.3. Shared caching with multiple ADITO servers 415
[.3.1. Alternative cache servers 418
Appendix J: EntityField/Keywords vs. Attributes 419
J.1. EntityField/Keywords 419
J.2. Attributes 420
Appendix K: $sys variables 421
Appendix L: Slocal variables 426
L.1. Slocal filter 427
L.2. Slocal.lookupFieldName 428
Appendix M: Sproperty variables 429
Appendix N: XML in JDito 430
Appendix O: Car pool example: EntityFields 433
Appendix P: ResourceTimeline example: Liquibase and code 436
P.1. Liquibase 436
P.2. Code 437
Appendix Q: Content types 439
Appendix R: Siblings vs. refreshParent 442
Appendix S: LexoRank 443

A

S.1. Introduction 443
S.2. Benefits 443
S.2.1. Performance 444
S.2.2. Drag and drop 446
S.3. Further information 446
S.4. Usage in ADITO 446
S.4.1. Format 447
S.4.2. Mainly used methods 447
S.4.3. Rebalancing 448
S.5. Example implementation 448
S.5.1. Introduce new database column LEXORANK 448
S.5.2. Introduce new EntityField LEXORANK 449
S.5.3. Set valueProcess 449
S.5.4. Set sorting properties 450
S.5.5. enableDragAndDrop 450
S.6. Further examples 450
Appendix T: Trainee example 452
T.1. Extending the changelog.xml files 452
T.2. Creating the database table 452
T.3. Executing a Liquibase update 453
T.4. Creating the Entity 453
T.5. Creating Context and FilterView 456
T.6. Adding the Context to the Global Menu 458

Appendix U: Version history 459

A

Preface

This document enables you to build and customize ADITO applications for multiple purposes. The first
part of this manual is designed like a schoolbook: On the basis of a plain example, you learn to handle
ADITO step-by-step. It is not recommended to skip one of these chapters, as each chapter implies that

you have read the previous ones.

The second part of this manual is more glossary-like: Additional knowledge is imparted using various
best-practice examples included in the ADITO xRM project. Further helpful details are available in the

appendices.
Happy reading!

The ADITO Academy

1. Introduction

ADITO is a comprehensive software framework that enables you to build powerful web-based xRM
solutions, with xXRM standing for "any relationship", not only the relationships to customers (CRM). An
ADITO distribution includes the "ADITO Designer", which is ADITO’s IDE for customizing (creating new
applications and modifying existing ones). Furthermore, ADITO comes with a project called "ADITO
XRM", which includes the most important data structures to manage companies, contact persons,
activities, sales-related elements (offers etc.), marketing campaigns, and many more. Besides, the

ADITO xRM project also includes some example data, e.g., companies and contact persons.

The central programming paradigm of ADITO is the so-called "Neon Programming Model", which is
based on the "Entity model". This concept means a strict separation of how data is

® structured and calculated ("Entities")

® stored ("RecordContainer") and

e displayed ("Views", clustered in "Contexts").
The benefits of this approach are:

® The same data or logic can be displayed in various ways, using different Views.
® \iews can be (re-)used in multiple Contexts.

® The obligatory usage of ViewTemplates ensures a uniform, consistent appearance of the ADITO
application. Still, users have some options to customize the presentation of data according to

their requirements, e.g., by arranging various Views on a Dashboard.

e |f required, the data source can easily be replaced later.

A

® The web-based concept simplifies the usage: Once the ADITO server has been installed, the
users only need a chromium-based browser and a hyperlink to the server in order to run ADITO.

This also ensures an easy software maintenance: Updates of ADITO only need to be performed
on the server, not on the users' workstations.

® Development can easily be divided into "frontend" and "backend" programming.
In this manual, you will learn how to build ADITO applications on your own. The teaching approach is

process-oriented, i.e., after an overview you will be introduced to handling the ADITO Designer step-by-
step, following the usual development process.

A

2. Overview

2.1. Structure of ADITO projects

At first, you will structure your data into business objects, which have different features. This structure
will then be formed into Entities, which have different features, the so-called EntityFields - e.g. the
Entity "Person_entity" features the EntityFields "FIRSTNAME", "LASTNAME", and "DATEOFBIRTH".

The next step is to set up the data source, which usually is a database: Every Entity gets its data from a
specific data source. In most cases, this data source is a database table, with most of the EntityFields
each corresponding to one specific column of this table - except for fields that are calculated through
other fields or have other sources. The database tables and fields can either be created manually (via
SQL scripts, database managment systems, or via ADITO’s built-in database editor), or you can use a
third-party tool called Liquibase, in order to create database elements (tables, columns, etc.) as well as

database content, using xml configuration files.

After the database has been set up, its structure of tables and fields (but not their data content itself)
needs to be referenced in the ADITO project. This can be considered as a kind of "copy" of the database
structure and is therefore called "the database structure of the project" or "Alias Definition". This
construct enables you, if required, to augment the references to database tables and columns with

additional features, e.g., a description, a documentation, or specific properties.

The next step is to connect every field of the Data alias with its respective EntityField. This mapping is
configured in an ADITO model called "RecordContainer", which you can treat as a kind of "interface"

(or "adapter", to be more precise) between the ADITO project and its data source.

As Entities can have relations to each other (e.g., the "Organisation_entity" is related to the
"Person_entity", which represents persons, who may work in an organisation), we need to connect
them in order to make data exchange possible. In ADITO, these mechanisms are realized by configuring
so-called "Providers" (offering datasets to other Entities, partly based on specific "Parameters") and

"Consumers" (using the passed "Parameters" and processing the datasets offered via a Provider).

These steps all belong to the non-visible part of the ADITO application ("backend"). They are
prerequisites for building the visible part ("frontend"). This visible part mainly consists of so-called
"Views", which are visual components used to display data of one or more Entities in a structured way
(with "View" spelled with a capital letter, in order to distinguish it from "view" in general language
use.). The appearance of every View is determined by one or more ViewTemplates. Users do not need
to build ViewTemplates by themselves, but they can select suitable templates from a pool of several
ViewTemplateTypes predefined by ADITO (e.g., a table, a list, or a Gantt chart, and many more). This
restriction to a limited number of ViewTemplateTypes ensures a user-friendly, intuitive, and thus easy-
to-learn handling of ADITO applications as well as a uniform, consistent look-and-feel. Each

ViewTemplate references specific EntityFields.

A

Every View belongs to one specific Entity. One Entity can have zero to multiple Views. All Views of an
Entity are clustered in a so-called "Context". (Spelled with a capital letter in order to distinguish it from

"context" in general language use.) A Context usually contains at least the following standard Views:

® The FilterView is the entry point of a Context. It usually shows all data in a table or as a tree. To
the right of it, it has a filter component allowing to restrict the data according to specific filter

criteria.

® The PreviewView is shown to the right of the FilterView, when you click on one of its datasets.

The PreviewView shows specific detail features of the dataset selected in the FilterView.

® The MainView is reached by marking one dataset of the FilterView and clicking on the "open"
button. It shows the PreviewView as "master dataset" on the left, and a tabbed component on
the right ("detail" part), which represents referenced Views of other Contexts (e.g., a company is
displayed in the PreviewView, and the persons working in this company are displayed on the
right).

® The EditView is opened via the "Plus sign" button or "Pencil" button, respectively, allowing to

create new datasets or to modify existing datasets.

Furthermore, a View can be extended by adding references to other Views (of the same Context or of
other Contexts). Thus, Views are re-usable. For example, a View of the Context "Organisation" may
include references to Views of the Contexts "Person" (showing the employees of the organisation), or

"Activity" (showing activities referring to the organisation, e.g., a phone call or a visit).

Finally, the Contexts and their Views must be made selectable in a specific menu group of the Global
Menu of the ADITO frontend (web client). This can easily be done in a menu editor window of the
ADITO Designer, simply by dragging and dropping a Context from a pool of Contexts to a specific place
of the Global Menu.

Additionaly, you can define user roles and assign them to both the users and the different menu items.

This restricts the visible menu items to ADITO users with specific user roles.

Despite the usage of ViewTemplates, users can partly modify the ADITO application according to their
requirements. In particular, you can create an overview of the data most important to you by arranging
multiple Views from different Contexts on a Dashboard. Furthermore, e.g., in Views containing tables,

you can change the column width and the sorting of the datasets.

Last but not least, ADITO is perfectly suitable for being applied in an international context. Every

textual element in its components can automatically be translated into the user’s language.

o From version 2024.2, the ADITO xRM project is structured in a modularized way.

Working with modules increases flexibility and reduces merging efforts for updates

A

of XRM in customer projects. However, to simplify matters, the example task in this

manual is not realized as a module. If you are interested in details about

modularization in ADITO, you may read the ADITO Information Document AID123

Modularization.

2.2. Logical hierarchy

To sum up, ADITO projects are structured by the following logical hierarchy:

® Each project has one Global Menu.

The Global Menu consists of one or multiple menu groups.

® Each menu group consists of one or multiple Contexts.

Each Context has

o one Entity assigned, which has one or multiple EntityFields.

o one or multiple Views.

Each View consists of one or multiple ViewTemplates (or of references to other Views), with

each of it based on one specific ViewTemplateType.

® Fach ViewTemplate references one or multiple EntityFields.

This logical hierarchy determines both the visual appearance of the web client and the structure of the

project source data, as visible in the ADITO Designer:

Global Menu

ontact Management]

«§ Contact Management

Lot Company, Activity, Task, Favorite

sales Contexts
Vertriebsdashboard, Sales Project, Offer,

External Work
Visit Recommendation, Visitplan

Marketing
Campaign Planning, CzgaeBn, Bulk Mail, Seria,

Service
Support Ticket

Administration

Menu groups

plate, Lead Import

Autribute, Keyword, Keyword AgefBte, Relation Type, Classification, Salutation, Duplicate Configuration, Duplicates, Export Template, Workflow

Userhelp, District defiitioy

$5 User Administration

Employee, Roles, Permission

View Templates

EntityFields

Figure 1. Hierarchy of elements in the ADITO web client

© 2025 ADITO Software GmbH

19/ 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

I ADITO Designer - 20200928

File Edit \ Navigat urce Refactor Team To indow Help

2D« . Veb Client (Neon) - default v

Projects X 4 ActivityPreview_vi Navigator
v [ActivityPreview_view

Editor History =
I [header] Header

SUBJECT

ENTRYDATE Referenced
Views

Details N
ViewTemplates
DIRECTION

CATEGORY
RESPONSIBLE

i ActivityLinkPreviewList_view
OBJECT_ROWID

O
=
A
=
A
=
A
A
A

> El AddressType

> [Addres:
>0

DocumentList view

(referenced)

in!o-FrOperties ViewTempIateType a - EntityFiekjS

MOBILE | L DESCRIPTION

type e
v Entity e
d

Description

ields INFO

v _Others

Figure 2. Structure of elements in the ADITO Designer

In the following chapters, we will go through the above outlined development steps in detail. For a
better visualization and for practice, each step is explained using the example of a company car pool

with several cars, several drivers, several reservations, and some more options.

A

3. Prerequisites

This manual is designed as a schoolbook, requiring active participation of the reader. After the
introductory chapters, you should reproduce the examples given in the following chapters with an

ADITO system running on your own computer. Thus, the prerequisites for reading on are as follows.

3.1. Documentation

Most of the ADITO documentation is available

e for download from the customer area of the ADITO website.

® via the overview page "Academy Documents", available via the ADITO Service Client. You can

open this page
o directly via this link;

© by adding the Dashlet "News in ADITO" and there clicking on button "Academy

Documents":
¥ Newsin ADITO Pox Add this Dashlet
® Current Roadmap ® Release Infos xRM/P... via this button.
¥ Release Infos Machine ® Release Infos Property
® Release Infos Trade € Academy Documents

B Release-Notes

The other buttons also lead o

to valuable information Via this button, you can open a web
about ADITO. page showing an overview of all
documents of the ADITO Academy.

For a good understanding of the Customizing Manual, you should be familiar with the following
documents (or at least have them available on demand):
® Designer Manual
® ADITO Information Documents (AID), in particular the following:
o Coding Styles | AIDO01-EN
o Wording Guideline | AID002-DE
o Design Guideline | AIDO03-EN
o Performance Optimization | AIDO66-EN

Some ADITO documents, like this Customizing Manual, contain code snippets, which you can copy into

your own ADITO project or use to verify the correctness of your own code. We recommend

https://www.adito.de/login.html
https://service.adito.de/client/KnowledgeManagement/full?includedIds=42a481e3-b27d-446a-8a0b-fe5bffafc2ec&view=KnowledgeManagementMain_view&search=eyJ0eXBlIjoiZ3JvdXAiLCJvcGVyYXRvciI6IkFORCIsImNoaWxkcyI6W119&id=42a481e3-b27d-446a-8a0b-fe5bffafc2ec

A

® to use the latest version of Adobe Acrobat Reader DC in order to view this manual, because the
usage of other PDF readers can result in problems when copying code from PDF file into your
project (additional special characters or formatting characters may be inserted then, which

results in a failure of the code);

® {0 apply the automated code formatting (shortcut: SHIFT+ALT+F) after copying and inserting the

code;

® to remove additional line breaks, which might have been inserted by this manual’s PDF

generator (especially at long lines), as these can make the code invalid.

3.2. ADITO Web Client

To ensure an efficient customizing work, you should be familiar with the ADITO Web Client and know at
least the basic functionality of the ADITO xRM project from a client user’s perspective. You can learn
this

® in the "web client" part of the ADITO training course for developers (with even deeper client-
related training courses being available on request);

® by reading the presentations for client users, available via paragraph
"Anwendungsprasentationen" (user presentations) in the overview page "Academy Documents"”,

available via the ADITO Service Client;

® by simply browsing through the various menu groups and Contexts of the ADITO xRM project
included in the ADITO test system that ADITO has provided you with.

o You need to use a Chromium-based browser, such as Google Chrome or Microsoft

Edge. Other types of browsers are not supported.

3.3. ADITO platform and xRM project

This manual assumes that you are working with an ADITO cloud system, including the project "ADITO
xRM", and with a local ADITO Designer (this is the name of ADITO’s IDE for customizing). Usually, ADITO
will provide you with

® an ADITO cloud system, including the ADITO xRM project

® all relevant access credentials

® a compressed file (zip), including the ADITO Designer, which you simply have to unpack at an
arbitrary place of your local hard disk/SSD

® an installation guide about how to prepare and start your local ADITO Designer and then open

("load") your ADITO xRM project in the Designer.

https://service.adito.de/client/KnowledgeManagement/full?includedIds=42a481e3-b27d-446a-8a0b-fe5bffafc2ec&view=KnowledgeManagementMain_view&search=eyJ0eXBlIjoiZ3JvdXAiLCJvcGVyYXRvciI6IkFORCIsImNoaWxkcyI6W119&id=42a481e3-b27d-446a-8a0b-fe5bffafc2ec

A

Once you have completed this setup, you can start with your productive customizing work, or with

configuring the "car pool" example in this manual, respectively.

Being familiar with the basic functionality of the ADITO Designer is prerequisite for reading this manual.

Find more information in the Designer Manual.

If required, ask your ADITO contact for further instructions.

3.4. ADITO database

This manual uses "MariaDB" for teaching purposes, as this is the default database in ADITO cloud

systems.

You can connect your ADITO Designer with the database of your cloud system via tunneling: In the
"Projects" window, right-click on "system" > "default" and choose "Open tunnels" from the context

menu.

svstem

L defaulig

Open Model Source

Set default

Deploy "default"

Copy Ctrl+C
Paste

Run Server
Clear cache

U
0
0
0
0
0
0
0
0
O

Open Neon Client
preference

BN applicatior
f& context
>
>
>
>

Start System

Stop System

D 360De Link to Cloud System

0 Open Tunnels

Close Opened Tunnels
Find...

After a few seconds, the tunnel icon to the left of "default" becomes green. If you then double-click on
"default" (under "system"), the Editor window will show a tab named "default", including, amongst
SYSTEMALIAS") and for the data database
("Data_alias"). (Sometimes, you need to click button "Reconnect" in tab "default" first).

others, an entry for the system database ("

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

Projects x a R X
v dev-twtest2-c2-adito-cloud [ADIT

system
h] default

Editor Users Source History

L)
0
0
0
0
0
0
0
0
O

> preferences

> B application

v [@ context Connection to database unavailable.
> D, 360Degree

> D, Absence

> [Activity

[Y

Reconnect

Details...

You may double-click on the system database or the data database and open schema "ADITO", in order
to inspect the ADITO-related tables included in these databases. If you right-click on a table, you may,

e.g., choose "View Data...",

A

Projects xa i X Database X

v dev-twtest2-c2-adito-cloud [ADIT v [Dpata alias
svstem T

Name Type DB Type

: v B cloud_data_alias ACTIVITYID CHAR CHAR
J:"l default v [Tables

CATEGORY VARCHAR VARCHAR
ab_appointmentlink DATE_EDIT TIMESTAMP DATETIME
ab_attribute DATE_NEW TIMESTAMP DATETIME
ab_attributerelation DIRECTION VARCHAR VARCHAR
ab_attributeusage ENTRYDATE TIMESTAMP DATETIME
ab_countryinfo INFO LONGVARCHAR LONGTEXT
ab_ctilog IS_CONFIDENTL.. TINYINT TINYINT
ab_currency PARENT_CONT... VARCHAR VARCHAR
ab_keyword_attribute PARENT ID CHAR CHAR
ab_keyword_attributerelation RESPQN_S|B|_E CHAR CHAR
ab_keyword_category SUBJECT VARCHAR VARCHAR
ab_keyword_entry USER_EDIT VARCHAR VARCHAR
ab_language . USER_NEW VARCHAR VARCHAR
ab_loghistory §

ab_objectrelation

ab_objectrelationtype

ab_permissioncalendar

ab_synccontact

ab_unlinkedmail

aheanra

Execute Command...

>

I I P P

preferences
Bl application
Il context

M notificationtype
Bl entity

Il dashboard
renderer

activity - Properties
v Properties
Name

VW VYV VY VYV Y VY VYV VYV VYV VY

Catalog Generate Changelog...

Add Column...
Refresh
Delete Delete

Schema
System

vV VvV VvV

then an SQL "select" statement will automatically be generated and executed, showing you the
datasets of this table.

X | Database X SQL 1 [jdbc:mariadb:/adito-db.d...] X

Connection: | jdbc:mariadb://adito-db.dev-twtest2-c2-adito-cloud.svc.cluster.local:... W L]

* .
h

SELECT * FROM activity LI... X

¥ Max. rows: | 500 Fetched Rows: 227

SUBJECT INFO DIRECTION EN

Re: Reklamation eines Produkts [14] <p>... 2023-08-24
Zusenden eines Werbemittels <p>... 2023-09-22
Einladung zum Kennenlernen <p>... 2024-02-19
Anfrage Uber Formular auf unserer Webseite <p>... | 2024-01-03

. R . .

Find more information in the ADITO Designer Manual. If required, ask your ADITO contact for further

instructions.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

3.5. ADITO server

The ADITO server manages the communication between the ADITO databases ("system database" and

"data database") and the client browser: It reads

® the data defining the visual elements (e.g., a table structure, or a chart’s layout) from the
"system database" - in particular, from table ASYS_SYSTEM;

® the productive data (i.e., the datasets to be shown in a table) from the "data database", e.g.,

from table ACTIVITY (see screenshot above)

In ADITQO’s Self-Service Provider (SSP, see installation guide), you can see, if the server of your ADITO
system is running (status "RUNNING") or shut down (status "STOPPED"). Furthermore, in the MainView
of the SSP’s Context "System", you can see various details about an ADITO system’s server:

= & 2 12 x

Pid < Freigaben Backups Resources Logs Config Maps Metrics
dev-twtest2-c2-adito-cloud

2024.01

https://twtest2.dev.c2.adito.cloud

RUNNING
@ Param % Value +
Systems o INFO_secret_ADITO.SA_flowable TLDOfnIqY86iFjsYU490a9PjYn3YawB

Enter tag INFO_secret_ADITO.SA_telemetry ahKEJUnefO70hYuopEMUWSjwwCYceC4

INFO_secret_ADITO_USER Jan Frohberg: rtOnFJHsSE78pPDSQHaPwURfGecxTuX1, Max Must
Il Stop System M\ Get Server Config

INFO_secret_DB.Data_alias db=cloud_data_alias, user=adito, pw=Id10ApTx8LIGwpBZe9o(

A\ Tunnel Config (SSH-... @) Batch Tunnel (SSH-...

INFA cmmend nn CNETFRAALIAE Al crimbmmnaling imarmadiba miomlAIA A ATGO] IS BT AR~

Figure 3. The SSP’s MainView of an ADITO system

If the server of your ADITO system is not running, start it now, via button "Start System":

test-am-2400-c2-adito-cloud
2024.00

https://am-2400.test.c2.adito.cloud
STOPPED

= :

Systems -

Enter tag

I P Start System I M\ Get Server Config

A\ Tunnel Config (SSH-... @, Batch Tunnel (SSH-...

& Copy Admin PW A- Open Graylog

Jysiennn 7

£ Create Backup

Wait a few minutes, until the server’s startup is completed. (Press the "Refresh" button of your

browser, in order to update the display of the status.)

Once the server has status "RUNNING", you can login to your system’s ADITO xRM project, as shown in
the web client, by using the URL displayed in the SSP:

= a B 2 * Q@D
r.— @ : ‘;—§Fi\ter

e X

dev-twtest2-c2-adito-cloud

Q Filter content... Systems: 3 2024.01
I https://twtest2.dev.c2.adito.cloud I
Namespace % URL = Date new < User = + RUNNING
dev-lims2020-c2-adito-cloud https://lims2020.dev.c2.adito.cloud 2210.2020 twosegien _
& O
dev-twtest2-c2-adito-cloud I https://twtest2.dev.c2.adito.cloud I 04.04.2024 twosegien
Systems -
test-am-2400-c2-adito-cloud https://am-2400.test.c2.adito.cloud 27.03.2024 amayr <
= Entertag

In the login mask, type in user name "admin" and the password available via the SSP:

A

g X
dev-twtest2-c2-adito-cloud
2024.01
https://twtest2.dev.c2.adito.cloud
RUNNING
w O i
Systems -
Enter tag
Il Stop System M\ Get Server Config
A Tunnel Config (SSH-... @&, Batch Tunnel (SSH-...

o Copy Admin PW I A Open Graylog

yawcin -

= (reate Rarliin

|admin

- remain signed in

After login, you are at first directed to the ADITO xRM project’s "Dashboard". You may now click on
"Home", in order to show the project’s global menu - and from there, you can browse through the

project’s menu groups and Contexts, in order to become familiar with the various functionalities:

© 2025 ADITO Software GmbH 28 /472

& Contact Management

Contact, Company, Activity, Task, Contact synchronisation
Sales
Sales forecast

“ Collaboration
Project, Projectticket, ProjectType, ProjectticketType, Projectticket Attribute

External Work

Operation Recommendation, Expense Report, Resource, Operation, Resource planning, Operation Task, Operation Task Template
Marketing
Email Filter, Document Template

Service

Team leader dashboard, Service Dashboard, Service ticket

Service Administration

Inboxes, Inbox filter group, Service ticket template, Escalation, Employee Group, Employee group rule group

Knowledge Management

Knowledge category, Knowledge

4 F D

Manager

Session, Server, Process, Process history, Database, Peer

14

Administration
Attribute, Keyword Category, Keyword Entry, Keyword Attribute, Relation Type, Classification, Target acquisition, Salutation,
Duplicate Configuration, Audit Log, Export Template, Import Template, Workflow Definition, District definition, Checklists,

DSGVO Configuration

. User Administration
Employee, Roles, Permission

- Sales Dashboard, Planning, Opportunity, Offer, Receipt, Contract, Product package, Product, Prices, Conversion Rates, Advertising material,

ii} Marketing Dashboard, Campaign Planning, Campaign, Event, Bulk Mail, Serial Letter, Mosaico, Questionnaire, Weblink, Webtracking, Interest,

Contact synchronisation dashboard, Topic Tree, Currency Rates, Signature Templates, Expense administration, Dunning Level, Dunning History,

Via menu group "Manager", you can monitor your ADITO system, in order to, e.g.

® inspect the open sessions and, e.g., end a session, or send messages to all session-related users

(Context "Session")
® monitor the server and, e.g., clear the server’s cache (Context "Server")
® view the currently running processes (Context "Process")
® view the number of open connections to the database (Context "Database")

NIUWIEUYE Ldleyuly, RIuwiTuys

o5 Manager

Session, Server, Process, Process history, Database, Peer

A Amaimicrtratinam

3.6. Instance configuration

© 2025 ADITO Software GmbH

29 /472

A

A successful database connection is also prerequisite for accessing the so-called instance configuration,
holding the configuration of the ADITO system instance (e.g., what system modules should be applied,
and what log levels should be effective): Double-click on system > default in the "Projects" window and
then double-clickon"__ CONFIGURATION". This will display a configuration tree in the "Navigator"
window (upper right part of the Designer). You may browse through this tree to inspect the various

parts of the instance configuration.

3.7. Logging

Besides the debugger (see Designer Manual), the ADITO server’s logging helps you to analyze how your
system is running and what errors occur, along with the source of these errors. If the server is running,
its log can be displayed via the run config named "Cloud Server - <system name>", which you can find
in the combo box below the ADITO Designer’s menu bar (maybe you need to scroll down in the combo
box, in order to see it):

Window Help
/R Cloud Server - default

X
[] web client (Neon) Cloud
Editor Users

Icon Config @ createrreports

@ CONF
Instance Cor

s EW Cypress Open

—— SYSTI
=% Database (M ‘&Y' Cypress Run All Tests
= Data_alias
=% Database ('l i Cloud Server default
== Data_alias_noaAuan
— = !
= Database (MariaDB ...

defaultDbRepositor

Once you have started this run config, a tab named "Output" will be displayed in the lower middle part
of the Designer, which has a sub-tab named "Cloud Server: <system name>". This tab contains the log
of the server:

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

ow Help
il Cloud Server - default
Iy X
Editor Users Source History

Icon Config
@ CONFIGURATION
Instance Configurati...
P SYSTEMALIAS

==l Database (MariaDB ... jdbc:mariadb://adito-db.dev-twtest3-c2-adito-cloud.svc.cluster.local:3306/ system..
= Data_alias

=l Database (MariaDB ... jdbc:mariadb://adito-db.dev-twtest3-c2-adito-cloud.svc.cluster.local:3306/cloud_data_..
— Data_alias_noAudit
Notifications Qutput

Cloud Server: default X Database X

X

H-0
H-0
H
H
H-0
H-0
H
"

3.7.1. Predefined logging

By default, only errors and a few functions are being logged. Thus, we recommend you to activate the
logging for

® database access (to see, e.g., what SQL statements are executed)

® |Dito processes (to see, e.g., how often the valueProcess of an EntityField is executed, which can
be a hint to performance problems - see
AID066 Performance Optimization)

In the instance configuration (see chapter Instance configuration), click on "Logging", which will show
the logging properties in the Editor (upper middle part of the Designer). Here,

® open the combo box of property "loggingDebuglLevel" and additionally check "DB" and "JDITO"

® set properties "logging)DitoThreshold" and "loggingDBThreshold" both to "0" (zero
milliseconds), meaning that all JDito processes and all database access will be logged, even very
short ones.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

A

® make sure that property "loggingTelnetEnabled" is set to true (checked)

Projects x a i x {& CONFIGURATION_dev X Navigator
- L ito= S
v dev-twtest3-c2-adito-clot Editor Source History v K System
v system . B client
h] default ¥ Logging v I wMcdules
loggingDebugLevel IMPLE | TRACE | DB | JDITO B Database

‘ Calendar

loggingJDitoThreshold B nanneations

loggingDBThreshold [Logging

v Console v = Lusom

loggingConsoleEnabled
v File
loggingFileEnabled
loggingFileloggerMaxSize
loggingFileloggerFileCount
loggingFileloggerDiscreteModules
v Telnet
loggingTelnetEnabled
loggingTelnetAddress

Ll
D
D
D
D
D
D
D
0
O

preferences
application
context
notificationtype
entity
dashboard

You can verify the success by opening any View in the client (e.g., of Context "Company", in menu
group "Contact Management") and watching if the server log (in Window "Output") shows log entries

for every SELECT statement and for every JDito process being executed.
If you encounter problems, you may find a solution in chapter "Troubleshooting".

3.7.2. Customized logging

You can add further log entries to the server log, according to your requirements, by using methods of
module | oggi ng. Simple example:

import { logging } from"@ditosoftware/jdito-types";

l ogging.log("This is the text to be |ogged.");

The JSDoc of these methods shows what additional parameters you can pass - e.g., to specifiy a certain
log level. Furthermore, there are other logging methods available, e.g. | 0ggi ng. | ogCust omor

| oggi ng. debug, which have further parameters that help you to optimize the log message. Find
more information via the autocompletion of | 0ggi ng. or via menu Help > Show Documentation
(requires plugin "Help" to be installed).

If you want to log an object, you will get the best overview of it, if you use the JSON
library to "stringify" it first:

While JSON. st ri ngi fy(obj ect) returns the object’s content in one long line,
you get a better result, if you set the parameters as follows

JSON. stringify(object, null, " ")

- Result (example): {

"entity": "Person_entity",

"object": {

"PERSON_ID": "0a611832-9476-481e-bde5-af3c3a98f1b4",
"CONTACTID": "a8a5f214-8165-4627-bee2-bceb3578147e",
"FIRSTNAME": "John",

"LASTNAME": "Smith"

}

}

3.7.3. Logging in "catch" section

In practice, logging is often used in the cat ch section of t ry..cat ch.

Here, a common mistake is to simply output the error itself:

Bad example of logging
try
{
O)...)
}
catch(err)
{

| oggi ng. l og(err);
}

Often, this shows only a long stacktrace that is hard to analyze.

Instead, the log should include further information that helps to identify the problem.

Example from contentProcess of Duplicate_entity:

Good example of logging

try
{
duplicates = duplicates. concat((new DuplicateUtils(pMappi ngOhj)).execute());
}
catch (e)

{
I oggi ng. | og(e, |ogging. ERROR, [

"error while trying to |load duplicates for " + vars.getString("$sys.currentcontextname") + " for user "

"$sys. user"),
"Duplicate_entity.jdito.contentProcess()",
e["rhinoException"] ? e["rhinoException"].toString() : (e.name + ": " + e.message + " " + e.stack)]);

A

+ vars. get (

A

3.7.4. Debugging vs. temporary logging

Besides permanent logging (e.g., to log errors in the cat ch section, see above), temporary logging is
sometimes used in the development process. This raises the question when to use temporary logging
and when to use the ADITO Designer’s built-in debugger. Generally, the debugger provides you with a

lot of options that go beyond pure logging, e.g., you can

® quickly inspect the values of all variables being valid at a specific code line,

dynamically step from code line to code line, in order to watch the variables' values change

execute functions

define conditions when to halt at certain code lines

® manipulate variables by setting certain values

and many more (see the chapter "Debugger" in the Designer Manual).

Therefore, the debugger should be the instrument of your choice in most cases. On the other hand,
activating the debugger takes some time and decreases the system’s performance - thus, e.g., if you
only want to quickly inspect the value of a specific variable, adding a simple temporary logging might

be preferred:
| oggi ng. | og("The val ue of nyVariable at code line 173 is " + nyVari abl e)
Of course, you can also combine this with a condition:

if (nyVariable > 100) {
| oggi ng. l og("nyVari abl e exceeds 100! Its value is " + myVariabl e);
}

Nevertheless, a common mistake is to overload your code with temporary log entries and later
forgetting to remove them again. At least, you should add an inline comment that marks the logging as

temporary:

/1l TODO renbve again
| oggi ng.log("My tenporary logging text.");
In order to see the log of your cloud server in the Designer’s window "Output",

o 1. set the system property "loggingTelnetEnabled" to true (system > default >
CONFIGURATION > Logging > Telnet)

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

2. choose "Cloud Server - <system name>" (e.g., "Cloud Server - default") from
the combobox in middle of the Designer’s button bar and press the green

"triangle" button to the right of it.

= E 4B Cloud Server - default

. AditoFaker-syncFromAod
<er-syncFromCsv

createreports

Ci

s

. reset-data

In . startMariaDB

Cypress Open

Cypress Run All Tests

default

After a few seconds, you can read the confirmation "Connected to server" in a sub-
window of the Designer’s window "Output", e.g., entitled "Cloud Server: default". In

this sub-window, all further log entries will appear.

Besides this customized logging, all JDito processes and database access (SQL
statements) can be logged, if you activate the corresponding log level via the system

preferences:

Navigate to system > default > CONFIGURATION > Logging > Logging >
loggingDebugLevel: Here, then check "DB" or "JDITO", respectively, and save your

changes.

After a few seconds you should see various log entries in the output window, when
working with your client. (Due to a bug, the logger might automatically be
connected with the wrong web server pod and thus show no output. In this case, as
a workaround, close and re-open the tunnels again and again, until it works. There

will be a replacement for this workaround in future ADITO versions.)

4. JDito

4.1. What is JDito?

IDito is the programming language used for customizing ADITO. Everything that requires more than the

basic functionality offered by components is done in so-called processes, which are basically scripts

A

written in JDito.

At its core, JDito is based on the programming language JavaScript, but it doesn’t have the DOM
controlling methods like the normal JavaScript used in web development; instead, JDito extends the
core of JavaScript with its own system modules that provide a big array of methods to interface with
and control the environment within ADITO - e.g., executing SQL queries, interfacing with telephone

systems as well as reading and returning values from/to components.

System-reserved names must not be used as names of variables. For example, a

variable must not be named "result", "tools", or "test". Besides, we recommend not
to use variables names matching names of system components, such as ADITO
models or their properties ("Activity", "title", "contentType", "state", etc.). This
could have unexpected side-effects. You may uses the usual prefixes, such as "my" or

a", in order to avoid these kind of problems ("myTitle", "aState", etc.).

Here is an example of how a variable irregularly named "test" is marked in the

ADITO Designer’s code editor:

Subsequent variable declarations must have the same type. Variable 'test' must be of type ‘TestFunction’, but here has type 'string

(Alt-Enter shows hints)

4.2. How to use JDito

The lexical structure of JDito is identical to JavaScript. Basic information on JavaScript can be found
online, e.g., here:

https://www.w3schools.com/js/
JDito is used in so-called processes. There are basically two kinds of processes in ADITO:

1. Component specific processes
These are JDito scripts used for a specific purpose in a component, e.g., processes to calculate
display values, font colors, data validation, etc. These processes are specified directly in the
corresponding properties and are executed whenever the system needs the value of the

properties.

2. Project-wide processes
These processes are located in the "process"” node of the project tree of the ADITO Designer. You
find them sorted into four sub-nodes (the sorting is done according to the processes' property

"variants", i.e., the sub-nodes ("folders") are virtual):

a. authentication: All processes responsible for authentication - see the ADITO document

https://www.w3schools.com/js/

A

AID032 Authentication Methods

b. executable
Executable processes are used to automate specific tasks and can be used manually or for

regular timed tasks, e.g., nightly imports of data or mass data manipulation.

c. internal
These are processes called by the ADITO application’s core and used to define custom
behaviour for specific tasks. For example, the process "autostartNeon" is called every
time a user logs on to the web client. Within this process, several client-wide variables are

set, like access rights.

d. library
Processes of this kind are used to group collections of JDito function that share a common
topic, like handling calendar access, writing letters, or SQL helper functions. These
libraries can be imported into other processes, so you can access the functions there.

There are 2 types of libraries:

m Entity-specific libraries, including helper functions restricted to (or mainly used by)
single Entitys, e.g., Or gani sation_|ib.

m multi-purpose libraries, providing functionality that is used by more than one
Entity. Examples: Neon_| i b,Date_li b, Money_|i b.

e. webservice
These processes are designed to be used as web services. Other systems can call these to
get data from ADITO, write data to ADITO, or to trigger actions within ADITO. Find more
information in the ADITO document AID059 Web services with ADITO.

f. workflow
All processes related to workflows - see the ADITO document AID110 Workflow

Management

In principle, these system-wide processes can also be customized according to the
project’s requirements. However, this can lead to update/merge problems whenever

A ADITO releases a new xRM version. Therefore, we recommend you to create new
processes for any customized functionality, e.g., KeywordRegistry_custom or
MyNewContext_lib.

4.3. Further information

Further information on JDito functionality is available as JSDoc, accessible via the programming help
function while coding. For example, if you have imported the library "Person_lib" (i nport {
PersUtils } from"Person_lib";),youcanview a list of all functions provided by class
"PersUtils" simply by typing Per sUt i | s. and then CTRL+SPACE. (If you do this for the first time, you

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID032_Authentication_Methods.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID059_Webservices.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf

A

need to wait a few minutes, until the ADITO Designer has completed the task "Initializing JS features",
see notification in the bottom line of the Designer). Through this function list, you can navigate with

the arrow keys: Whenever a function is marked, you can read its JSDoc below, structured in Summary
(basic description of the function), Parameters (description of the function’s parameters), and Returns

(information about the function’s return value).

History “

® bind
#call
W caller

Process.js »

Cloud Server: default X

(method) PersUtils.getResolvingDisplaySubSql(pRelationldField: string,
pPResponsible?: boolean): string

creates an subSql for resolving a person into one string of text (for example the
name of a person) useful for example in an displayValue-expression to resolave
a references (which is chosen by Lookups) does not validate if pRelationldField
exists or is a valid or harmful value

@param pRelatic 1d — fieldname for the CONTACTID-condition as
TABLEALIAS.COLUMNALIAS; e.g. TASK.EDITOR_CONTACT_ID

@param ¢ e — optional param which adds a " *" if the contact has
the RESPONSIBLE tag set to true (used by SalesProjectMember_entity)

Figure 4. Example of the JSDoc of method getResolvingDisplaySubSql of class PersUtils

A

A glossary giving information about JDito system modules and JDito system variables is available in

appendix JDito system modules and variables.

Information about how to use XML in JDito is available in appendix XML in JDito.

A

5. Core tables of the xRM project

As already mentioned, we will build our ADITO example application based on the xRM project. This is a

comprehensive project, which already includes several Entities, e.g., for managing contact persons,

companies, activities, products, offers, and administrative tasks.

Every database table has got a primary key column, which is named <table name>ID
(e.g., ORGANISATIONID), according to ADITO’s spelling guidelines (see ADITO
Information Document AID001, chapter "Spelling & Wording" > "ADITO models").
Whenever a primary key column is referenced in other tables ("foreign key"), it is
named <table name>_ID (e.g., ORGANISATION_ID). This simplifies the orientation in
the ADITO data model, as you can quickly recognize the relations between specific
tables. In most cases, the primary key value is a UID (a 36-digit universally unique

identifier that is generated using random numbers).

In the xXRM project, database columns holding foreign keys usually do not have a
foreign key constraint. This has multiple reasons (e.g., it simplifies the task to drop
and re-create database tables, and it grants more flexibility when creating
interdependent datasets), but nevertheless it’s up to your own programming style

whether or not you do it alike when adding your custom database tables.

As an xRM system particularly focusses on relationships between persons or organisations, the core

database tables of the ADITO xRM project are (cf. illustration below):

® PERSON: Holds data of persons, like name, date of birth, etc.

® ORGANISATION: Holds data of organisations, which are, in most cases, companies: Name, type,

info, etc.

® CONTACT:

o Connects persons and organisations, as well as corresponding addresses, communication
data, and activities. In ADITO, a PERSON or ORGANISATION dataset never exists alone, but
it is always connected to at least one CONTACT dataset. This is, because a person is
usually seen as a "person in an organisation". And an organisation usually features one or
more persons working in it. The connection is realized via CONTACT’s fields PERSON_ID
and ORGANISATION_ID.

Also for private persons, a related CONTACT dataset is created - in this case, the field
referencing the organisation (ORGANISATION_ID) has the value 0 (not "null"!).

Likewise, an organisation without relation to a person is nevertheless represented also as
CONTACT dataset - in this case, the field referencing the person (PERSON_ID) is null (not

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

"0").

o Whenever we reference a person or an organisation in ADITO logic, we always use the
corresponding CONTACT_ID, not the PERSON_ID or ORGANISATION_ID. However, of
course, the tables PERSON and ORGANISATION may be joined in SQL statements, e.g., to

retrieve the name of a person/organisation.

© The standard address of a contact (cf. ADITO User’s Manual) is referenced in column
CONTACT.ADDRESS_ID. This is no mandatory field, but as soon as at least 1 address of a

contact exists, one of these adresses must be assigned as standard address.

® ADDRESS: Holds address data, along with a CONTACT_ID, referencing the contact (person or

organisation) to which the address belongs.

® COMMUNICATION: Holds information about communication ways (telephone number, email
address, etc.), along with a CONTACT_ID, referencing the contact (person or organisation) to

which the communication data belongs.

® ACTIVITY: Holds information about activities. This term summarizes information about all kinds
of events belonging to specific ADITO Contexts, e.g., a meeting or a telephone call and its result.
As one contact (person or organisation) can be related to multiple activities, table ACTIVITYLINK
connects the tables ACTIVITY and CONTACT, via its columns ACTIVITY_ID and OBJECT_ROWID.
The latter can hold a CONTACTID, but is named universally, as activities can also refer to other

ADITO Contexts, such as "Opportunity" or "Contract".

formerly PERS

PERSON

PERSONID

formerly COMM

formerly RELATION

CONTACT

CONTACTID
PERSOMN_ID (1)
ORGANISATION_ID (2)
ADDRESS_ID

formerly ORG

ORGANISATION

1 ORGANISATIONID

COMMUNICATION

COMMUNICATIONID
CONTACT_ID
STANDARD

formerly HISTORY

(1) Crganisation’s Main Contact:

PERSCM_ID = null
2 Private Person:
ORGAMISATION_ID =0

formerly HISTORYLINK

ACTIVITYLINK

ACTIMITY

ACTIVITYID

ACTIVITYLINKID
OBJECT_ROWID
ACTMITY_ID
OBJECT_TYPE

ADDRESS

Standard™ ADDRESSID

address

| CONTACT_ID

Context Mame (FERSON, ORGANISATION etc.)
as String {!) - no keywords!

Figure 5. ER diagram of the ADITO xRM project’s core tables (along with their former names, until

ADITO 5)

However, unlike normally, the ADITO Entities corresponding to these core database tables are not 1:1

representations, although they are named similarly:

® Person_entity represents contact persons and is related to both database tables PERSON and
CONTACT. In the web client, the data held by Person_entity appears under the title "Contact".

® QOrganisation_entity represents organisations and is related to database tables ORGANISATION

and CONTACT. In the web client, the data held by Organisation_entity appears under the title

"Company".

® Contact_entity represents a special case and is not a 1:1 representation of the data of database
table CONTACT. The data held by Contact_entity does not appear 1:1 in the web client. Do not

confuse it with the data held by Person_entity, which is titled "Contact" in the web client. In this

manual, we can ignore Contact_entity, until further notice.

A

® AnyContact_entity is a kind of mixture between Person_entity and Organisation_entity: Both
persons (private and company-related) and organisations (without persons assigned) are

displayed. It also represents a special case and can be ignored in this manual, until further
notice.

A

6. Modelling the data structure

The first step of the ADITO customizing work basically requires nothing more than a pencil and a sheet

of paper:

Collect a list of all data you want to manage via ADITO, and then structure it carefully into logical units

with certain features.

Do not underestimate this step: The more complete and the better structured this
collection is, the more efficient the following development process will be. Carefully
consider structural principles like normalization, consistency, and avoidance of
redundancy. Later extensions or modification of data structure and logic are, of
A course, possible with ADITO, but - as in every engineering process - they require
additional effort that is probably larger than if you had considered it more carefully
right from the beginning. To put it bluntly, you should not touch the ADITO Designer
unless you are very sure that your data feature collection is both complete and

optimally structured.

In this manual, we will use the administration of a company car pool as example. Our list of data
features will therefore contain, e.g., the basic features of the car (manufacturer, type, manufacturing
date, color...), the personal data of the drivers (their name, the IDs of their driving licenses, etc.), and

reservation data (start date, end date, corresponding car, corresponding driver, etc.).

As soon as we are sure that our data list is complete, we cluster the data into business objects, each
having several features. If a feature is related to another feature, or if it can be deduced from other

features or somehow be calculated, we mark it accordingly.

Every business object features am ID, in order to ensure a unique identification.
In our car pool example, the business objects could be modelled like this:

CAR:

e |[D
® Manufacturer
® Type

® Color

Date of Manufacture

Picture

® Price

® Currency

® license plate number

® Mileage (calculated from car reservation)

® Value (calculated from mileage)

® Availability ("available"/"lent", dependent on car reservation)

® Damages (calculated from reservations)

CAR DRIVER:

® Cardriver ID

® Contact ID (related to xRM Entity "Person_entity")

® Last name (retrieved via Contact ID)

® First name (retrieved via Contact ID)

® Age (calculated from date of birth via Contact ID)

® Number of driving license

® issue date of driving license

® Driving experience (calculated from issue date)

® Sum of parking ticket fines (calculated from car reservations)

® Sum of speeding fines (calculated from car reservations)

CAR RESERVATION:

® Car reservation ID

® Car driver ID (related to business object "Car driver")
® Car ID (related to business object "Car")

e Start date

® End date

® Mileage at start (calculated from car reservation)

® Mileage at return

® Damage

® Parking ticket fine
® Speeding fine

® Currency

A

© 2025 ADITO Software GmbH

46 / 472

A

7. Creating Entities

This chapter explains how to create Entities and their EntityFields manually, step-by-

step. The connection to the database will be done subsequently. This approach takes
0 some time, but you will learn to understand the details. However, ADITO includes

automatisms called "Blueprints" that simplify the creation of Contexts, Entities, and

Views. Find more information in chapter Blueprints.

Once we have designed our business objects, we are ready to start the development of the actual
ADITO application. Our central development tool is the ADITO Designer, which you can download as
compressed (zip) file from area "Aktuelle Releases" (current releases) in the customer area of ADITO’s

website.
Now, start the ADITO Designer and open your project.

In ADITO, all business objects are represented by so-called Entities. They are the basic elements to
model the data’s structure and type. For every business object, we create one Entity, and for every
feature of the business object, we create one EntityField. As the spelling of an Entity name follows the

convention "<Name in camel case>_entity", we call our Entities

® Car_entity
® CarDriver_entity

® CarReservation_entity

(By letting all names start with "Car", we make them being displayed close together in various ADITO

folders, because of the alphabetical sorting.)

To create new Entities, we navigate to node "entity" in the project tree (see "Projects" window to the
left) and call option "New" in the context menu of "entity". In the model creation dialog, we enter the
name of the Entity and leave "entity" selected as type. This step must be repeated until all Entities are

created.

In case you mistype a name or want to delete an element of the project, please
note: In some cases, particularly when deleting or renaming, a tab "Refactoring" will
appear in the lower middle part of the Designer (it can very easily be overlooked!),
which requires you to confirm the refactoring by clicking on button "Do

A Refactoring". Here you see all models affected by the refactoring, and on demand,
you can uncheck part of them (not recommended!). If you miss to react to the
refactoring prompt (or repeat the action that caused it) and continue working, your

XML project source code might become confused and you will have to repair it

https://www.adito.de/login/kundenbereich/releases.html
https://www.adito.de/login/kundenbereich/releases.html

manually.

Refactoring

Do Refactoring | Cancel

Figure 6. Example of content of tab "Refactoring”

To create new EntityFields, we double-click on an Entity name (under node "entity" in the "Projects"
window) and then call option "New Field" in the context menu of the Entity’s name shown in the
Navigator (!) window. (This is the window in the upper right part of the Designer.) According to ADITO’s
spelling guidelines (see ADITO Information Document AID001, chapter "Spelling & Wording" > "ADITO
models")

® the names of EntityFields that directly refer to the value of a database column, are written in

uppercase letters (same name as the corresponding database column);

® all other EntityField names (calculated fields, etc.) are written in camelCase, starting with a

lowercase letter.

In practice, the names of Entities, Contexts, Views etc. include a suitable project-

related prefix, e.g., "MyProject_CarReservation_entity". This helps you to easily
o distinguish original ADITO models (= models of the xRM project) from your own

ADITO models that you have created for your customized project. However, in this

manual, we do not use a project prefix, for purposes of simplification.

As the correct spelling of the EntityFields' names is essential for the function of the
following code examples, you can find tables with the names (and
contentTypes/data types - see later chapters) of all car pool related EntityFields also

in appendix Car pool example: EntityFields - ready for "copy & paste".

After creating all Entities with all of their fields, the Entities should appear in the Navigator window as
follows:

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

Car_entity - Navigator

v [car_entity
v @ Fields

O

O 0OO0OoODODOOoOOoODOQO OoOaaao

availability

CARID

COLOR

CURRENCY
damages
LICENSEPLATENUMBER
MANUFACTUREDATE
MANUFACTURER
mileage

PICTURE

PRICE

TYPE

carValue

CarDriver_entity - Navigator

v [carDriver_entity
v @ Fields

O

age

CARDRIVERID

CONTACT_ID
drivingExperience
DRIVINGLICENSENUMBER
DRIVINGLICENSEISSUEDATE
parkingTicketFinesSum
speedingFinesSum

CarReservation_entity - Navigator

v [carReservation_entity
v @ Fields

O

O O0OO0OODO0OONOOQTG OTOoONTOo

Figure 7. The carpool-related Entities and their fields

CAR_ID
CARDRIVER_ID
CARRESERVATIONID
CURRENCY

DAMAGE

ENDDATE
MILEAGERETURN
mileageStart
PARKINGTICKETFINE
SPEEDINGFINE
STARTDATE

A

© 2025 ADITO Software GmbH

49 /472

A

o Make sure that you named Entities and Entity fields exactly as shown above.

Otherwise, some code snippets of this manual might not work.

Every Entity and every EntityField (as well as many other elements of the ADITO project) have several
features, which are called properties. Generally, there are two ways how properties can be displayed
and edited:

® Click on an Entity name (in the "Projects" windows or in the "Navigator" window) or on a field
name (in the "Navigator" window): The properties are visible and (partly) editable in the

"Properties" window, which is by default located in the lower left part of the ADITO Designer.

® Right-click on an Entity name (in the "Projects" windows or in the "Navigator" window) or on a
field name (in the "Navigator" window): Choose option "Properties" in the context menu. Then,
a popup window will appear, showing the same content as the "Properties" window mentioned

above.

In both cases, the lower part of the property field is a text area showing a short documentation: If you

click on a property, a summary of the property’s purpose or usage will be displayed.

7.1. Configuring Entities

For every Entity, we set the following properties:

e titl e:Ageneral title summarizing the content of the whole Entity. In many cases, this title is
simply the first part of the Entity’s name as specified when creating it: Car, Car driver, and Car
reservation. The title will be shown in various parts of the client, e.g., as headline on the top of a

Context.
e titlePlural :The plural form of the title (see above); will be used, e.g.,
o in the FilterView of the Entity’s Context: before the number of datasets
© in the MainView including the Entity’s data as reference: as tab title

e contentTitl eProcess: A piece of code for retrieving a suitable title summarizing the
content of a single dataset. This "contentTitle" will be used in different parts of the ADITO logic -
in particular, on the top of the MainView and for creating the list items of a combo box of an

EntityField that gets its values via a Consumer (this term will be explained further below).

In the MainView, the contentTitle will only be visible, if at least one
o ViewTemplate is assigned to the "Detail" area of the MainView’s
MasterDetailLayout. (This will be done in a later step of the car pool example,

along with an explanation of these terms.)

A

Usually, a contentTitle consists of the values of a column or a combination of multiple columns.

In our carpool example, we define the contentTitleProcess of our Entities as follows:

o Car_entity: We use a combination of the columns MANUFACTURER and TYPE, separated

by a whitespace.

Car_entity.contentTitleProcess

inport { result, vars } from"@ditosoftware/jdito-types";

result.string(vars.get("$field MANUFACTURER') + " " + vars.get("$field. TYPE"));

In ADITO, the leading code lines, which start with i npor t, make all
required system modules (e.g. "result" or "vars") available for being
called in the code (e.g.,viaresul t . stringorvars. get). For
reasons of simplification, most of the following code fragments in this
manual will not include these "import" lines. You can easily add them,
if you save your code and wait a few seconds, until a "lightbulb" icon
appears to the left of the respective code line. (At first, the process
"Initializing JS features" will automatically run - see the waiting bar in
the lower part of the Designer.) Then click on this light bulb and choose
"Import "..."' from module @aditosoftware..."" (or "Add...",

o respectively), which automatically adds/extends the required i npor t

line.

result.string(vars.get
® Import 'vars' from module "@aditosoftware/jdito-types"

¥ Ignore this error message
® Dicabloe chacking for thic fi

{ vars }

Ir%enlt.string:'-’;m.get:) + + vars.get(

? Add 'result' to existing import declaration from "@aditosoftware/jdito-types"

® Import 'result' from module "node_modules/cypress/types/lodash/index"
O o b oo o

lt.string

o CarDriver_entity: We display the driver’s name in cleartext, which must be retrieved from
table PERSON, using a prepared SQL statement via the class SqlBuilder. If you are
interested to know what SQL code this helper function returns, please refer to appendix

Database Access, chapter "SQL Helper Functions".

A

CarDriver_entity.contentTitleProcess
var contactld = vars.get("$field. CONTACT_I D");
if (contactld) {

var di splayData = newSel ect (" SALUTATI ON, FI RSTNAVE, LASTNAME")
. fronm(" PERSON")

.joi n(" CONTACT", " CONTACT. PERSON_| D = PERSON. PERSONI D")
.wher e(" CONTACT. CONTACTI D', contact|d)
.arrayRow();

i f(displayData) {

var salutation = displayData[0];
var firstname = displayDatall];
var | astname = displ aybData[2];

result.string(salutation + " " + firstname + " " + | astnane);

o CarReservation_entity: In addition to the CARRESERVATIONID, we also display the driver’s
name in cleartext, which must be retrieved from table PERSON, using a prepared SQL
statement with helper functions. If you are interested to know what SQL code this helper
function returns, please refer to appendix Database Access, chapter "SQL Helper
Functions".

CarReservation_entity.contentTitleProcess

var carReservationld = vars. get ("$fiel d. CARRESERVATI ONI D") ;
var carDriverld = vars.get("$field. CARDRIVER | D");

if (carReservationld && carDriverld) {
var displayData = newSel ect (" FI RSTNAMVE, LASTNANME")
. fron(" PERSON")
.joi n("CONTACT", "CONTACT. PERSON_| D = PERSON. PERSONI D")
.joi n(" CARDRI VER', " CARDRI VER. CONTACT_I| D = CONTACT. CONTACTI D")
. wher e(" CARDRI VER. CARDRI VERI D', carDriverld)
.arrayRow();
i f(displaybData) {

var firstnane = displayData[O0];
var | astnanme = displ ayData[1];

resul t.string(carReservationld + ", for " + firstname + " " + | astnane);

In the Editor window (upper middle part of the Designer), you can scale (zoom) the

A

font size of the code lines up and down by pressing the mouse wheel and then

turning it back and forth.

Loading and writing datasets via Sql Bui | der (or via the older methods db. xxx)
ignores the permissions (access rights) configured by the client administrator! To

load or write data respecting these permissions,

® set property "usePermissions" of the respective Entity/EntityFields to "true"
(checkbox checked) and

® use the functionality of "LoadEntity" and "Write Entity" instead - see
A appendix LoadEntity and WriteEntity. However, please note: Using
"LoadEntity" causes a considerable overhead when executed often, as all
required Entity processes are executed as well. The contentTitleProcess is a
very good example in which it will cause performance issues, because it is
executed for every record loaded and in turn executes all processes of each

record it loads.

® For further information on setting permissions please refer to the ADITO

documentation for client administrators.

You should use the same loading principle for all other processes quoted in this
manual, whenever you want access rights to be respected. For purposes of

simplification, the further code examples do not respect access rights.

7.2. Configuring EntityFields

For all EntityFields, we set the property ti t | e: Insert a term or short text suitable for this EntityField.
This text will be shown in various Views in the client (e.g., as column title or field label). Furthermore, in
the EditView (create mask), the title will also be shown as placeholder in an input field, as long as it is

empty. If you want to use a specific placeholder instead, you can set this in property pl acehol der.
Some EntityFields require the setting of specific properties:

® contentType: You can find tables with the content types of all car pool related EntityFields in the
appendix Car pool example: EntityFields. The default state of this property is "TEXT", as this is
the most common content type. Still it is recommended not to leave the default state, but to set
"TEXT" manually (simply change the value to any other content type and then set it back to
"TEXT" - then the default state is left, which you can recognize by the white font color of the
property name - see Designer Manual.) This makes sure that the value of property contentType
will remain "TEXT", even if the default state is changed to any other content type in future ADITO

versions. In appendix Content types you can find an overview of all available content types and

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

their features.

® As the content of the field PICTURE (of Car_entity) is an image, select "IMAGE" in the combo box
of the field’s property cont ent Type. (NOTE: To avoid long loading and rendering times,
images in ADITO should not exceed a certain limit as for resolution and size. Find more

information in document AID066 Performance Optimization.)
® For all fields holding a date
o set property cont ent Type to "DATE"

o set property r esol ut i on to a suitable resolution type (e.g., "DAY"). This value
determines how precise the date is saved (and displayed, if property "outputFormat" is
not set).

o optionally, change the default date format by inserting a format pattern (e.g., "yyyy-MM-
dd" or "EEE, d MMM yyyy HH:mm:ss") in the property out put For mat or
i nput For mat . But CAUTION:

m Property "resolution" is still valid, as far as the saving of the data is concerned, i.e.,

the data might, e.g., be stored less precise than entered.

m [f property outputFormat or inputFormat is set, the format will be used for all
languages. This means that, e.g., users from the USA will see the German date

format.

® For all fields that must not be let empty, set property mandat or y to true (usually, this should

be true at least for all fields that correspond to a "not null" database column, see below).

® For all fields that should act as grouping criteria (see FilterView, section "Grouping > Group by",
in combination with ViewTemplate type "TreeTable"), set property gr oupabl e to true - e.g.,
for MANUFACTURER, TYPE, or COLOR.

® For all fields that must not be edited (in particular, calculated fields and primary key fields), set
property St at e to READONLY (copy of value possible) or DISABLED (copy of value not possible,
font grayed).

The property descr i pti on, which is included in many ADITO models (Entity,
EntityField, View, etc.), has no effect in the client and can be ignored. (This might
change in future ADITO versions.) You can add descriptive content in other

properties:

o e docunent at i on: Here, you can describe whatever you want other
programmers to know about the respective model. This text has no effect in
the client.

e t 0ol ti p: The text entered here will appear in the client, whenever you

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

A

hover with the mouse pointer over the name/title of the respective model.

(This is not implemented for all models.)

e pl acehol der : This is a property of an EntityField. The text entered here
will appear in the client in the respective input fields of the EditView (create
mask), as long as nothing has been entered. As soon as you start to fill in the
input field, the placeholder text will disappear. If this property is not set, the

value of property ti t | e will be used as default.

® There are properties restricting the length of an EntityField: maxFieldSize, maxIntegerDigits, and
maxFractionDigits. These 3 properties are not always present, but they differ according to the
EntityField’s contentType (see below). If property contentTypeProcess is set, all 3 properties are
shown, but only those properties are evaluated that are suiting the contentType given in the
result of the contentTypeProcess.
If the specified length is exceeded, the "save" button is disabled, and beside it, a corresponding
message is shown. On the server side (e.g., when using WriteEntity) an exception is thrown,
including information about the EntityFields causing the error.
By default, the properties have the value "<unlimited>" (= no restriction). The method
project.getEntityStructure also includes the 3 properties.
Special cases can be handled via the onValidationProcess.

Further information about the length-restricting properties:

o maxFieldSize: This property is available for EntityFields of contentType TEXT, LONG_TEXT,
HTML, TELEPHONE, EMAIL, LINK, and PASSWORD. It limits the number of characters that

can be entered.

o maxintegerDigits: This property is only available for EntityFields of contentType NUMBER.
It limits the integer digits of a number (= the number of numbers before the decimal

point).

© maxFractionDigits: This property is only available for EntityFields of contentType
NUMBER. It limits the number of decimal places (= the number of numbers after the
decimal point). If required, you can enter "0" here, in order to limit the input to integers;
however, in this case, you should also set a suitable input format, that restricts the input

accordingly.

o Please note that for EntityFields of contentType NUMBER, there are also the properties

maxValue(Process) and minValue(Process) available.

Mass edit support:
The ADITO Designer includes a function that enables you to set the same value for
the same property of multiple objects at once. This is especially helpful when

configuring the properties of EntityFields: Just mark 2 or more fields, consequently

A

clicking on them while the "CTRL" key is being held. Then, the title bar of the
property window changes to "Multiple Objects - Properties". If you then set a
property value, e.g. "tooltip" or "mandatory", it will be set for all marked fields
simultaneously.

If you have marked multiple EntityFields, you can read "<Different Value>" for all
properties whose values are different. If you set a value here, all existing values are
overwritten.

This mass edit function is not available for properties whose values are set via a tab
in the Editor area (upper middle part of the Designer), i.e., it works, e.g., for

property "tooltip", but not for "tooltipProcess".

Be aware that all fields carrying data are subject to your project’s access rights

management as well as aspects of data security. Therefore, make sure that

® your ADITO client administrator knows about every EntityField (even if it is
currently not displayed!), in order to make sure that its access rights are

configured correctly.

® your data security official in charge with your project (e.g., in Germany, the
"Datenschutzbeauftragter") gives you, for every EntityField, all information
you need in order to make sure that possible concerns will be included in the
further configurations and programming (e.g., the implementation of a dialog
pointing to the "impact on the data privacy information (GDPR)" - see, e.g.,

method DataPrivacyUtils.notifyNeedDataPrivacyUpdate in DataPrivacy_lib).

A

8. Creating database tables and columns

Like the Entities, also the database’s structure is based on the data structure we had modeled before
(therefore, in principle, the steps of this chapter can be performed independently from the generation
of the Entities).

Please remind that, for every database table, an appropriate setting of database
indices is required, in order to ensure an optimal performance of database access.

Find further information about performance optimization in AIDO66.

CAR CARRESERVATION CARDRIVER

CARID (PK) —I_ CARRESERVATIONID (PK) CARDRIVERID {PK)
CAR_ID (FK) CONTACT_ID (FK)

CARDRIVER_ID (FK)

CONTACT

CONTACTID (PK)

PERSON_ID (FK)

PERSON

FERSONID (PK)
LASTNAME
FIRSTHNAME
DATEOFEBIRTH

Figure 8. Carpool-related database tables with primary keys (PK) and foreign keys (FK)

Please note: The database tables CONTACT and PERSON already exist, as they are part of the xRM
project.

The easiest way to create new tables and columns is to use ADITO’s database editor: In the "Projects"
window, navigate to "system" and double-click on the your system’s name, e.g., "default" (ADITO cloud
server must be running, and a tunnel connection must be established). This will display your system
configuration in an editor window, usually in the upper middle of the Designer. Here, double-click on
"Data_alias". Then, your database content will appear as a tree structure, and you can view tables and
columns as well as add/edit/delete columns via the context menu when right-clicking on table names

or column names.

However, ADITO offers a second way of creating database tables and columns: You define the tables
and their columns in an xml file, and then a tool called Liquibase can create the tables and columns

automatically, based on the xml file.

Liquibase is an open source tool for database schema change management. It has
not been developed by ADITO, but it is integrated into the ADITO Designer via a
plugin (see option "Plugins" in the "Tools" menu). You can find a detailed

o documentation of Liquibase on the developer’s web site, see
https://www.liquibase.org/. Further information can be found in chapter "Create

Liquibase files automatically" of the Designer Manual.

8.1. Creating a folder for your xml files

The xml files that Liquibase needs all reside under alias > Data_alias (visible in the "Projects" window).
The xml files referring to the xRM project are assigned to a folder called "basic". On the same level as

this folder, we now create a new folder reserved for xml files that refer to our project:

Right-click on "Data_alias" and choose New > New folder. Name the new folder "example_carpool".

8.2. Creating an xml file for every table

For every database table we need, create a separate xml file.

® Right-click on the "example_carpool" folder and choose "New" > "New Changeset".
® Changeset name: see below (extension ".xml" will be added automatically)

® Copy the following code into the respective xml file.

create_car.xml

<?xm version="1.1" encodi ng="UTF- 8" standal one="no"?>
<dat abaseChangeLog xnl ns="http://ww. | i qui base. org/ xn / ns/ dbchangel og" xni ns: ext="http://wm. | i qui base. org/ xnl / ns/ dbchangel og- ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance” xsi:schemaLocati on="http://wmv. | i qui base. org/ xnl / ns/ dbchangel og- ext
http://ww. | i qui base. or g/ xni / ns/ dbchangel og/ dbchangel og- ext. xsd http://ww. | i qui base. or g/ xni / ns/ dbchangel og
http://ww. | i qui base. org/ xm / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.smth" id="23533445-0d3d-499c-aa98-cf37ca4798c1">
<creat eTabl e tabl eName="CAR'>
<col utm nane="CARI D" type="CHAR(36)">
<constraints primnmaryKey="true" primaryKeyName="PK_CAR _CARI D'/ >

</ col um>

<col um nane="COLOR' type="VARCHAR(36)"/>

<col urm nane=" LI CENSEPLATENUMBER" type="NVARCHAR(20)"/>

<col utm nane="MANUFACTUREDATE" type="DATE"/>

<col unn name="MANUFACTURER' type="VARCHAR(36)"/>

<col utm nane="Pl CTURE" type="LONGBLOB"/>

<col utm nane="PRI CE" type="DECI MAL(10,2)"/>

<col utm nane=" CURRENCY" type="VARCHAR(36)"/>

<col um name="TYPE" type="NVARCHAR(30)"/>

</ creat eTabl e>
</ changeSet >

</ dat abaseChangeLog>

https://www.liquibase.org/
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

create_cardriver.xml

<?xm version="1.1" encodi ng="UTF- 8" standal one="no"?>
<dat abaseChangeLog xnl ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og" xni ns: ext="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og- ext"
xni ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schena- i nst ance” xsi:schemaLocation="http://wwmw.|iqui base. org/ xm / ns/ dbchangel og- ext
http://ww. | i qui base. or g/ xnl / ns/ dbchangel og/ dbchangel og- ext. xsd http://ww. | i qui base. or g/ xnl / ns/ dbchangel og
http://ww. | i qui base. org/ xm / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.smith" id="64fd2d43-8c77-42d4-b349-4ebcd3a45037">
<creat eTabl e tabl eNane="CARDRI VER" >
<col urm nane="CARDRI VERI D" type="CHAR(36)">
<constraints prinmaryKey="true" prinmaryKeyNane="PK_CARDRI VER_CARDRI VERI D"/ >
</ col um>
<col um nane="CONTACT_I D' type="CHAR(36)"/>
<col um nane="DRI VI NGLI CENSENUMBER" t ype="NVARCHAR(30)"/>
<col urm nane=" DRI VI NGLI CENSEI SSUEDATE" type="DATE"/ >
</ creat eTabl e>
</ changeSet >
</ dat abaseChangeLog>

create_carreservation.xml

<?xm version="1.1" encodi ng="UTF- 8" standal one="no"?>
<dat abaseChangeLog xni ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og" xni ns: ext="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og- ext"
xni ns: xsi ="http:// ww. w3. or g/ 2001/ XMLSchena- i nst ance” xsi:schemaLocation="http://wwmw.|iqui base. org/ xm / ns/ dbchangel og- ext
http://ww. | i qui base. or g/ xnl / ns/ dbchangel og/ dbchangel og- ext. xsd http://ww. | i qui base. or g/ xnl / ns/ dbchangel og
http://ww. | i qui base. org/ xm / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.smth" id="45e21347-53cd-48el-9667-591f 3506e9e5" >
<creat eTabl e tabl eName=" CARRESERVATI ON' >
<col urm nane=" CARRESERVATI ONI D" type="CHAR(36) ">
<constraints prinaryKey="true" prinmaryKeyName="PK_CARRESERVATI ON_CARRESERVATI ONI D"/ >

</ col um>

<col um nane="CAR_| D' type="CHAR(36)"/>

<col um nane="CARDRI VER_| D' type="CHAR(36)"/>

<col utm nane=" STARTDATE" type="DATETI VE"/>

<col urm nane="ENDDATE" type="DATETI VE"/>

<col utm nane="M LEAGERETURN' type="1NT"/>

<col urm nane=" PARKI NGTI CKETFI NE" type="DECI MAL(7,2)"/>

<col urm nane="SPEEDI NGFI NE" type="DECI MAL(7,2)"/>

<col um nane=" CURRENCY" type="VARCHAR(36)"/>

<col utm nane="DAMAGE" type="NVARCHAR(300)"/>

</ creat eTabl e>

<!--Index for speeding up searches / join for CAR ID, e.g. when searching data by a specific car -->
<creat el ndex i ndexNane="1DX_CAR_I D' tabl eName="CARRESERVATI ON'>
<col um nane="CAR_| D'/ >
</ cr eat el ndex>
<!--Index for speeding up searches / join for CARDRIVER ID, e.g. when searching for a spcific driver -->
<creat el ndex i ndexNane="1DX_CARDRI VER | D" tabl eName="CARRESERVATI ON'>
<col urm nane="CARDRI VER | D'/ >
</ cr eat el ndex>
<! --Conpound index for speeding up joins over CAR ID and CARDRIVER ID -->
<creat el ndex i ndexNane="1DX_CAR_| D_CARDRI VER_|I D" t abl eNane=" CARRESERVATI ON" >
<col um nane="CAR | D"/ >
<col um nane="CARDRI VER_| D'/ >
</ creat el ndex>
</ changeSet >
</ dat abaseChangelLog>

Please note that this Liquibase file also includes 3 indices: One for each foreign key
(speeding up searches for the respective UID), as well as a compound index, which
speeds up SQL JOINs over CAR_ID and CARDRIVER_ID.

The previous Liquibase files (those for tables CAR and CARDRIVER) do not require
the explicit configuration of an index, as columns CARID and CARDRIVERID are
declared as primary keys, which automatically results in the creation of an index on
those columns.

Setting appropriate indices is very important for the system’s performance - find

© 2025 ADITO Software GmbH 59 /472

A

further information in the document AID066 Performance Optimization.

You may change "author" and "id" in tag "changeSet", by inserting your own name and an arbitrary 36-
digit UUID, which you can easily generate in the Designer, via option "Tools" > "Generate UUID". (The

generated UUID will then be copied to the clipboard, from which you can, as usual, get it via CTRL+V.)
As you can see, we use the data type CHAR(36) in some cases. These columns can be

® the database table’s primary key column, which in ADITO is always named with "ID" as suffix,
e.g., "CARID" (mind that there is no underscore before "ID"). This ID column always holds a 36-
digit UID.

® a column referencing the primary key of another table. In ADITO, these "foreign key columns"
are named like the corresponding primary key column, except for an underscore before the "ID"
suffix, e.g. "CAR_ID".

You can find tables with the data types of the database columns corresponding to all

car pool related EntityFields in the appendix Car pool example: EntityFields

When Liquibase is executed, Liquibase’s data types (as included in the xml files) are
mapped to data types proper to the specific database engine connected to the
ADITO project. For example, Liquibase’s data type NCLOB (used for very large text
fields) remains a NCLOB for Apache Derby databases, but is mapped to a LONGTEXT
for MariaDB and MySQL, while in MicrosoftSQL it will be a NVARCHAR(MAX).

o When customizing ADITO, you should always prefer the target data types of these
Liquibase mappings, even if you do not use Liquibase itself.
You can find a list of the preferable data types, according to database system, in the
article "Preferable data types", available in this article in ADITO Knowledge Base. (To

read this article, you need access to the ADITO Service Client.)

In the database of the ADITO xRM project, constraints are usually only set for the
primary key, and in very few further cases (e.g., a "not null" constraints for all
columns refering to an EntityField of contentType "Boolean"). In particular, there are
no foreign key constraints on database level. If you want to make sure that a specific
o EntityField is not empty, you usually set its property "mandatory" to true (rather
than setting a "not null" constraint on its corresponding database column).
This has multiple reasons, e.g., it simplifies the task of dropping and re-creating
database tables, and it grants more flexibility when creating interdependent

datasets.

8.3. Including xml files in changelog

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf
https://service.adito.de/client/KnowledgeManagement/full?view=KnowledgeManagementMain_view&id=66ebaac0-7bb3-49b1-9f4e-c4509d51885d

Now we must include the new create_xxx.xml files in ADITO’s automatic database management, which
is based on Liquibase. This tool executes all tasks defined in the file changelog.xml, which resides in the

folder alias > Data_alias (see "Projects" window). This "main" changelog.xml file, in turn, references

o further files with the same name changelog.xml, on lower folder levels (mostly containing the

definition of tables and their columns)

® files named init.xml or init_xxx.xml (mostly containing data to be inserted into tables, e.g.,

configuration data or example data)

In the case of our new create_xxx.xml required for the car pool management, we first create a new

changelog.xml file, and then reference it in the main changelog.xml file:

In folder example_carpool (i.e., in parallel to the new create_xxx.xml files), create an empty xml file

named changelog.xml (file type: "changelog.xml") and insert the following code:

changelog.xml (under alias > Data_alias > example_carpool)

<?xml version="1.1" encodi ng="UTF-8" standal one="no"?>
<dat abaseChangeLog xni ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og" xni ns: ext="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og- ext"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xsi:schemalLocati on="http://wmv. |i qui base. org/ xnl /ns/ dbchangel og- ext
http://ww. | iqui base. org/ xm / ns/ dbchangel og/ dbchangel og- ext.xsd http://ww. | i qui base. org/ xm / ns/ dbchangel og
http://ww. | iquibase. org/ xm / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >

<include rel ati veToChangel ogFil e="true" file="create_car.xni"/>

<include rel ati veToChangel ogFi |l e="true" file="create_cardriver.xm"/>

<include rel ativeToChangel ogFi |l e="true" file="create_carreservation.xm"/>
</ dat abaseChangelLog>

This new changelog.xml file must now be referenced in the main changelog.xml (under alias >

Data_alias) by adding the following additional code line:

changelog.xml (under alias > Data_alias)

<incl ude rel ati veToChangel ogFi |l e="true" fil e="exanpl e_car pool / changel og. xm "/ >

g Make sure you do not confuse the multiple changelog.xml files due to their equal

name.

8.4. Liquibase update

Now you can execute a command that will update the database structure on the basis of the xml files

we have just added:

alias > Data_alias > (context menu:) Liquibase > Update...

(This option will only be available, if a database connection exists.)

A

This will open a dialog, in which you select your database connection (it is named
"...cloud_data_alias"), check option "example" (it can take a while until it appears) and confirm by
IIOKII.

Select Database Connection [.} %

[Unknown owner] jdbc:mariadb://adito-db. dev-—=—=—==-—-c2-adito-cloud svc cluster local:3306/cloud_ data_alias

»| Show all connections

Available Contexts:
= » example workflow

Execute in transpiled directory (c

This might lead to incomplete con during the context selection,
because no transpile will happen during the loading of the contexts.

Cancel

As you can see in the above screenshot, you can decide, whether or not example
data (contacts, companies, Activities, etc.) should be inserted in your application.
Please be aware: If you have not inserted this example data earlier, checking
checkbox "example" will now result in a complete loss of any productive data - even
if you only choose option "Liquibase - update" (without "drop all"). Therefore,

A checkbox "example" should NEVER be checked in a productive system or whenever
you have entered your own data that must not be deleted. (However, for working
with the carpool project, "example" should be checked, because, e.g., demo data of
Context "Contact" (PERSON) are required for being referenced in Context

"CarDriver".)

If everything has been configured correctly, you will, after a few seconds, read "Update successful!" in a
small message window (called "Balloon") in the lower right corner of the Designer. In rare cases, you
might get an error message, if you select "Update...". If so, choose "Drop All & Update..." instead. This
will - in addition to the creation of the CAR-related tables - delete (drop) all tables of the xRM project

and build them again, including the example data.

If one of the liquibase xml files (also called "changesets") contains an error (e.g., a
typo), the update process stops at this file, and the following liquibase files are not
being executed. There is no rollback in this case. If you choose "Drop All & Update...
o ", then "Drop All" and "Update" are separate commands, which are executed
subsequently. If, e.g., "Drop All" has been executed, but the first "Update" xml file
fails, then the database is empty. A single changeset is always executed as database

transaction, i.e., if, e.g., in a table creation file, the third column has been

A

misconfigured, then the whole table is not created.

You can now check, if all tables have been created correctly, using ADITO’s database editor: Make sure
that there is a database connection. In the "Projects" window, double-click on system > default. As next
step, you sometimes have to click the "Connect" or "Reconnect" button in the editor window (upper
middle part of the Designer). Double-click on "Data_alias". Then you will see the database structure in
a tree. Navigate to Data_alias > adito_data > Tables to view all tables of your ADITO project (except the

system tables, see below).

The car pool related database tables and columns should appear as follows:

File Edit

G (=

Projects
v XRM-Bas
system
ﬁ default
> preferences
> B process
> report
> language
>l role
> B alias

> others

Mavigate

Source Refactor
g @ |D'.ln..

default * Columns
v B Data_alias
v & ADITO
vl Tables
> B AB_APPOINTMENTLINK
> @ AB_ATTRIBUTE

AB_ATTRIBUTERELATION
AB_ATTRIBUTEUSAGE
_COUNTRYINFO

'ORD_ATTRIBUTE

ORD_ATTRIBUTERELATION
1 ORD_ENTRY
AB_LANGUAGE
AB_OBJECTRELATION
AB_OBJECTRELATIONTYPE
ACTIVITY
ACTIVITYLINK
ADDRESS
BOOK
BOOKHISTORY
CAR
Bél cArRID
Bl coLor
Kl LICENSEPLATENUMBER
Bl MANUFACTUREDATE

Team Window Help

Client (Neon) - default

W
i

L

€ W ¥V VW ¥V ¥V WV ¥V Vv v v v v

Bl
el
Edl
Edl
Edl
>im
>im

Tables - Properties

MANUFACTURER
PICTURE

PRICE
CURRENCY
TYPE

Indexes

Foreign Keys

v B CARDRIVER

Bl

Bl

Edl

Edl

> im

>im

=No Properties= Bgl
Edl
Edl
Edl
Edl
Edl
Edl
Bl
el
Edl
>im
>im

CARDRIVERID
CONTACT_ID

Foreign Keys
v B CARRESERVATION

CARRESERVATIONID
CAR_ID
CARDRIVER_ID
STARTDATE
ENDDATE
MILEAGERETURN
PARKINGTICKETFINE

CURRENCY
DAMAGE
Indexes
Foreign Keys

> B COMMUNICATION

Tables

List oftables

> B CcoNnTACT
> B CONTRACT

Figure 9. The carpool-related database tables and their columns

o Make sure that you named database tables and columns exactly as shown above.

Otherwise, some code snippets of this manual might not work.

Furthermore, the demo data of the ADITO xRM project has been inserted by the Liquibase update (e.g.,

data of persons and companies).

8.5. Updating the Alias Definition

The Liquibase update we have just executed only affected the database itself. In order to adapt an

ADITO project to these database changes, we must execute a second update:

In the "Projects" window, under "alias", double-click on "Data_alias". Now, in the "Navigator" window,

you see the so-called "Alias Definition", which, so far, does not include the new tables:

Projects X 40 Data_alias X Data_alias - Navigator
v dev-twte: 2-adito-cloud [ADITO xRM] P P i
Overview Source
AB_APPOINTMENTLINK
AB_ATTRIBUTE
AB_ATTRIBUTERELATION

AB_ATTRIBUTE

pre' rences

i i

B application
Bl context
Bl notificationtype

BN entity

D_ATTRIBUTE
D_ATTRIBUTERELATION
D_CATEGORY
D_ENTRY

{ ¥V ¥V ¥V ¥V WV ¥V VWV ¥V WV ¥V VYV VYV VY

alias
SYSTEMA' .AS
Data_alias
Data_alias_noAudit
faultDbRepository

mon [X] oo Fee Py

'Y VVVVYVYVVVYVVYVYVY VY VYVY VY VYV VYV

B

&=

B

R A8
R B
R A8
R B
R A8
R B
R A8
R B
R A8
R B
R A8
R a8
R A8
R a8
R AC

The "Alias Definition", also called "Database structure of the project" is, in principle,
o a kind of copy of the database structure, augmented with additional features, i.e.,
you can optionally assign additional properties to a table or to a column (properties,

which cannot be assigned in the database itself, e.g. a title or a description).

In the "Navigator" (!) window, right-click on "Data_alias" and select "Diff Alias <> DB Table":

A

Data_alias - Navigator

Data_| MNew Table
AE

AL Diff Alias <= DB Table (Experimental)

AE Diff AliasDefinition == Platform

AE SQL-Export
AE SQL-Export to clipboard

Find Usages

WOWOW W W W W

Properties

In the following dialog, select your project and your database alias (e.g., "default"), and then "OK". A
larger dialog will open, showing all differences between the database structure ("Data_alias [remote]",
right part) and the Alias Definition ("Data_alias [local]", left part).

If you hover with the mouse pointer over the little "i" icon in the upper right corner
of this dialog, a legend will pop up, explaining the meaning of the colors of the little

bars shown in front of each table name.

As our Liquibase update has made the database’s structure "newer" than the Alias Definition, we now
need to perform an update from "remote" (right part) to "local" (left part): Mark all 3 carpool-related
table names shown on the right (click on them subsequently, holding the CTRL key). Click on the button

showing 2 arrows pointing to the left (<<), followed by "OK".

W Find Differences between Data_alias [local] and Data_alias [remote] X

Data_alias [local] Data_alias [remote] Differences: 190
> CARDRIVER > CARDRIVER

> CARRESERVATION > CARRESERVATION

> CAR > CAR

The update process might take some time. After it has finished, look at the "Navigator" window: The

new tables and their columns have been added to the Alias Definition.

If you want to create or modify your database structure without using Liquibase, you

can always choose between both ways:

A

® Either you start with the database editor (system > default > Data_alias >
ADITO), create your tables and columns (or you create it directly via SQL - see
"Execute SQL" function via the button to the left of the combo box in the
button bar), and then update the Alias Definition via "Diff Alias <> DB Table"

from "remote" to "local".

® Or you do it the other way round: You first create your tables and columns in
the Alias Definition: Double-click on alias > Data_alias and then choose
"Create Table" from the context menu when right-clicking on "Data_alias" in
the Navigator window. Then right-click on the new table and choose "New
Column". Afterwards, click on the new column and edit its properties
according to your specification. Finally, update the database via "Diff Alias <>

DB Table" from "local" to "remote".

In both cases, it might be useful to auto-generate Liquibase files afterwards, because
then, e.g., you can reset your database via the Liquibase-related function "Drop all &
Update..." (see above). Please refer to chapter "Create Liquibase files automatically"

of the Designer Manual.

8.6. Connecting EntityFields with database columns (RecordContainer)

Now that both the Entities and the database structure exist, we have got to "tell" ADITO, how specific

EntityFields are corresponding with specific database columns, acting as data source.

For general information about how to specify what data is to be loaded, please refer

to appendix Database Access, chapter "Basic SQL Statement".

The "connection" between EntityFields and database columns is configured in a so-called

RecordContainer, which must once be created for every Entity:

Double-click on an Entity (under "entity" in the "Projects" window), e.g., on Car_entity. Then the Entity
appears in the Navigator window. Here, right-click on the Entity’s name and choose option "New
RecordContainer" from the context menu. In the following dialog, select "dbRecordContainer" as type
and enter any name, e.g. "db" (for database), followed by "OK". This creates a RecordContainer for
connecting EntityFields with database columns as data source. (As you could see in the "Type" combo
box, there are also RecordContainers having jDito code as data source. Their usage will be explained

later.)
This new RecordContainer’s name is automatically inserted in the Entities' property "recordContainer".

At first, we handle those EntityFields which simply show the value of a specific database column. These

fields can easily be recognized, as we had written their names in uppercase letters, and the name is the

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

same as the name of the corresponding database column. To "connect" these kinds of EntityFields with
a database column, we initially specify the respective database table: Click on the RecordContainer’s
name "db" (under Car_entity > RecordContainers in the Navigator window) and set the property "alias"

to "Data_alias". Now, ADITO knows which database to access.

Then edit the property "linkiInformation" by clicking on the three-dotted button to the right of the
property line: A dialog appears, in which you click on the plus sign ("+") and select "CAR" in column
"Table". The next column "Primary key" is filled automatically. Leave the checkbox in column "UID
Table" checked. (This will automatically insert a new UID in the primary key field, whenever a new
dataset is created - besides some other effects, which will be explained later.) Leave the checkbox in

column "Read only" unchecked. Confirm with "OK".

Now, ADITO knows that the data of Car_entity is to be accessed via the database table CAR and its

columns. In SQL terms: "CAR" is to be used in the "from" clause.

If you open the node "db", you see two nodes for every EntityField: One named "...value" (to be saved
in the database, and to be used for calculation purposes), one named "...displayValue" (to be used
exclusively for displaying purposes). These nodes are called "RecordFieldMappings", sometimes
abbreviated as only "RecordFields". For now, we only need the "values", not the "displayValues". (If the

displayValues are not set, ADITO uses the values also as displayValues.)

In order to configure a RecordFieldMapping, you first need to initialize it, by double-
clicking on it or by right-clicking on it and choosing option "Initialize" from the
context menu. Its font color will change from grey to white. (If you want to undo the
initialization, right-click on the RecordFieldMapping again and then choose option
"Restore Default Value". This will reset its font color from white to grey again,

e indicating that it is not initialized.)
Please make sure that you initialize only those RecordFieldMappings whose
corresponding EntityFields need to be connected to the database. If you initialize
RecordFieldMappings unnecessarily (e.g., for calculated fields), the performance of
ADITO will be decreased.

Click on RecordFieldMapping, e.g., CARID.value, and set the corresponding database column in
property "recordField" (CAR.CARID, CAR.COLOR, etc.). Repeat this step for all other "value"
RecordFieldMappings showing EntityField names in uppercase letters. Now, ADITO knows what

database columns to access. In SQL terms: "CARID", "COLOR", etc. are to be used in the "select" clause.

Furthermore, check property "isFilterable", if you want the EntityField to be available as filter criteria in
the filter component of the FilterView (remember to repeat this, in case you later set a displayValue).

Then, ADITO automatically adds the corresponding "where" clause to the SQL statement.

A

Repeat the previous steps also for the other tables.

The above property configuration is the basic way in ADITO to establish an
automated database access. This means, depending on the requirement, ADITO
automatically creates the suitable SQL statement, be it SELECT, INSERT, UPDATE, or
DELETE including the required "from" clause and (if a filter has been set) the

o "where" clause. Optionally, this basic automatism can be modified by an advanced
configuration, using various additional properties, e.g., for setting an arbitrary
"where" clause (property "whereClauseProcess" of the dbRecordContainer). Find
further information in chapter Database RecordContainer and in the appendix

Database Access.

EntityFields not simply showing the value of a database column (e.g., because their value is calculated

from other fields) will be handled later, in chapter [Calculated Fields].

8.7. Using database views

(Excursus)
0 This chapter is about database views, not about the ADITO model named "View".

Besides database tables, an Entity can also be related to a database view. To explain how to establish
this, we will use a simple example of testing purposes: We want to connect TestEntity entity to a
database view named TESTVIEW, which shows every PERSON dataset along with the related company
name (ORGANISATION.NAME).

To realize this, proceed as follows:

® Create the database view, e.g., in the Designer’s in-built database editor:

o Navigate to system > default > Data_alias. In the database tree, open node ADITO, right-

click on sub-node "Views" and choose "Create View..." from the context menu.

o Enter the view’s name TESTVIEW and the SQL select to create it

sel ect CONTACTI D, LASTNAME, FI RSTNAME, NAME as conpanynane
from PERSON

join CONTACT on PERSONI D = PERSON | D

j oi n ORGANI SATI ON on ORGANI SATI ON_I D = ORGANI SATI ONI D
order by LASTNAME, FI RSTNAMVE

[default X = Database X SQL 1 [jdbc:derby-fflocalhost:15...] X

v = Data_alias Name Type DB Type Length Decimal
v & ADITO

> I Tables
v [Views

> E E——
I, Create View
> i prdi

> & Other:
= VT yiew name: | TESTVIEW

SAL expression to create view:

select CONTACTID, LASTHNAME, FIRSTNAME, NAME as companyname
from PERSON

join CONTACT on PERSONID = PERSON_ID

Jjoin ORGANISATION on ORGANISATION _ID = ORGANISATIONID

order by LASTNAME, FIRSTNAME

OK Cancel Help

® Update the AliasDefinition via option "Diff Alias <> DB Table", as explained in the previous

chapter.

Data_alias - Navigator
v E Data_alias
> EH AB_APPOINTMENTLINK

> BER AB_ATTRIBUTE
> @ AD ATTDIRLTEDCLATION

> % B Find Differences between Data_alias [local] and Data_alias [remote]

(V)

Data_alias [local] Data_alias [remote] Differences: 26
BE
> TESTVIEW > TESTVIEW

v

2

«
3

*Update Data in: Data_alias [local] (Ctrl + L)

OK Cancel

Y Y L B I V]

D O

A

In the case of database views, an update is only possible in this direction. The other
0 direction - creating a view in the AliasDefinition and then updating it into the
database - is not possible (this is only possibly for "real" database tables, as

explained in the previous chapter).

® |n the AliasDefinition, mark the primary key column of the database view, by setting its property

"primaryKey" to true.

B CONTACTID - Properties CONTACTID - Navigator

- N N T T ST

columnType

slze

primaryKey
e primary key of the table.
ting in the designer does not affect the settings of the database itself.

VWV WYV Y VWYY

Close | | Help

® Create TestEntity_entity with EntityFields according to the database view’s columns and with a
DbRecordContainer. After setting the RecordContainer’s property "alias" to "Data_alias", you will
be able to select the new database view in property "linkinformation". If you do not find the
view there, you have either forgot to update the AliasDefinition or to set its primary key (see

previous steps).

A

db - Navigator
v El TestEntity _entity
v [RecordContainers
> & o

v [@ Providers

B Link Information e

Table Frimary key UID Table
TESTVIEW v CONTACTID

Read only

OK Cancel

® Now you can open the sub-nodes of the RecordContainer (RecordFieldMappings) and assign the
EntityFields to the corresponding columns of the database view.

B, COMPANYNAME.value - Properties N8 S Navigator X

OMPANYNAME value
dbRecordFieldMapping
TESTVIEW.COMPANYNAME
COMPANYNAME .value
TESTVIEW.COMPANYNAME

- TESTVIEW NTACTID CTID value
v Search
[IEW FIR IAME

FIRSTNAME.value
TESTVIEW LASTNAME

LASTNAME .value

A

9. Making data visible

The preceding chapters have covered exclusively the data structure and its representation in the
project. The previously created elements (database tables and their columns, Entities and their
EntityFields, RecordContainers and their RecordFieldMappings) can all be considered as part of a
"backend", i.e., they alone do not yet appear in the browser ("frontend"). To make them and their data
visible, we use so-called Views (not to be confused with database views), which in turn are clustered in
so-called Contexts. Every Context is related to one Entity and usually contains different Views for

different purposes, e.g., for displaying, filtering, and editing data.

As no View can exist alone, but needs a Context to be assigned to, we first create Contexts for every

Entity, and afterwards we create Views "inside" Contexts.

9.1. Creating Contexts

In the "Projects" window, right-click on "context" and select option "New" in the context menu. This
will open a dialog, in which you select your project, enter a suitable name (Context names are written
in CamelCase, starting with an uppercase letter - here, we write Car, CarDriver, and CarReservation),
and select "Context" as type. Confirm with "OK". Perform this step for creating the Contexts Car,
CarDriver, and CarReservation. Then, connect the new Contexts with the corresponding Entities, by
setting each Context’s property "entity" accordingly (e.g., select "Car_entity" for Context Car, etc.) . This
assignment will immediately be shown by a sub-node showing the Entity name, under the Context

name.

The normal workflow for creating ADITO applications is that you first create a new
Entity and then a Context. However, in some cases it may be helpful to know that
you can do it also the other way round: You can first create a Context and then,
directly "in" the Context, a new Entity (right-click on the Context, select "New" from
the context menu, and then - in the "Create New Model" dialog - select "entity" in

combo box "Type"); the Context’s property "entity" will then be set automatically.

In an ADITO project, every Entity belongs to exactly one Context. Do never assign
A one Entity to more than one Context (although, in earlier ADITO versions, this was

technically possible), as this will confuse the logic and cause exceptions.

9.2. Views

Each Context usually contains at least the following basic Views:

e "FilterView", for displaying an Entity’s data in a table structure, along with the option to filter the
data according to specific criteria

A

® "PreviewView", for showing details of the dataset marked in the FilterView

® "MainView", for displaying one single set of an Entity’s data, often along with reference data

from other Contexts

e "EditView", for editing the EntityFields of one single dataset

Depending on the purpose of the Context, there may be more or less Views.

9.2.1. Creating Views

To create a new View, right-click on a Context and choose option "New" in the context menu. This will
open a dialog, in which you select your project, a suitable name, and "view" as type. According to the
conventions given in ADITO’s spelling guidelines (see ADITO Information Document AID001, chapter
"Spelling & Wording" > "ADITO models"), the name of the View starts with the name of the Context,

followed by its purpose in CamelCase, and ending with the suffix "_view".

Now, create the above mentioned basic Views for each Context, naming them according to the
convention. Thus, e.g., in case of the Context Car, the names are "CarFilter_view", "CarPreview_view",

"CarMain_view", and "CarEdit_view".

Once all Views are created, they must be assigned to the Contexts' properties "mainview", "filterview",

"editview", and "preview".

9.2.2. Assigning layout and ViewTemplates

The appearance of a View cannot be designed arbitrarily. Rather, its visible structure is determined by

® a predefined layout, selectable in the combo box of the View’s property "layout";

® one or more predefined ViewTemplates.

This chapter gives only a rough introduction to the topic, along with a few examples.
Find detailed information on layouts and ViewTemplates in the sub-chapters of

chapter Controlling the design.

First, a layout is set, by selecting from the combo box in the View’s property "layout". Some Views
require that additional properties are set. E.g., a FilterView needs its property "filterable" to be set to

true. See table below.

To assign a ViewTemplate, double-click on the View in the "Projects" window and then right-click on
the View in the Navigator window. Select option "Add ViewTemplate..." in the context menu. A dialog
will open, in which you select a suitable template type on the left (see table below), leave the field

"Assign to" empty, enter a name for the ViewTemplate, and confirm with "OK". After you have assigned

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

the template, it appears as sub-node under the View (in the Navigator window). You can click on it to

see its properties.

Layouts and ViewTemplates can be combined in various ways. However, in the first approach, the

following standard configuration of ViewTemplates, layouts, and further properties is suitable in many

cases, so we will use it for our car pool example:

Table 1. Example configuration for Views and ViewTemplates of Car_entity

View

FilterView

PreviewView

EditView

View properties Template type

Layout: Grouplayout | Table, TreeTable

filterable: true

Layout: Card (assign to

HeaderFooterLayout | header)
header: Card

footer: Generic

(values can be set as

soon as these

ViewTemplates are

generated)

Generic

ScoreCard (assign to

footer)

Layout: BoxLayout Generic

Template properties

entityField: #ENTITY
columns: e.g., CARID,
MANUFACTURER, TYPE, COLOR

entityField: #ENTITY

iconField: PICTURE

titleField: e.g., MANUFACTURER
subtitleField: e.g., TYPE
descriptionField: e.g., COLOR

informationField: e.g., mileage

entityField: #ENTITY

fields: e.g., MANUFACTUREDATE,
PRICE, etc.

showDrawer: true
drawerCaption: Details
hideEmptyFields: false (checkbox

unchecked)

entityField: #ENTITY
fields: e.g., LICENSEPLATENUMBER

entityField: #ENTITY

editMode: true

fields: all fields in uppercase letters
(or part of them), except the
primary key (e.g., CARID)

A

View View properties Template type Template properties

MainView Layout: not required
MasterDetailLayout (reference to
master: PreviewView)
PreviewView (see

below)

Setting a ViewTemplate’s property "entityField" to "HENTITY" means that all fields of the Entity can be
loaded and are therefore available in all EntityField-related properties, e.g., "columns" or "fields". If you
actually need only one single EntityField, you should select it in property "entityField" accordingly,

because this will restrict the loading process and therefore result in a better performance.

As you can see that it is common to assign at least 2 different ViewTemplates to a PreviewView, so it
appears with a "header" area ("Card", showing the main EntityFields and often a picture) and an
"footer" area ("Generic", showing further EntityFields). That is why this View layout is called
"HeaderFooterLayout". All further ViewTemplates that you might add to the View would be displayed
in the middle, i.e., between "header" and "footer".

Additional information on ViewTemplate "Generic":

® Property hideEmptyFields controls whether or not a line with the label (title) of an EntityField is
still to be displayed, even if the EntityField has no value (= if it is "empty"). For PreviewViews, we
choose to set this property to false, as this ensures a uniform layout that is independent from
the dataset marked in the FilterView. But, of course, the setting of this property is ultimately up

to your customer’s requirements.

® Property isLabelPositionTob controls if the label is to be shown above the value (true) or to the

left of it (false). Default value is false, which fits in most cases.

In many cases, the footer of a PreviewView is a ScoreCardViewTemplate, see chapter
e ScoreCard. In our car pool example, we will configure this later, for the EntityField
"availability" (see chapter Example: Availability).

Furthermore, you see that a MainView usually has no own View, but it references other Views. Its
layout is usually a "MasterDetailLayout", with the Context’s PreviewView acting as "Master" and Views
of other Contexts acting as "Details" (in order to display data dependent from the data shown in the
"Master"). To add a reference to other Views, right-click on the View in the Navigator window, and
select "Add reference to existing View...". A dialog will open, in which you select "HENTITY" as
EntityField (this spelling means, that all Views of the current Entity will be selectable in the next line),

the PreviewView as View, and "master" in line "Assign to". This will automatically set the MainView’s

A

property "master" to the respective PreviewView. How to add the "Detail" part of the

"MasterDetailLayout" will be explained in a later chapter ("Complex dependencies").

As for the ViewTemplate "Table", there is a property named "linkedColumns": Here you can set an
arbitrary number of columns that are to be provided with a hyperlink to the MainView. The hyperlink
functionality will be displayed by a blue font color. If "linkedColumns" is not set, the hyperlink will
automatically be assigned to the first column set in property "columns".

Furthermore, the ViewTemplate "Table" has a property named hideContentSearch. If you set this
property to false, a lookup bar will appear on the top of the table. This bar is named content search
(Context filter). If you start typing in this bar, the datasets are filtered accordingly. This only works, if
you have checked property "isLookupFilter" of every RecordFieldMapping whose related EntityField
should be included in the filtering. (It does not work EntityFields of all content types, e.g., it does not

work for date values, but it works for text values.)

Now, repeat the above steps in order to create and configure the Views of the Entities CarDriver_entity
and CarReservation_entity. In the ViewTemplates, you may set arbitrary fields/columns, but, in this first

approach, we recommend to use only those EntityFields that written in uppercase letters.

9.2.3. Blueprints

(Excursus)

"Blueprint" is a functionality to simplify the creation of ADITO models, e.g., Entities, EntityFields,
Contexts, and Views. You can execute Blueprints in the "Projects" window, via the context menu of the

nodes "context" or "entity", respectively:

preferences
application
context
notificationtype

entity

dashk New
rende New with Blueprint Generate Entity from AliasDefinition &
proce Find...

Paste

History

Git

Refresh Folder

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Tools

W

preferences
application
context
notificaf
entity New with Blueprint Create Context with Default Views 5

dashbo Find... Create Context with Default Views and Entity
rendere

New

Paste
process _
et History

service Git
report Refresh Folder

Y Y I Y Y L Y Y

languag Tools
role

L

Figure 11. Blueprints available for node "context"
The Blueprints displayed in the above screenshots work as follows:

® entity > New with Blueprint > Generate Entity from database: Generates a new Entity with
EntityFields (including correct contentType) and RecordContainer connection, based on an

existing database table.

® context > New with Blueprint > Create Context with default Views: Generates a new Context

with selectable default Views (PreviewView, MainView, etc.), based on an existing Entity.

A

® * context > New with Blueprint > Create Context with default Views and Entity: Generates a new
Context with an Entity and selectable default Views (PreviewView, MainView, etc.). In this case,
an existing database table is not required, and you need to create the RecordContainer by

yourself.

Thus, in most cases, your usual approach will not be to create Context, Entity, EntityFields, and
RecordContainer manually step-by-step, as explained in previous chapters; but you will simplify your
work by first creating a database table and then executing the Blueprints "Generate Entity from
database" and "Create Context with default Views" subsequently. Nevertheless, this automation still

requires some subsequent work, e.g., configuring ViewTemplates for the Views.

Find further information about available Blueprints in ADITO Information Document
AID114 "Blueprints". This document also explains how to create additional

Blueprints, according to your own requirements.

9.3. Extend the Global Menu

The last step to make our data visible, is to extend our frontend’s "Global Menu" by a new menu group,
including 3 new menu item, one for each Context: Double-click on _SYSTEM_APPLICATION_NEON (in
the "Projects" menu, under "application"). This will open an editor window in the upper middle part of
the Designer, showing the current menu items (on the left) and all existing ADITO elements (on the
right) that, in principle, are suitable for being connected via a menu entry. As you can see, a menu item
never stands alone, but all menu items belong to a menu group, e.g., "Contact Management", or

"Sales".

You can filter the elements to be shown by setting the checkboxes in the Navigator window. In our case,

we set the checkbox at "NeonContext", in order to restrict the displayed elements to Contexts.

Let’s start with the Context Car: Place the Context Car somewhere on an empty space, e.g., under the
group "Contact Management", by simply dragging it from the right to the left, and dropping it in a dark
grey area. Automatically, a new menu group named "Group" will be created, with an (unnamed) sub-
group in it, which in turn includes the menu item "Car". Click on the default name "Group" and change
its property "title" to a suitable term, e.g., "Car Pool". Now, also add menu items for the Contexts

CarDriver and CarReservation, by dragging and dropping the Contexts inside (!) the new Carpool sub(!)-
group.

As you can see, the Contexts' menu items receive the Contexts' names by default. If required, you could

overwrite this name by setting the menu item’s property "title".

A menu item is generally not visible unless a project role has been assigned to the sub-group it’s
residing in. This allows you to restrict specific menu items to specific user groups. As the test user
"Admin" (included in the ADITO xRM project) already has the project role

A

"INTERNAL_ADMINISTRATOR", we will assign this role to the sub-group including the new menu items:
In the Navigator window, set the checkbox "Role"; this restricts the display in the editor window to the
user roles. Then, drag the role "INTERNAL_ADMINISTRATOR" and drop it inside the sub-group. A small
orange square is shown in the upper right corner of the sub-group’s title bar, indicating that the role is

assigned. If you click on this orange square, all assigned roles are shown.

The role "INTERNAL_ADMINISTRATOR" as well as further roles with prefix "INTERNAL_" are internal
roles that can neither be extended nor deleted. Nevertheless you can create your own project roles

(see sub-chapter below).

Please always be aware that the only purpose of this kind of role assignment is to
control the Global Menu, in a user-specific way. BUT if a user knows the URL of a
Context, he can open it even if he does not see it in the Global Menu. If you want to
A restrict specific Contexts, tabs etc. to specific user groups, you can do this via custom
roles, to be defined in the client, in menu group "User Administration". Find more

information in the ADITO Information Document Roles and Access Rights.

9.3.1. Creating new project roles
To create a new project role,

® navigate to folder "role" in the "Projects" window (project tree).

Right-click on the folder and choose "New" from the context menu.

® Enter a name in CamelCase, with the prefix "PROJECT ", i.e., "PROJECT _CarPoolAdministrator".

The role will immediately be visible in the role assighment menu (application >
SYSTEM_APPLICATION_NEON)

Now we can assign the new role "PROJECT _CarPoolAdministrator" to the menu sub-group that holds
the Carpool-related Contexts (by drag-and-drop, see above). For testing purposes, we can remove the
role assignment INTERNAL_ADMINISTRATOR, by clicking on the small orange square and then on the
cross icon to the right of INTERNAL_ADMINISTRATOR.

When we now deploy, logout and login again, our Carpool-related Contexts have vanished from the
Global Menu. The reason is that, so far, we have not yet assigned the new role to a user. This can be
done quite quickly:

® |n the project tree, double-click on system > default.

® (Click on tab "Users" in the middle part of the Designer.

® Click on line "Admin" (because this is our test user, with whom we log into the client)

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID007_DE_Berechtigung.pdf

® Check the new role in property "roleNames"

® Save

Projects
v test4-tw-c2-adito-cloud [ADITO xRM]
svstem
i 1'1 default

- Properties

Properties
v
calendariD
email

lastModified

name

roleNames

title

v Security
lastLogin
lastLogout
password
passwordChanged

Extended

INEGE]

Dynamic

Admin@domain.local
Admin@domain.locl

v

08.05.2022 14:04

PR JCCT_CarPoolAdminist... v
. "ROJECT_CarPoolAdminist

v

¥"™°ROJECT_DSGVO

v

PROJECT_FieldStaff

PROJECT_HumanResource

PROJECT_Inspector1
PROJECT_Inspector2
PROJECT_Marketing

Editor

isActy 2
v

N S S S S O S S S O S S S S S

Users Source

title
Admin
Birgit Leicht
Christian Pabst
Franz Muller
Harold Smith
Heiko Storbeck
Herbert Obermeier
Isatou Jammeh
Jan Frohberg
Linda Reiter
Lisa Sommer
Melanie Hueber
Paula Strauss
Peter Pfiffig
Sarah Nagel
Silke Dehler
Susanne Lustig
TelemetryUser
flowableldmService
mailbridge
miarationl Iser

Notifications

History

e
Admin@domain.loc

b.leicht@domain.log
cpabst@meinefirma
fmiller@meinefirma
h.smith@domain.log
hstorbeck@meinefi

h.obermeier@doma
ijammeh@meinefirn
jfrohberg@meinefin
Ireiter@meinefirma.
|.sommer@domain.

mhueber@meinefir

pstrauss@meinefin

ppfifig@meinefirma
snagel@meinefirma
sdehler@meinefirm
s.lustig@domain.log

flowableldm@doma|
mailbridge@domai
miarationl Iser@dn

passwordHistory

Database X Default X

Cloud Server: default X

If you now deploy (see chapter below), logout and login again, you should see the carpool-related

Contexts again in the Global Menu.

9.4. Deploy

To convert our additions and changes into a form and structure that can be "understood" by the ADITO

server, we need to execute a deploy process (commonly only called "deploy")

9.4.1. Practically

Make sure that the ADITO server is running and there is a tunneled database connection (see above).
Then, click on the "Deploy Project" button. This button, which shows a burger-like icon (with a blue

arrow from the left), is located in the middle of the Designer’s button bar:

2-adito-cloud - ADITO Designer - 20240802

AT

source Refactor Team Tools Window Help

= = E{ -

I:I Web Client (Neor

Figure 12. The "Deploy project" button

A

When this button has been clicked, a deploy dialog will open, in which you select your project (e.g.,
"dev-mycloudsystem-c2-adito-cloud") and your database alias (e.g., "default"). As for the checkboxes,

you can leave the default settings. Confirm with "OK".

Then, at first, so-called "Transpile" is executed. This may take some time, especially if you deploy for
the first time. The technical term "transpiling" derives from modularization, which is explained in the
ADITO Information Document AID123 Modularization.

After the transpile is finished, the actual deploy starts with a comparison between the code in the
Designer and the state of the cloud system. (This also may take some time, especially if you deploy for
the first time.)

Then, a dialog will open subsequently, showing all models of the project that include changes,
preceded by the following "SQL-like" abbreviations:

* "|" stands for "Insert", meaning models that you have recently created/added to your project.

*"U" stands for "Update", meaning existing models that you have recently changed (e.g., you added a
new menu group in the Global Menu, as we have just done it - see above).

* "D" stands for "Delete", meaning existing models that you have recently deleted.

If you execute the very first deploy to a cloud system, a large number of changed
models might be shown. This has technical reasons, which are not explained here.

Just deploy all of them, then they will not appear again with the next deploy.

If you want to deploy these changes, you can leave all checkboxes checked and confirm with "OK".
After a few seconds, a dialog stating "'n model(s) were updated" appears in the lower right corner of

the Designer.

Every development and configurations you perform with the Designer will only be
visible in the client if you deploy them first. Please consider this when reading the
following chapters, as usually there will not always be reminders to deploy. After the
deploy is completed, you need to refresh the view in the browser. As clicking the
browser’s "refresh" button is sometimes not enough, we recommend to click on the
respective menu item instead. In cases when menu items have been changed, you
o need to log out and log into the client again, in order to see the changes. In rare
cases, and depending on the browser you use, it can also be necessary to empty the
browser’s cache - in Google chrome, e.g., via the shortcuts CTRL+F5 ("deep refresh”
of the current web page) or CTRL+SHIFT+DEL > "Clear data" (deleting selected cache
data) - in order to see the changes effected by the deploy. Last but not least,
changes of a few system-related properties require a restart of the server. Please

find more information in chapter Troubleshooting.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

A

Always make sure you had actually executed a deploy, whenever you wonder why a change is not

visible in the client.
Deploy of a single model

If you have changed only one single ADITO model (e.g., its property "title"), you can save time if you do
not execute the deploy for the complete project, but restrict it to only the respective ADITO model

(e.g., the Context, the Entity, or the View). You have the following options:

® In the project tree, right-click on the model that you have changed (e.g., the Context, the Entity,

or the View), and choose "Deploy" from the context menu.

® |f you have opened the model as tab in the Editor (upper middle part of the Designer), you can
also right-click on the tab and choose "Deploy". If the tab shows a process, the deploy will
nevertheless be performed for the complete model related to the process. Thus, for example, if
you have changed 2 processes of the same Entity, a deploy performed via the tab of one process

will also deploy the other process.

e |f you deploy a single Context, all elements that appear subordinated to it in the project tree (its

Entity and Views) will NOT automatically be deployed, too.

9.4.2. Technically

To understand what happens technically, if you deploy, you first have to understand how an ADITO

project is stored:
All configuration and code of an ADITO project is stored in, basically, 3 types of files:

® _aod files include the configuration of an ADITO model (e.g., an Entity) in XML form. For example,
if you double-click on an Entity in the "Projects" window, you can inspect its XML data by clicking
on tab "Source" in the Editor (upper middle part of the Designer). If you hover over the tab title
with your mouse pointer, a tooltip is displayed, indicating the file name (e.g., Activity_entity.aod)

and its directory path.
e js files include the JavaScript/JDito code entered in properties or libraries (e.g., a valueProcess).

® Files named documentation.adoc include the content of a property "documentation", which has

"AsciiDoc" format, see https://asciidoc.org/

Now, technically, a "deploy" means that the ADITO project’s source data (.aod and .js files) are written
into the system database, in particular, into the table ASYS_SYSTEM. The ADITO web server then reads
this table’s content in order to create web pages. If you choose option "Force deploy" when executing a
deploy, then all datasets of table ASYS_SYSTEM are deleted, and the complete project data is inserted
anew. This can be necessary in rare cases, when the Designer fails to recognize certain changes you had

performed in your project.

https://asciidoc.org/

If you want to inspect the content of table ASYS_SYSTEM, you can proceed as follows:

® |n the "Projects" window, double-click on system > default.

In the Editor (upper middle part of the designer), double-click on " SYSTEMALIAS".

A database tree appears. Here, navigate to "adito_system" > "Tables" > "Tables" > ASYS_SYSTEM.

Right-click on ASYS_SYSTEM and choose "View Data ..." from the context menu.

® Now you see all (or the first 100) datasets of this table. In particular, look at the following

columns:
o NAME indicates the name of the corresponding ADITO model.

o XMLDATA includes the ADITO model’s XML or JavaScript/JDito content. You can inspect
this content by double-clicking on one XMLDATA cell: A menu appears, in which you
choose option "Open as text". Then you see the same content that you can see in the
"Source" tab of the Editor, after double-clicking on an ADTIO model in the "Projects"

window (e.g., an Entity).

File Edit Refactor Team Tools Window Help
2O« [21 web ciient (Neon) - defautt v
Projects X @ [7 default X Database X “ SQL2 [jdbciderby/ocalhost:15..] X

v sic [ADIT -
et Connection: | jdbe:derby://localhost:1527/basic_system [adito on Default schema] v K B

% XMLDATA X

Charset-Encoding: | UTF-8 v | |Reload

_RIBBON_NEON

Model" xmins:xsi="h

SELECT ID, NAME, TITLE, X... X
Fetched Row

NAME
ssorFilter_view

el el e e o o

ObjectRelation_lib

ObjectRelationType

ObjectTree

Offer

Offer_lib

Offeritem Offeritem

OfferOrder_lib OfferOrder_lib L Cancel
Order

Order_lip

Orderitem

Organisation i Company
Organisation_lib Organisation_lib NULL
PermissionAction PermissionAction Permission Action
PermissionCalendar PermissionCalendar

SQL 2.5q! - Properties
~ Properties

PermissionCalendar_lib PermissionCalendar_lib
PermissionDetail PermissionDetail

PermissionMetaData PermissionMetaData

PermissionOverview PermissionOverview

Person Person Contact

Figure 13. Inspecting the content of the system table ASYS SYSTEM

9.5. A first test

Now it’s time to watch our interim results in the web client, i.e., in the browser: Make sure that

A

1. the ADITO server is running,
2. the tunnels have been established,

3. you have deployed all changes (see above),

and then call the URL of your cloud system. Instead of doing this manually, you can also select "Web
Client (Neon) Cloud - default" in the combo box of the Designer’s button bar, and click on the green
triangle to the right of the combo box. (Due to a bug, the URL that is now generated includes the port
number, which leads to an error message. Please remove the port manually, including the colon (e.g.
":8080") and call the URL again.) Then, a login mask appears, where you enter "admin" as username
and the admin password, and confirm by "Login". The admin password is available in the SSP (see
chapter ADITO server).

After a few seconds, the Dashboard appears (we will deal with the handling of Dashboards later). Click
on the little blue text in the upper middle (usually the word "Home", along with a "house" icon), which

will show you all menu items, including the items we have just added.

If you click on menu item "Car", the FilterView of the Context Car is displayed (this is due to ADITO

convention). Here, you see only an empty table.

As you will have noticed, menu group "Car Pool" is currently displayed with a
question mark to the left of it. If you click on this menu group, you will see further
guestions marks in the vertical button bar on the left (available via "burger button"
in the left upper corner of the client). The placeholder "?" indicates, that there is no
icon specified yet. You can find information about how to search and integrate a

suitable icon in chapter "lcons", subchapter of Controlling the design.

9.5.1. Entering example data

For testing purposes, it can be helpful to have some example data available. As we have not configured
all EntityFields yet, we cannot enter data via the client. Thus, you must either enter data directly, using
ADITO’s database editor (system > default > Data_alias > ADITO), or you can again use Liquibase. The
latter works as follows:

In folder example_carpool (under alias > Data_alias), create an empty xml file and name it
"init_car.xml". Open it in ADITO and fill in the following code:

init_car.xml

<?xm version="1.1" encodi ng="UTF- 8" standal one="no"?>
<dat abaseChangeLog xnl ns="http://ww. | i qui base. or g/ xn / ns/ dbchangel og" xni ns: ext="http://wmv. | i qui base. or g/ xnl / ns/ dbchangel og- ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance” xsi:schemaLocation="http://wwv.|i qui base. org/xm / ns/ dbchangel og- ext
http://ww. | i qui base. or g/ xnl / ns/ dbchangel og/ dbchangel og- ext. xsd http://wwu. | i qui base. or g/ xnl / ns/ dbchangel og
http://ww. | iqui base. org/ xm / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.snmith" id="9bblc6b9-430a-4ba4-90ad-chde9ae38660">
<insert tabl eName="CAR"'>

<col urm nane="CARI D" val ue="405de82e- 4324- 47d7- a643- d66ed1lb4ea77"/ >
<col utm nane="COLOR" val ue="RED"'/>
<col utm nane=" LI CENSEPLATENUMBER" val ue="LA- AD 123"/>
<col utm nane=" MANUFACTURER" val ue="BMWN/ />
<col urm name="MANUFACTUREDATE" val ueDat e="2022-11-21"/>
<col urm nane="TYPE" val ue="320i"/>
<col utm nane="PRI CE" val ueNuneri c="34532.52"/>
<col utm nane=" CURRENCY" val ue="EUR'/>

</insert>

<insert tabl eName="CAR"'>
<col urm nane="CARI D' val ue="324445c7-57e0- 4e26- b83f - beece3b42a2d"/ >
<col utm nane="COLOR" val ue="GREEN'/>
<col urm nane=" LI CENSEPLATENUMBER" val ue="M CX 9876"/>
<col utm nane=" MANUFACTURER" val ue="MERCEDES"/ >
<col utm nane=" MANUFACTUREDATE" val ueDat e="2020-03- 09"/ >
<col urm nane="TYPE" val ue="C220"/>
<col urm nane="PRI CE" val ueNuneri c="42934. 16"/ >
<col urm nane="CURRENCY" val ue="USD"/>

</insert>

<insert tabl eName="CAR"'>
<col urm nane="CARI D' val ue="84b5ac0a- f 490- 4537- b4a9- 273279f 01319"/ >
<col utm nane="COLOR" val ue="YELLOW ">
<col utm nane="L| CENSEPLATENUMBER" val ue="H- LK 597"/ >
<col urm nane="MANUFACTURER" val ue="FORD"/ >
<col utm nane=" MANUFACTUREDATE" val ueDat e="2021-01-11"/>
<col utm nane="TYPE" val ue="Focus"/>
<col utm nane="PRI CE" val ueNuneri c="23934. 16"/ >
<col urm nane="CURRENCY" val ue="USD"/>

</insert>

</ changeSet >
</ dat abaseChangeLog>

The "column name" tags include different data types, such as "value",
o "valueNumeric", and "valueDate". Make sure you are always using a data type fitting
to the data type of the corresponding database column. Find further information in

the chapter on Liquibase in the Designer Manual.

This new init_car.xml file must now be referenced in the changelog.xml of our car pool project (under

alias > Data_alias > example_carpool) by adding the following additional code line:

changelog.xml (under alias > Data_alias > example_carpool)

<i nclude rel ati veToChangel ogFil e="true" file="init_car.xm"/>

Now, execute a Liquibase update (see previous chapter) and refresh the display by clicking again on the
globe icon and selecting the menu item "Car" (for technical reasons, using the browser’s refresh button

is not enough). Then, the inserted example datasets should be displayed.

Of course, our application is still far from being completed. E.g., you see the 36-digit ID of a color (e.g.,
"RED ") instead of the name of the color (e.g., "red"), you cannot select a car driver from a list of
employees, and there is no relation between the Contexts Car, CarDriver, and CarReservation. But, for
example, you can already create a new dataset (including part of the fields) or edit an existing dataset.
Or you can load and save an image of the car: Click on the "pencil" icon to the right of the image’s
placeholder icon (upper left part of the PreviewView), then on the placehoder itself, select an image

stored on your computer, and save the selection by clicking on the blue hooklet.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

If you want to have your own example data available in your system, there are 2

alternatives to the above procedure:

® You fill your database tables directly via SQL "INSERT" scripts: Press the
"Execute SQL" button to the left of the combo box in the button bar, select
your connection, insert your SQL code, and run it (F6 or button "Run SQL" to

the right of the "Connection" combo box).

® You enter example data via the EditViews in the ADITO client.

In both cases, it might be useful to auto-generate Liquibase "init" files afterwards,
because then, e.g., you can reset your database via the Liquibase function "Drop all
& Update..." and still have the example data present. Please refer to chapter "Create

Liquibase files automatically" of the Designer Manual.

9.6. Dashboard and Dashlet

After you have logged in to the client or whenever you click the "Home" button, a Dashboard appears.
This is called the "Home" Dashboard.

A Dashboard basicly consists of one or more View components, the so-called Dashlets. Via the
"Dashlets" button (lower right part of a Dashboard), you can open the so-called DashletStore: Here,
you can add further Dashlets by selecting them from a category list. To remove a Dashlet, click on its

"x" button (upper right corner of the Dashlet).

9.6.1. Add Dashlets

To make a specific View available as Dashlet in the DashletStore, we first create a so-called
DashletConfiguration (a kind of template) and assign it to the View:

Open the View in the Navigator window (let’s use CarReservationFilter_view as example) and choose
"Add Dashlet Config" from its context menu.

o This option is not available for Views having a "MasterDetailLayout".

Enter the name of the DashletConfiguration according to the ADITO spelling guidelines (see ADITO
Information Document AID001, chapter "Spelling & Wording" > "ADITO models"), e.g.,
"AllCarReservations". The new DashletConfiguration’s name appears under the node "DashletConfigs".

Edit the DashletConfiguration’s properties:

e title: Title of the Dashlet, to be visible in the client, when the Dashlet has been added to the

Dashboard, e.g., "Car reservations"

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

® description: Description of the Dashlet, e.g. "Show all car reservations". This text will be visible in
the DashletStore, below the Dashlet’s title.

® jcon: Mandatory property. Every Dashlet needs an icon to be set, in order to ensure a good

identification. If no icon is set, you get an error message.
o The icon must be set, otherwise the DashletStore won’t work properly.

® fragment: The last part of the View’s URL (when opened via a Context, not via a Dashboard),
following "/client/"). E.g., if the View’s URL is
https://myProject.dev.c2.adito.cloud/client/CarReservation/filter, you must enter
"CarReservation/filter", if you want to see all reservations, unfiltered.
If you want to apply a filter, you can simply extend this fragment by "?search=...": Just configure

the filter in the FilterView, apply it, and then copy the last part of the URL into the property

"fragment" (it will be a long cryptic URL):

s ST Lo (10X WV IS [TV CarReservation/filter?hidden-columns=%23GROUPING8tsearch =ey)0eXBlljoiZ3 vdXAiLClveGVy YXRvcil6 kFORCIsmNoaWxkeyl6

AllContactsDashlet - fragment b

ch=eyJ0eXBlljo

slm5t

Reset to Default Cancel

Then, log out and log into the client. Result: Included in the Dashboard, the Dashlet immediately

shows the filtered data.

® singleton: Defines, whether or not the Dashlet can be added multiple times to the Dashboard. If
true, the Dashlet can only be added once. As soon as is is added, it disappears from the category

list for adding new Dashlets. If false, you may add the Dashlet as often as you like.

® categories: In a configuration table, you can define, in which category in the DashletStore the
Dashlet appears, when you press the "Add" button. Click the plus button ("+") to define the
name and the title of a category, e.g. name = "carReservation", title = "Car reservation". The title

will be visible as category in the DashletStore, the name is only for internal organisation.

Now try to create 2 DashletConfigurations: one showing all reservations (see example configuration

A

above), and the other showing only cars with license plate numbers starting with "M" (name it
"CarsLicensePlateStartingWithM"). Then, add them to the "Home" Dashboard in the client.

o Note that you need to logout and re-login in order to make new or modified
Dashboards/Dashlets visible in the DashletStore of the client.

9.6.2. Configure Dashboard defaults

You may have noticed that in the "Projects" window, there is a node named "dashboard", including

several Dashboards, e.g.
® "Home": This is the main Dashboard shown after logging in to the client or whenever you press
the "Home" button. Never rename it.
® "SalesDashboard": This is a Dashboard showing figures of sales topics. In the Global Menu of the
client, it appears like a Context: You can select it in the menu group "Sales".

The main properties of a Dashboard are:

e title: Title of the Dashboard, to be visible in the client.
® jcon: The icon of the Dashlet, which will be shown

o above the Dashlet’s title in the DashletStore;

o on the left of the Dashlet’s title bar.
® DashboardType:

o PRIVATE: The Dashboard’s appearance is user-specific. Any changes (e.g., moving

Dashlets) a user makes, are not visible for other users. Example: the "Home" Dashboard.
© PUBLIC:
m All users see the same number of Dashlets.

m Every user can change the order of the Dashlets, i.e., move Dashlets or change
their size, but not close them. These individual changes are not visible to other

users.

® However:

If a PUBLIC Dashboard has its property "fixedDashlets" set to

true, then Dashlets can only be changed by a user having one of
o the roles specified in the Dashboard’s property "editRoles" (see

below), and the position and the size of all Dashlets are the

same for every user.

(Note that property "fixedDashlets" has currently only an effect
on PUBLIC Dashboards.)

e editRoles: Roles of users who are entitled to edit the Dashboard (move Dashlets, add new

Dashlets, close Dashlets etc.). If no role is assigned, every user can edit.

The Dashboard administrator (= a user having the role "INTERNAL_DASHBOARDSTOREADMIN") can

publish, edit, and delete elements (DashletConfigurations) in the DashletStore.
In the "Projects" window, double-click on a Dashboard to view its default configuration:

In the Editor window (upper middle window of the Designer) you can see a sketch of the arrangement
of the default Dashlets, i.e., their size and position.

In the Navigator window (upper right window of the Designer) you can see 2 nodes:

® Under "Dashlets" you see the default Dashlets included in the selected Dashboard (if you click
on one of it, it is marked with a surrounding blue line in the Editor). You can re-order and re-size

them by changing their properties (which are based on an invisble grid of columns and rows)
o "xPos": the number of the column of the left upper corner of the Dashlet)
o "yPos": the number of the row of the left upper corner of the Dashlet)
o "colspan": the width of the Dashlet (= the number of rows it ranges over)
o "rowspan": the height of the Dashlet (= the number of rows it ranges over)

® Under "Available Configs", you see all DashletConfigs of the project. To add a new Dashlet based

on a specific DashletConfig, right-click on it and choose "Add to Dashboard".

Projects Home X Navigator

y &
> [notificationtype Editor Source History v @ Home

> Ml entity v (@ Available Configs
v f@ dashboard {8} AditoFacebookDashlet
{8 AditoTwitterDashlet
Dashlet Name: AllContactsDashlet Dashlet Name: InformationDashlet Dashlet Name &) AllctivtiesDashiet

Context Name: Person Context Name: Analyses Context Name: £ AICampaigns|
Ketingdashboard))) {8 AlcontactsDashlet
Service Entity Name: Person_entity Entity Name: Analyses_entity Entity Name: &) AlContractsDashlet
lad TeamLeader_Dashboard View Name: PersonFilter_view View Name: MyDashboardScoreCard_view View Name: {3 AlOffersDashlet
155 Vertriebsdashboard i {3} AllordersDashlet
S (T Config Name: ~ AllContactsDashlet Config Name: Information Config Name: @ AlorgsDashlet
> MW process {8 AllProductsDashlet,
> [test AllSalesprojectDashlet
> I service

No Properties
tCheckupDashletConfig

S} syncedSearchesTableFiterDashlet,
{3 timelineDashletConfig
&) TumoverDashlet
{8} TumoverForecastChart
{3} TurnoverForecastDashlet
<No Properties> Dashlet Name: MytasksDashlet Dashlet Name: ~ NotificationDashlet &) TBeE
v [@ Dashlets
Context Name: Task Context Name: ~ Notification O AllContactsDashlet
O AditoTwitterDashlet
O MytasksDashlet
View Neme: TaskFilter_view View Name: NotificationFilter_view Q2 InformationDashiet
O NotificationDashlet
Q) CovidinformationDashiet

Entity Name: Task_entity Entity Name: Notification_entity

Config Name: mytasks Config Name: NotificationDashletConfiguration

Figure 14. The configuration of the "Home" Dashboard

A

According to the ADITO spelling guidelines (see ADITO Information Document AID0O01, chapter "Spelling
& Wording" > "ADITO models"), the name of a Dashlet starts with the name of the assigned
DashletConfiguration, followed by the suffix "Dashlet", e.g. AllContactsDashlet.

Be aware that the above configurations are only default settings. These are only
o applied once, when starting the client after a new ADITO installation.
Whenever the user modifies the Dashboard in the client, the default settings visible

in the Designer remain unchanged.

9.6.3. Resetting Dashboards

If users want their Dashboard to be re-setted to its initial state (as configured in the Designer), the

procedure is different depending on whether it is a "public" Dashboard or a "private" Dashboard:

9.6.3.1. Reset of a "public" Dashboard
To reset a "public" Dashboard (e.g., the "Sales Dashboard" of ADITO xRM), there are 2 ways:

® |n the client: Remove all Dashlets manually.
® On database level: Remove all Dashlet datasets referring to the respective Dashboard, from the

table ASYS_DASHLETS.

Afterwards, in both cases, re-open the Dashboard by choosing it from the Global Menu or clicking on

its icon (pressing the "refresh" button of the browser is not enough). The Dashboard is now resetted.

9.6.3.2. Reset of a "private" Dashboard
To reset a "private" Dashboard (e.g., the "Home" Dashboard of ADITO xRM), there are 2 ways:

® |n the client (currently only available for the Home Dashboard):
o Open the DashletStore (blue button "Dashlets").
o Click on the button Reset Dashboard

® |n all other cases, a "private" Dashboard cannot be resetted in the client. In this case, you can

reset a "private" Dashboard only in the Designer:
o Open the property sheet of the respective user in the Designer:
m In the "Projects" window, double-click on system > default
m |n the Editor window, choose tab "Users"

m Click on the user whose Dashboard is to be resetted

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

© In the "Properties" window,

m choose tab "Dynamic" (this tab exists only for users who had logged-in at least

once before); a key-value list appears.

m completely delete the content of the value field of key "#<name of Dashboard>",

e.g., "#Home" for the "Home" Dashboard;

m set the value of key "#<name of Dashboard>Loaded" (e.g., "#HomelLoaded"), to

"false" (type the word f al se as value).
o Click the "Save all" button in the button bar of the Designer

o Inthe client, log out and log in again, and re-open the Dashboard: The Dashboard is now

resetted.

File Edit View Navigate Source Refactor Team Tools Window Help
& D 3 H server - default > ¥ v A

Projects X 4 default X

v xRM 2020.0 [ADITO xRM]

svstem
[default isActive title email firstname

bl Admin Admin@domain.local Tim
Birgit Leicht b.leicht@domain.local Birgit
Harold Smith h.smith@domain.local Harold
Herbert Obermeier h.obermeier@domain.local Herbert

Edi.~ Users Source History

preferences

application

I'_’-I Lisa Sommer |.sommer@domain.local Lisa

D __ SYSTEM_CALENDAR_RIBBON_NEC/ Susanne Lustig s.lustig@domain.local Susanne

E] ____ SYSTEM_INDEXSEARCH_RIBBON N

v [@ context
> ﬂ 360Degree
> [Activity
>
>
>
>
>
>
>
>
»

[ActivityLink

D, Address

D, AddressType
[l Addressvalidation
D, AdminViewRow
D_ Analyses

E‘L AnyContact

w Appointment

|-"1 Annnaintmantl inl

- Properties

: i Search Results
Properties Extended Internal Dynamic

Server: default X X
#FILTER:YYColleague_entity... {*title™"h™ "inestamp""2... [EERE

#FILTER:YYColleague_entity... {'title":"*" "ti nestamp":"20... H-10-Z-0430-8
#FILTER:YYColleague_entity... {"title"™:"<all:","timestamp":...

#FILTER:YYColleague_entity... {“title":"*z*' "timestamp":"2...

#FILTER:YYCompany_entity.... {“title™:" "timestamp™:"20... |..

#FILTER:YYCompanv entitv.... {"title":™ .=st*"."timestamp":

#Home

#HomelLoaded false

#u:147f1ef5-c800-4e05-bcd8... false

#u:147f1ef5-c800-4e05-bcd8... TasksTimeline

#u:147{1ef5-c800-4e05-bcd8.. . false

Figure 15. Resetting the "private" Dashboard of a specific user

A

9.6.4. Creating new Dashboards

To create a new Dashboard, right-click on node "dashboard" in the Projects window and then choose
"New" from the context menu. Enter the Dashboard’s name, according to the ADITO spelling guidelines
(see ADITO Information Document AID001, chapter "Spelling & Wording" > "ADITO models"), e.g.

"CarDashboard". Configure the Dashboard’s properties (see previous chapter).
Now, add Dashlets to the Dashboard form:

® In the Projects window, Double-click on your new Dashboard.

® |n the Navigator Window, search for your Dashlet under the node "Available Configs", e.g.,

"AllCarReservations"

® Right-click on this Dashlet and choose "Add to Dashboard" from the context menu. In the
Designer’s Editor, the Dashlet now appears in the Dashboard form and in the Navigator window,

under the node "Dashlets".

® In the Navigator window, rename the new Dashlet’s default name, e.g., to

"AllCarReservationsDashlet" (right-click on it and choose "Rename" from the context menu).
® Configure the Dashlet’s properties (see previous chapter).

® Repeat this step for the second Dashlet, e.g., "CarsLicensePlateStartingWithM"

If, in the Dashboard form, the second Dashlet is not visible after adding it, it
has been added "under" the previous Dashlet. Then simply click on the
second Dashlet in the Navigator window (under "Dashlets") and change its
properties "xPos"/"yPos"; then it will change its position and be visible beside
the first Dashlet.

Afterwards, in the "Projects" window, double-click on application >_SYSTEM_APPLICATION_NEON to
open the menu editor. Check "NeonDashboard" in the Navigator window, which will reduce the
components visible in the middle window to only Dashboards. Drag the new Dashboard and drop it on

a suitable place in the menu, e.g., directly above the menu entry "Car".

After deploying and logout/login you can open the new Dashboard via the Global Menu of the client.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

10. Advanced functionality

In principle, you have now learned how to set up an ADITO application with the option to create, view,
and edit datasets with simple fields of different data types. However, of course, we need some
advanced functionality in order to build a professional application. This will be explained in the next

chapters.

10.1. Consumer and Provider: Connecting Entities

According to the data model we have built before, there is a relationship between the Entities
representing cars, drivers, and reservations: One car reservation is related to one car and one car
driver. In terms of database structure, this means that the primary keys CAR.CARID and
CARDRIVER.CARDRIVERID appear as foreign keys in the table CARRESERVATION (columns CAR_ID and
CARDRIVER_ID).

CAR CARRESERVATION CARDRIVER
CARDRIVERID (PK)

CARID (FK} —I— CARRESERVATIONID (PK}
CAR_ID (FK) CONTACT_ID (FK}

CARDRIVER_ID (FK)

CONTACT
CONTACTID (PK)

FERSOMN_ID (FK}

PERSOMN
PERSONID (PK}

LASTNAME
FIRSTNAME
DATEQOFBIRTH

Figure 16. Carpool-related database tables with primary keys (PK) and foreign keys (FK)

Now, if we are viewing the CarReservation Context and want to create a new CARRESERVATION dataset,
we must select one of the existing CARDRIVER datasets and one of the existing CAR datasets. To have
all drivers and all cars available in the CarReservation Context, we need to establish dependencies
between the corresponding Entities. In ADITO, this can be achieved by generating objects named

Consumers and Providers, which fit to each other by specific properties and by an optional parameter.

A

® The Provider is a configuration model created at the side of an Entity providing ("sending") data
requested by another Entity. (Colloquially, Designer users sometimes speak of the providing
Entity itself as "the Provider" - do not mistake these terms.).

® The Consumer is a configuration model created at the side of an Entity consuming ("requesting")
data of another Entity. (Colloquially, Designer users sometimes speak of the consuming Entity
itself as "the Consumer" - do not mistake these terms.)

® The Parameter basically contains the criteria the Provider needs to select the required data. It is
created on the Provider’s side and assigned both to Provider and Consumer. If all datasets of an

Entity are to be provided, a Parameter is not required.

The ADITO-specific terms "Consumer", "Provider", and "Parameter" are spelled with
a capital letter, in order to distinguish them from the colloquial terms "consumer",
"provider", and "parameter". The same wording also applies for other ADITO-

o specific terms that have equivalents in colloquial language, such as "Entity" or
"Context". Find more information on ADITO-specific wording in the ADITO
Wording_Guideline (AID002), available in the customer area of the ADITO web site.

The following sketch illustrates this mechanism, using an existing dependency of the xXRM project as
example: All persons related to a specific organisation (company, club, etc.) are to be displayed in the
Context named "Organisation" (in the Global Menu of the web client, it is visible as "Company").

ORGANISATION PERSON

entity entity

Records (PERSON data)

Consumer Provider

Figure 17. Example of a dependency created by Consumer and Provider

Explanations:

1. The Provider exposes one or more Parameters from its Entity to the Consumer.

2. The Consumer writes the respective value(s) (controlled by a valueProcess) into the
Parameter(s).

3. The Parameters’ values are now available in the Entity of the Provider.

4. The Consumer requests the records from the Provider. As a result the recordContainer selects

the new record set with the Parameter(s) being evaluated by a conditionProcess.

https://www.adito.de/login

5. The Provider delivers the requested records to the Consumer.

A

© 2025 ADITO Software GmbH

96 /472

A

This to-do list summarizes the workflow:
Table 2. Configuration of dependency via Provider and Consumer (workflow up to down)

Records <Provider>_entity <Consumer>_entity

required

All datasets | Create new Provider:
Navigator > <Provider_entity> New
Provider:

name: <ProviderName>

Create new Consumer:

Navigator > <Consumer_entity> New
Consumer:

name: <ConsumerName>
entityName: <Provider>_entity

fieldName: <ProviderName>

<ConsumingField>.consumer:

<ConsumerName>

Selected Perform above steps.
datasets

Create new Parameter:

Navigator > <Provider>_entity > New
Parameter:

name: <ConsumingField_param>

expose: true

<ConsumingField_param>.valueProcess:
resul t. string(<selection criteria>

)

<recordContainer>.conditionProcess:
resul t.string(<WHERE condition,
using

" $par am <ConsumingField_param>

"),

The application of this to-do list in the following chapters will make it even clearer how to create

A

dependencies using the Provider-Consumer mechanism.

10.1.1. Example: Cars and car drivers in car reservations

In our case, in order to create a new CARRESERVATION dataset, Car_entity needs to provide all car data
to CarReservation_entity, and CarDriver_entity needs to provide all car driver data to

CarReservation_entity.

CarDriver_entity

Provider Provider
I . |
1 CarReservation 1
| : |
I _entity I
| |
! Car data CarDriver data '
_ =

Requesting (consuming) ——

Delivering (providing) <= == m= ==

Figure 18. Dependencies in carpool example
To achieve this, we proceed as follows:
First, make sure that you have created the fields CAR_ID and CARDRIVER_ID for CarReservation_entity.

Then, in the "Projects" window, double-click on Car_entity. In the Navigator window, right-click on
Car_entity and select option "New Provider" from the context menu. This will open the dialog "Create
New Provider". Here, name the new Provider "Cars" (Providers are always spelled in CamelCase; if they
provide multiple datasets (which is mostly the case), they are marked with plural names, see ADITO
Information Document AID001, chapter "Spelling & Wording" > "ADITO models") and confirm with

"OK". The new Provider will appear under the node "Providers" (Navigator window).

Next, open CarReservation_entity in the Navigator window and select option "New Consumer" from
the context menu. Name the new Consumer also "Cars". Next, edit the Consumer’s properties: Select
"Car_entity" as "entityName", and "Cars" as "fieldName" (= name of the Provider). By this, Provider
and Consumer have been connected: If you now view the properties of the Provider "Cars", you will see
that the property "dependencies" has automatically been set to "CarReservation_entity" (you cannot
edit it on this side).

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

Finally, we need to specifiy that the new Consumer Cars is to be used for the EntityField CAR_ID (in
order to get a list of all cars in the edit/create mode): Open CarReservation_entity in the Navigator

window, click on the EntityField CAR_ID and edit its property "consumer" by selecting "Cars". Done!

Dependencies between Entities are illustrated in an Entity-relationship diagram in
o the Editor window (upper middle part of the Designer, when you double-click on an
Entity). You can rearrange, extend ("All dependencies"), save and print an Entity-

relationship diagram via the respective buttons at the top of the Editor window.

Now, repeat the previous steps in order to create a dependency between CarDriver_entity and

CarReservation_entity. Consistently, name both Provider and Consumer "CarDrivers".

That’s all: If you now open the CarReservation Context (menu item "car reservation") and click on the
"plus" button, the EditView opens in edit mode, and you can make a selection both from all car
datasets as well as from all driver datasets. The respective combo boxes' entries are generated
according to the Entities' property "contentTitleProcess". (If the combo boxes shows empty lines
instead, you have forgotten to set the contentTitleProcess of the providing Entity (see chapter

"Configuring Entities" further above).

This is the simplest form of a dependency created by the Consumer-Provider

mechanism. You will have noticed that no Parameter is involved here. This is

because we need all car datasets and all driver datasets, i.e., we do not need a
o Parameter as criteria for selecting only a part of the datasets.

You will find more complete examples of dependencies in later chapters, especially

in chapter "Complex dependencies".

o Remember that you must always first deploy in order to make changes visible in the
client.

10.1.2. Example: Car drivers and Persons

In the XRM project, a number of example persons are organised in the Entity "Person_entity" and
displayed in the various Views of Context "Person". In terms of data modelling, it would mean data
redundancy, if we created car driver datasets independently from person datasets: Features like name
or date of birth already exist in a person dataset. We do not need to enter them again in driver
datasets. Instead, we connect Driver_entity with Person_entity. To achieve this, we again use the
Provider/Consumer mechanism. However, in this case, we can simply use the Person_entity’s existing

Provider "Contacts":

Create a new Consumer for CarDriver_entity and name it "Persons". Set its Property "entityName" to

"Person_entity", and "fieldName" to "Contacts" (this is a predefined Provider of the xRM project).

A

Then, set property "consumer" of CarDriver_entity’s field CONTACT_ID to "Persons".

In most cases, it makes sense to give Provider and Consumer the same name.
o However, technically, this is not obligatory. You are free to name both Provider and
Consumer according to your preferences.

After deploying, you will see in the client that in Context Car driver’s create dialog (click on blue "plus"
button) a lookup table has automatically been added for field "Person". The reason for this automatism
is that there is a View named PersonLookup_view, which is referenced in Context "Person"'s property
"lookupview". This LookupView will automatically be used, whenever Person’s Provider "Contacts" is
referenced in the Consumer configuration of another Context.

As LookupViews often contain a high number of datasets, it is recommended to
make sure that its content can be filtered. In the above example
(PersonLookup_view) you can, e.g., enter the text "Smith" and press Enter, in order
to see only datasets of persons named "Smith". This filter functionality is set in the
RecordContainer of the Entity acting as Provider, by setting the respective
RecordFieldMapping’s property "isLookupFilter" to true. (Note that this has only an
effect, if property "isFilterable" is also set to true; the functionality is not available
for EntityFields of contentType DATE). In the RecordContainer of Person_entity, the
RecordFieldMappings "FIRSTNAME.value" and "LASTNAME.value" have properties
"isFilterable" and "isLookupFilter" both set to true; therefore, you can filter persons
in PersonLookup_view according to their first name as well as according to their last

name.

In the LookupView, you can select - in cleartext - the person who acts as driver. Although the value of
the related column CONTACT.CONTACTID is invisible, it is stored in field CONTACT_ID, as soon as you
select a person and press "Save".

If an EntityField gets its value via a Consumer, the LookupView of the Entity acting as
Provider will always be used in the EditView, for selecting a value of this EntityField.

o If the providing Entity has no LookupView, then its contentTitleProcess will be used
instead. And if there is also no contentTitleProcess set, then empty lines are shown
in the combo box.

10.1.3. Retrieving pending records

(This is a little excursus, helpful to know in the context of dependencies, but not related to the carpool
example project.)

A

10.1.3.1. Basics

"Pending records" are datasets ("records"”, "rows") that the user has entered in a View, but which have
not been saved in the database yet. You can access them via the variables

® i nsert edRows

e changedRows

e del et edRows
to be read via, e.g., var s. get (" $fi el d. MyConsuner Nane. i nsert edRows")

Each of these variables returns a (often large) array of objects, with the Consumer field’s name as

property. Here is an example of changedRows in Context Offerltem:

In most cases, you do not need the complete variable content, therefore here is an example of reading

a consumed field’s value (in the context of the "Attribute" logic)

var changedRows = vars. get("$fi el d. MyConsuner Fi el d. changedRows") ;
var nyFi el dval ue = changedRows[0] ["AB _ATTRI BUTE | D'];

The field’s value is always returned as String. If a field is not set, you will get an empty String. Thus, a

check for null or undefined is not required. But, if required, you still need to check for an empty string,
e.g.
e viaif (nyFieldvalue === "") { ...} or

® via "TRUEish test", i.e., using JavaScript’s implicit type conversion:
if (nyFieldvalue) { ...}

10.1.3.2. Example 1

In the xXRM project, if you use OrganisationEdit_view to enter or edit a company dataset, it is possible
to assign multiple Attributes (e.g., target group, delivery terms) and communication channels (e.g.,

email, phone, website) to this company. These links are established via consumers.

jsmith@supercompany.de

Conditions / Payment term

Assessment / Target group

€ Cancel

30 days net

Manufacturer

Required value is missing

Here, you can use the above variables in order to check

if all mandatory Attributes are set

if specific attributes have been assigned not more than once
if a mandatory Attribute has been deleted

if a change of an Attribute has violated a min/max rule

etc.

Then, the above variables are useful:

e i nsert edRows: These are the rows (here: attribute/value pairs) the user has entered, but not

saved yet. As soon as they are saved, the rows will be removed from the variable.

changedRows: These are rows (here: attribute/value pairs) that have already been saved in
the database earlier, and now the user has changed (edited) them, but not saved the changes.
As soon as the changes are saved, the rows will be removed from the variable. If the user enters
a new row, without saving, and then changes it, the row will remain in variable

i nsert edRows, and not be transferred to changedRows.

del et edRows: These are the rows (here: attribute/value pairs) that are already in the
database and that now have been marked by the user as "to be deleted" (e.g., by clicking the
"minus" icon to the right of the attribute/value pair). As soon as the user clicks the save button,
the row will be removed from the variable.

If the user enters a new row, without saving, and then deletes it, the row will not appear in any

of the 3 variables.

10.1.3.3. Example 2

Here is another example, which is also included in the XRM project and is similar to the above example:

In PersonEditView, the client user can insert multiple communication channels related to a contact

person (email address, mobile phone number, etc.):

E-Mail jsmith@supercompany987.com -

+491379 1234567

Attribute Neeacermant /1 Ausltu “~ hinh -

Technically, this is realized via Person_entity’s Consumer "Communications", which relates to Provider

"AllCommunications" of "Communication_entity".

If, e.g., the user has entered the 2 "Communication" datasets as shown above, but has not yet pressed
the "Save" button, you can nevertheless already retrieve them via variable i nsert edRows. In the

XRM project, this is done, e.g., in the context of the logic that finds duplicates.

Example of variable i nser t edRows in

Person_entity.DuplicatesPerson.DuplicateObject_param.valueProcess.js

var communi cations = vars. get("$fi el d. Communi cations.insertedRows");

10.1.3.3.1. EntityConsumerRowsHelper

In Entity_lib (see process > libraries) you can find the "EntityConsumerRowsHelper", which simplifies
the usage of the above 3 variables. For example, by calling

Enti t yConsuner RowsHel per. get Curr ent Consuner Rows

you can load all datasets that are currently visible to the user (including all possible changes that the
user might have done, with or without saving them). Instead, when reading the 3 variables directly via

vars. get (..) you will only get the changed datasets, not all of them.

10.1.3.3.2. Implicit refreshing

Calling the above variables is also used for marking a specific process as being implicitly dependent of
one or all of these variables and thus establishing an efficient auto-refresh. Here is an example included

in the xRM project:

E] Person_entity.Communications.ContactsMainCountry_param.valueProcess.js

Source History [P Q & aT LS ¢

The advantages of these implicit dependencies are:

® Avoiding an explicit refresh, which would always trigger a re-calculation, even if this is not
necessary in every case (which, in turn, decreases the system’s performance - see AID066

Performance Optimization).

® Restricting refreshes to cases that actually include changes.

You can think of this kind of refresh definition as being similar to the "meta information" commonly

used in various frameworks (in Java mostly defined via annotations).

10.1.3.4. Further information
Find more information on these variables via

® their JSDoc: Type, e.g.,
Enti t yConsuner RowsHel per. or
vars. get ("$fi el d. MyConsuner Fi el d.
and press CTRL+SPACE, then you will see the available methods/variables; and if you select one

of them, you their documentation will be displayed as JSDoc.

e performing a full-text search over the complete xRM project, using the methods'/variables'
names as search term: You will find various implementation examples that will help you to

understand the functionality even better.

10.2. Using keywords (predefined values)

Now we proceed to another task, which can be performed by using the Provider-Consumer principle,
and this time also a Parameter is required:

In some cases it is useful to restrict the field values that can be entered to a limited number of
predefined values. E.g., we want to avoid that the same manufacturer is spelled in different ways for
different cars, e.g. "Mercedes" and "Daimler Benz", or, as for colors, "Red" and "red". This would lead

to inconsistencies and disturb data filtering.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

A

In ADITO, sets of predefined values are called "keywords". A single keyword consists of

® one "keyword category", see KeywordCategory_entity and the corresponding database table
AB_KEYWORD_CATEGORY. In the client, you can create a keyword category via Administration >
Keyword Category. In our example, the category is "CarColor". Each category is identified by its
AB_KEYWORD_CATEGORY_ID, which is a UID. It has further fields in order to define, e.g.,

o the sorting: SORTINGBY (0 = "manual”, see below; 1 = by title; 2 = by translated title)

® one or multiple "keyword entries", see KeywordEntry_entity and the corresponding database
table AB_KEYWORD_ENTRY. In the client, you can create a keyword entry via Administration >
Keyword Entry. Keyword entries are the selectable values of a keyword, e.g., "green", "red", and

"blue". Each keyword entry has
© aunique identifier AB_KEYWORD_ENTRYID, which holds a UID
© an additional, non-unique identifier KEYID, whose value is cleartext, e.g. "GREEN"

o a TITLE, which is used in the selection components (combo boxes, etc.) of the client, e.g.

"green"

o further fields for defining, e.g., the position in a selection list (when "manual” sorting is
set in the keyword category), or the system relevance ([ISESSENTIAL]), meaning whether

or not a keyword entry is used in the code.

® one or multiple "keyword attributes", see KeywordAttribute_entity and
KeywordAttributeRelation_entity and the corresponding database tables
AB_KEYWORD_ATTRIBUTE and AB_KEYWORD_ATTRIBUTERELATION. In the client, you can create
a keyword attribute via Administration > Keyword Attribute. Each keyword attribute is created
for one specific keyword category and has a specific data type (e.g., Boolean). The effect is, that
for every keyword entry of this keyword category the client administrator can then assign this
attribute and set an attribute value.
We will not use keyword attributes for our carpool example, but you may look at an example in
the xRM project: COMMOBIL is one of several keyword entries of category
CommunicationMedium. "contentType" is the name of one of several keyword attributes
defined for the category CommunicationMedium; "contentType" has the data type "String". This
allows the client administrator to assign this keyword attribute "contentType" to keyword entry
COMMOBIL and set a free text value for it, namely "TELEPHONE". This in turn is then used for
postprocessing logic, e.g., for formatting purposes (see, e.g., valueProcess of
Communication_entity’s EntityField ADDR).
NOTE: Do not mix up datasets of "keyword attributes" (KeywordAttribute_entity) with datasets
of "attributes" (Attribute_entity). These are 2 completely separate parts of the xRM project, and

they have completely different purpose and handling.

Further on, you will learn how to make the values (entries) of a keyword selectable for a specific

A

EntityField. In the EntityField, only a reference to the keyword entry (the so-called KEYID) is stored, but

an automatism makes sure that, in the client, the keyword entry’s TITLE is displayed.

Thus, the first step is to insert some new datasets in the database tables AB_KEYWORD_CATEGORY and
AB_KEYWORD_ENTRY. Again, we use Liquibase. Let’s start with the colors.

Any keyword that is used in the code (process, library, etc.) of an ADITO project,
must be marked as "essential", by setting the corresponding database field
AB_KEYWORD_ENTRY.ISESSENTIAL to value "1", which correspondents to "Yes"
o ("true"). This makes sure that even the client administrator cannot delete the
keyword in the web client ("Delete" button/option is not active/shown in the Views

of Context KeywordEntry), because otherwise errors could occur.

If you want to add flexible features to the datasets of an Entity (e.g., like in this case,

the color of a car, along with selectable values "green", "red", "blue", etc.) you have,

in principle, at least the following 2 options:

® Add an additional EntityField, which is related to Keywords Entries (like we
g will do it in our carpool example).
® Make the client-side setting of Attributes available.
Each approach shows notable advantages and disadvantages, in particular, as
performance and usability are concerned. Therefore, we strongly recommend you

to read appendix "EntityField/Keywords vs. Attributes", after you are finished with

the carpool example project..

10.2.1. Example: Car colors

In the "Projects" window, open the folder alias > Data_alias > "example_carpool". In this folder create a
new changeset XML file and name it "init_carcolor" (the extension "xml" will remain/be added

automatically).Replace the default code by the following code:

init_carcolor.xml

<?xnl version="1.1" encodi ng="UTF-8" standal one="no"?>
<dat abaseChangelLog xn ns="http://ww. | i qui base. org/ xm / ns/ dbchangel og" xni ns: ext="http://wm. | i qui base. org/ xnl / ns/ dbchangel og- ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" xsi:schenaLocation="http://ww. | i qui base. org/ xn / ns/ dbchangel og- ext
http://ww. | iqui base. org/ xn / ns/ dbchangel og/ dbchangel og- ext. xsd http://ww. | i qui base. or g/ xm / ns/ dbchangel og
http://ww | i qui base. or g/ xni / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.snith" id="aaa90096-2a99- 4e64- 9a5c- 9d0al8211cf 3" >
<insert tabl eName="AB_KEYWORD_CATEGORY" >
<col um nane="AB_KEYWORD_CATEGORY!I D' val ue="2aa33f 21- 6aad- 4bea- 9106- 7265db39e052"/ >
<col um nane="NAME" val ue="Car Col or"/>
<col umm nane="SORTI NGBY" val ueNuneric="0"/>
<col unmm nane=" SORTI NGDI RECTI ON" val ue="ASC'/ >
</insert>
</ changeSet >
<changeSet author="j.smth" id="075f14f a- 67a6- 4841- 8d6b- c85b7b576e82" >
<insert tabl eName="AB_KEYWORD_ENTRY" >

A

<col utm nane="AB_KEYWORD_ENTRYI D" val ue="2324a950- 6767- 4366- abf 5- a343b7f d11f 3"/ >
<col utm nane="KEYI D' val ue="RED"'/>
<col utm nane="TI TLE" val ue="red"/>
<col um nane="AB_KEYWORD CATEGORY_| D' val ue="2aa33f 21- 6aad- 4bea- 9106- 7265db39e052" / >
<col urm nane="SORTI NG' val ueNumeric="0"/>
<col utm nane="1 SACTI VE" val ueNuneric="1"/>
<col urm nane="1| SESSENTI AL" val ueNuneric="1"/>

</insert>

<insert tabl eName="AB_KEYWORD _ENTRY">
<col um nane="AB_KEYWORD _ENTRY!I D' val ue="0c89f dc7- 63ch- 4e2b- a65a- ad77d3e58cc2"/ >
<col um nane="KEYI D' val ue="YELLOW />
<col um nane="TI TLE" val ue="yel | ow'/ >
<col um nane="AB_KEYWORD CATEGORY_| D' val ue="2aa33f 21- 6aad- 4bea- 9106- 7265db39e052" / >
<col utm nane="SORTI NG' val ueNumeric="1"/>
<col um nane="| SACTI VE" val ueNuneric="1"/>
<col urm nane="| SESSENTI AL" val ueNuneric="1"/>

</insert>

<insert tabl eName="AB_KEYWORD_ENTRY" >
<col um nane="AB_KEYWORD ENTRYI D' val ue="0544cce6- 170b- 43c2- b9bc- 17c89a42c15f "/ >
<col utm nane="KEYI D' val ue="GREEN'/ >
<col um nane="TI TLE" val ue="green"/>
<col um nane="AB_KEYWORD CATEGORY_| D' val ue="2aa33f 21- 6aad- 4bea- 9106- 7265db39e052" / >
<col urm nane="SORTI NG' val ueNumeric="2"/>
<col urm nane="1SACTI VE" val ueNuneric="1"/>
<col urm nane="| SESSENTI AL" val ueNuneric="1"/>

</insert>

</ changeSet >
</ dat abaseChangelLog>

(Remove possible line breaks after copying the code.)

Explanations:

At first, a keyword category is created and named "CarColor". Afterwards, the keyword entries are
created: Column AB_KEYWORD_ENTRYID holds the primary key (mostly a UID), while the values of
column KEYID are not unique, i.e., they can (in principle) be used for multiple AB_KEYWORD_ENTRY
datasets. The column AB_KEYWORD_CATEGORY_ID holds the UID of the category of the keyword;
therefore, its value is the same for all keyword entries referring to the same keyword, here, "CarColor".
TITLE is the cleartext name of a single keyword entry, identified by KEYID. As we might use these
keywords in our ADITO project’s code (processes, etc.), we set AB_ KEYWORD_ENTRY.ISESSENTIAL to
value "1", which correspondents to "Yes" ("true") - see note above. The sorting is set to "manual"

(meaning "arbitrarily defined for each keyword entry):

® in the keyword category dataset, SORTINGBY gets value 0 (= "manual"”, meaning that the value of

the keyword entry’s field SORTING is to be respected (see below)

® in the keyword entry datasets, the values of field SORTING are set arbitrarily: "0" for RED, "1" for
YELLOW, and "2" for GREEN.
This will have the effect that, in the client, the corresponding selection list of TITLEs will be
shown in the defined order
red
yellow
green
NOTE: "Manual" sorting also means that this order will not change even in case the titles are
submitted to automatic translation (see below). (If you prefer the latter option, you need to set
SORTINGBY to value 2, which means "select by translated TITLE").

A

As mentioned before, usually, the KEYID is saved in the database, while specific configurations and
processes (see below) make sure that, in the client, the TITLE is displayed instead of the KEYID. And it’s
the TITLE that can be submitted to translation logic (see language files in the project’s folder
"language").

In order to include the above xml file in the Liquibase logic, proceed as usual: In the "Projects" window,

in the "example_carpool" (!) folder (alias > Data_alias > example_carpool), extend the code of
changelog.xml by the following line:

(...)

<i nclude rel ati veToChangel ogFil e="true" file="init_carcolor.xm"/>

o Remember that there are multiple XML files named "changelog.xml". Do not
mistake them.

Perform a Liquibase update via the context menu of "Data_alias". If required, clear the server cache in
order to see the new entries.

In principle we could, in our project’s code, relate to the new keyword in cleartext ("CarColor").
However, for multiple reasons (e.g., consistency in the case of renaming), it is better to define all
keywords' names in a central location. For ADITO xRM, this is the library KeywordRegistry basic (in the

"Projects" window, under process > libraries).

System-wide processes like KeywordRegistry basic can, in principle, be customized
according to the project’s requirements. However, this can lead to update/merge
problems whenever ADITO releases a new xRM version. Therefore, we strongly

A recommend to leave all ADITO xRM processes/libraries unchanged and create new
processes for any customized functionality, using project-specific prefixes for the
naming.

Therefore, for handling our carpool keywords, we create a new library named KeywordRegistry_carPool
(process > new ...; set process property "variants" to "libraries"). Then, we open the new library
KeywordRegistry carPool and insert the following code:

KeywordRegistry_carPool
/* Keywords for car pool exanple */

export function $Keywor dRegi stryCar Pool (){}

/1 Keyword category

A

$Keywor dRegi st ryCar Pool . carCol or = function(){return "CarCol or";};

This logic works similar to what you might know as "Enumeration" or "Constant": Instead of using the
keyword’s cleartext directly, we can now call the function SKeywordRegistryCarPool.carColor which

returns the keyword’s cleartext.

Beside a keyword category, you can also specify code to retrieve the entries of this

keyword (KEYID), i.e., in our case, the names of the colors. The syntax is as follows:

KeywordRegistry _carPool

/1 Keyword entry nanes (KEYI D)

$Keywor dRegi st ryCar Pool . car Col or $red = function(){return "RED";};

$Keywor dRegi st ryCar Pool . car Col or $yel | ow = function(){return "YELLOW;};
e $Keywor dRegi st ryCar Pool . car Col or $green = function(){return "GREEN'; };

However, you should reference a KEYID here only if it is actually used in the code. To
prevent exceptions (e.g., after deletion by mistake), these kind of KEYIDs must also
be stored with column ISESSENTIAL set to value 1 (= "true"), which has been already
done for the colors (see above Liquibase file), because we will need it for an

example in chapter "Color", subchapter of Controlling the design.

Under process > libraries you can find libraries including helper methods. If the
name is simply MyContextName_lib, e.g. Organisation_lib, the purpose of the
methods is mainly restricted to the Context. However, if the name includes "Util",
then the library includes helper methods that are of general use, e.g. FileUtil_lib or
o Util_lib. Most of the methods included in these libraries have a JSDoc explaining
details of how to use them. Furthermore, also the ADITO platform ("core") provides
helper methods - see the overview given in the documentation that you can access

via menu Help > Show Documentation.

Now that this preparatory work is done, we can go on with connecting the COLOR field with the
corresponding keyword entries, using the Consumer-Provider principle, along with a specific

Parameter:

First, look at the existing configuration of the Entity KeywordEntry entity: Double-click on it in the
"Projects" window and look at the Navigator window: You see that there already exists a Provider

named "SpecificContainerKeywords", which shows the following properties:

® dependencies: a readonly property showing all Entities that have a Consumer related to this

Provider (see Consumer’s property "fieldName")

A

® |ookupldField: KEYID (= the field containing the keyword entries to be shown)

® recordContainer: db and jDito (= the RecordContainers of KeywordEntry_entity)

Furthermore, you will recognize that the Provider "SpecificContainerKeywords" has a Parameter named

"ContainerName_param" assigned. This Parameter has its property "expose" set to true.

You can create a new Parameter in the Navigator window, if you right-click on an
Entity and choose option "New Parameter" in the context menu. After you have
named it, it appears in the folder "Parameters". If you set its property "expose" to
true, the Parameter will also appear (in grey font color) under every Provider of the
same Entity, as well as under every Consumer of other Entities, if the Consumer
references the Provider. The grey font color means that the Parameter is not yet
initialized; to set its parameters (especially, its valueProcess), right-click on the grey-
fonted Parameter and choose "Initialize" from the context menu. (If you want to
undo the initialization, right-click on the Parameter again and then choose option
"Restore Default Value". This will reset its font color from white to grey again,
indicating that it is not initialized.)

We will use this existing Parameter in the Consumer logic of Car_entity:

Create a new Consumer for Car_entity and name it "KeywordCarColors". Edit the new Consumer’s

properties as follows:

® EntityName: select "KeywordEntry_entity"

e fieldName: select "SpecificContainerKeywords"

Specify this new Consumer "KeywordCarColors" in the "consumer" property of Car_entity’s field
"COLOR".

Automatically, in the Navigator window, the above mentioned Parameter "ContainerName_param" will
appear under the Consumer "KeywordCarColors". In the Parameter’s property "valueProcess", we

enter the following code:
ContainerName_param.valueProcess

resul t.string($Keywor dRegi stryCar Pool . car Col or ());

These are the steps to create a relation (dependency) between two Entities, here, between
KeywordEntry_entity and Car_entity.

If we test our changes in the client (don’t forget to deploy first), we see that in the create dialog (click

A

on blue "plus" button), the field "Color" shows a combo box, in which you can select the colors in clear
text. However, if you create a new car dataset (including the selection of a color) and save it, all Views
do not display the color as cleartext, but instead they display the KEYID (here: a UID) corresponding to

the color. This will be explained later.

10.2.2. Example: Manufacturers

Now, repeat the steps of the previous chapter in order to turn the field MANUFACTURER from a free
text field into a field restricted to a number of predefined manufacturers' names. Again, you can use
Liquibase to create the required keyword entries - which remains the preferred way, as in the case of,

e.g., a database change, you can easily re-create the keyword entries.
Alternatively - e.g., for testing purposes - you can also generate new keyword entries via the client:

® |n the "Administration" group of the Global Menu, choose Context "Keyword Category". Click on
the "Create new" button (blue "plus") and look to the right: Instead of the PreviewView, a so-
called "SmallEditView" appears (Note: In this case, the EditView does not pop up as separate
window, but it appears directly to the right of the FilterView; these options are controlled by the
View property "size", which is by default set to NORMAL, but in this case is set to SMALL). Now,

create a new KeywordCategory and name it, e.g., "CarManufacturer".

® Then, again in the "Administration" group of the Global Menu and choose Context "Keyword

Entry".

o Click on the "Create new" button (blue "plus") and select the Keyword Category that you
have just created in the previous step (e.g., "CarManufacturer")** Then, create a first

Keyword (= "Keyword Entry"):

m Keyword Category: the KeywordCategory that you have just created (e.g.,

"CarManufacturer"):

m Title: The title of the Keyword to be used for selecting it in the client. To be more
precise, this is the respective "Key" in the language files (see chapter Language
files), enabling the Keyword to appear in the respective login language. It will be
saved in the database column AB_KEYWORD_CATEGORY.NAME.

Example: "Mercedes".

m Key: The identificator of the Keyword, to be used in code/processes to be
configured via the Designer. It will be saved in the database column
AB_KEYWORD_ENTRY.KEYID.

Example: "MERCEDES".

m Leave the flag "Active" to true.

o Create further Keywords for the same KeywordCategory, e.g., "BMW", "FORD", etc.

A

Now that you have integrated keyword logic for Car_entity fields MANUFACTURER
and COLOR, you should also adapt property contentTitleProcess of Car_entity
(otherwise, UIDs are displayed instead of the names of the manufacturers/colors in

cleartext):

Car_entity.contentTitleProcess

o inport { result, vars } from"@ditosoftware/jdito-types";

inmport { $KeywordRegi stryCarPool } from "KeywordRegistry_carPool";
inport { KeywordUtils } from"KeywordWils_|ib";

var carManufacturer = KeywordUtils. get Vi ewal ue($Keywor dRegi st ryCar Pool . car Manuf acturer (), vars. get(
"$fi el d. MANUFACTURER')) ;

var type = vars.get("$field. TYPE");

var color = KeywordUils. getVi ewal ue($Keywor dRegi st ryCar Pool . car Col or (), vars.get("$field. COLOR"));
resul t.string(carManufacturer + " " + type + " " + color);

10.2.3. Example: Currency

To implement predefined currency names is even easier, because the ADITO xRM project already
includes a keyword named "Currency", with several entries, e.g., "Euro". Furthermore, the library
"KeywordRegistry basic", already includes a function returning "Currency", and KeywordEntry_entity

includes a Provider named "SpecificContainerKeywords", which you can reference as Consumer.

You can easily extend the list of available currencies in the client, via Context "Keyword Entry" (see

menu group "Administration").

Now, try to make currencies selectable both in Context Car and in Context CarReservation.

10.3. Controlling the displayed value

In some cases, we do not want to see exactly the database value referring to the EntityField, but a value
derived or calculated from it. As for keywords, e.g., instead of the KEYID, the TITLE of the keyword entry
is to be displayed. Likewise, the user wants to read the drivers' names rather than their CARDRIVERID
or CONTACT_ID.

This transformation of an ID value into a displayed value can, in principle, be done at 2 different

locations:

® in the <field name>.displayValue field of a RecordContainer

® in the displayValueProcess of an EntityField

10.3.1. displayValue of a RecordContainer field

For every EntityField, 2 automatically prepared so-called RecordFieldMappings exist in the

A

RecordContainer (sometimes simply called "RecordFields"):

e <field name>.value: In property "recordfield", you specify the database field to be used for

saving (persisting) the corresponding value. We have already applied this in previous chapters.

e <field name>.displayValue: In property "recordfield", you specify the database field whose value
is to be displayed. If you leave it empty, property "recordfield" of the "...value" field is also used
for displaying purposes. NOTE: The displayValue is not formatted automatically (unlike the

value).

Both fields have a process property named "expression": Here, you can enter any SQL code valid in the
"select" part of the SQL statement - for example a fix value, a fully-qualified database column name, or
(a common use case) an SQL subselect that returns the preferred value/displayValue. Technically, the
result of the "expression" process is simply inserted in the SQL’s "select" part - with a leading comma,
an opening parenthesis and a closing parenthesis automatically added (so you do not need to include

outer parantheses again in the "expression").

If you have activated database logging (see chapter Logging), you can inspect the SQL generated by

ADITO on the basis of the configuration of the RecordContainer, e.g. something like this:

Generic example of SQL (DB logging output) when property "expression" has been configured

SELECT MYTABLEL. MYCOLUWMNL , MYTABLE1. MYCOLUMN2 , MYTABLEL. MYCOLUMN3 , (sel ect MYTABLE2. \YCOLUMN4 from MYTABLE2 where MYTABLE2
. MYTABLE2I D = MYTABLEL1. MYTABLE2_I D)

FROM MYTABLEL

ORDER BY <...> LIMT 400

In many cases, it is not necessary to write these subselects by yourself, but you can use existing helper

functions that return SQL code (see, e.g., the functions included in project folder process > libraries).

In a RecordFieldMapping, properties "recordField" and "expression" should never be
o set both at the same time, because "recordField" will then always be preferred by
the ADITO logic, meaning that the code entered in "expression" will always be

ignored in this case.

Be aware that using the displayValueProcess of an EntityField can be a performance

killer:

Whenever you want to control the display of a feature, using the displayValue’s

"expression" property usually enables a higher performance than other ways, in
A particular, than using property displayValueProcess of the EntityField (see below):

The technical background is that the former simply extends the SQL statement of

the loading process, while the latter initiates an additional loading process, which is

executed separately for every single dataset.

A

However, if you want to create a new dataset that includes a predefined value for a
specific field (or a combo box for selecting from a list of values), then setting
"expression" is not enough, but you additionally need to set the displayValueProcess
for this field.

To sum it up: Using the displayValueProcess of an EntityField can be a performance
killer. Thus, as a rule of thumb, you should always try to retrieve the display value
via SQL in the RecordContainer, using the "expression" property. If you need a
display value at creation time, you can additionally (not alternatively!) program a
displayValueProcess. If both "expression" and displayValueProcess are filled, the
ADITO system automatically ignores the displayValueProcess (but not the
valueProcess!), whenever a display value can be retrieved via "expression".

Find related information in appendix "Accessing the value of an EntityField".

A displayValue cannot be deactivated at runtime. If, for one and the same
EntityField, in some ViewTemplates the displayValue is to be shown and in other
ViewTemplates only the value (not the displayValue), then you can realize this by
simply creating 2 separate EntityFields that load the same value, with a displayValue

only being set for one of them.

10.3.1.1. Example: Driver’s name
CarDriver_entity.db.CONTACT _ID.displayValue.expression

result.string(PersUtils. getResol vingDi spl aySubSql (" CONTACT_ID"));

The effect of this code is that not the CONTACT_ID is displayed, but the full name and salutation of the
corresponding person. This is achieved via a helper function, included in the library Person_lib (under
process > libraries). If you are interested to know what SQL code this helper function returns, please

refer to appendix "Database Access", chapter "SQL Helper Functions".

Now that you have added this displayValue, you can refer to it and thus simplify the

code of other processes, e.g., of the Entity’s contentTitleProcess:
CarDriver_entity.contentTitleProcess

result.string(vars.get("$field. CONTACT I D. di spl ayVal ue"));

A

10.3.1.2. Example: Manufacturer

Car_entity.db.MANUFACTURER.displayValue.expression

var sgl = KeywordU il s. get Resol vedTi t| eSql Part ($Keywor dRegi st ryCar Pool . car Manuf acturer (), "CAR MANUFACTURER")
result.string(sql);

The effect of this code is that, as for the keyword "Manufacturer”, not the KEYID is displayed, but the
TITLE (cleartext, e.g., "Mercedes"). The helper function get Resol vedTi t | eSql Part returns the
required subselect for a given keyword ("Manufacturer”, returned by

$Keywor dRegi st ryCar Pool . car Manuf act ur er ()) and a given database column
("CAR.MANUFACTURER"). (If you are interested to know what SQL code this helper function returns,
please refer to appendix "Database Access", chapter "SQL Helper Functions".)

Before, you must add the line
$Keywor dRegi st ryCar Pool . car Manuf acturer = function(){return "Manufacturer";};

at the end of the existing code of library KeywordRegistry_carPool (under process > libraries).

10.3.1.3. Example: Car color

Now, try the same for car colors, on your own. Again, we do not want to see the KEYID, but the TITLE

(cleartext, e.g., "red").
Here is the solution:

Car_entity.db.COLOR.displayValue.expression

var sqgl = KeywordUtils. get Resol vedTi t| eSql Part ($Keywor dRegi st ryCar Pool . car Col or (), "CAR COLOR");
result.string(sql);

The effect of this code is that, as for the keyword "CarColor", not the KEYID is displayed, but the TITLE
(cleartext). Function get Resol vedTi t | eSql Part returns the required subselect for a given
keyword ("CarColor", returned by $Keywor dRegi st r yCar Pool . car Col or ()) and a given
database column ("CAR.COLOR").

Please note that the color might not be visible in cleartext in the EditView, unless
o you have entered a displayValueProcess of the EntityField COLOR. This will be
explained in a later chapter.

10.3.1.4. Example: Currency

If you view the entries of keyword "Currency" (with the database editor or in the client, choosing

A

Administration > Keyword Entry), you will recognize that the KEYID is not a UID, but the (also unique)
ISO 4217 Currency Codes, e.g. "EUR" or "USD". This makes it easier, as we want to use these codes for
display purposes, rather than the long versions "Euro" or "United States dollar". However, the latter is
automatically displayed when creating or editing a dataset; this is due to an automatism on the
Provider Entity for keywords (see KeywordEntry_entity.contentTitleProcess), because in most cases
TITLE is to be displayed instead of KEYID.

10.3.2. displayValueProcess of an EntityField

Another way to control the display of a field is the EntityField’s property "displayValueProcess".

If the displayValue field of a RecordContainer (e.g., "expression") is set, then the
displayValueProcess of the EntityField is automatically ignored in most cases. It is
only executed, if a display via the RecordContainer (which mostly shows the higher
performance) is not possible. The latter, e.g., happens when creating an new dataset
and, in the EditView, a specific value is to be shown (e.g., the car color in cleartext
instead of its KEYID) or preselected. This is because the displayValue field of a
RecordContainer is related to existing datasets, which means, it has no effect when
o entering a new dataset (which does not exist in the database unless the "Save"
button is clicked); therefore, in this case, you need the displayValueProcess of the
EntityField.
There might be improvements in later ADITO releases, but currently it is
recommended always to fill in both the "displayValue.expression" process of the
RecordContainer and the displayValueProcess of the EntityField, whenever you want

to control the display of a field.

10.3.2.1. Example: Car Color

To view, e.g., the color in cleartext, enter the following code in the property displayValueProcess of
Car_entity’s field COLOR:

Car_entity.COLOR.displayValueProcess

result.string(KeywordUtils.getVi ewwal ue($Keywor dRegi st ryCar Pool . car Col or (), vars.get("$field. COLOR")));

Explanations:

e $fi el d. COLORspecifies the field, whose value (here: the KEYID) is to be "translated"

e $Keywor dRegi stry. car Col or () returns the category of the keyword, whose keyword
entries hold the "translation" (i.e., KEYID and TITLE)

A

e KeywordUtil s. get Vi ewval ue returns the "translated" value (TITLE) of the given KEYID

Now that you know how to "translate" a keyword entry, you can optimize other
parts of the client, e.g., add a similar displayValueProcess for Car_entity’s field
MANUFACTURER.

10.3.2.2. Example: Currency

Here is an example how to display the price of the car along with the currency, in one single field
(PRICE).

Car_entity.PRICE.displayValueProcess

if (vars.get("$this.value") !'==null) {

var nmyPrice = vars.get("$this.value");
result.string(text.fornmatDoubl e(nyPrice, "#, ##0.00") + " " + vars.get("$field. CURRENCY"))
}

Explanations:

e vars. get ("$t hi s. val ue") returns the current value of the corresponding EntityField

(here: field PRICE). Find more information in appendix "Accessing the value of an EntityField".

e if (vars.exists("$this.value")) isrequired to avoid exceptions in case a value of
PRICE does not yet exist (e.g., when creating a new car dataset)

e text.format Doubl e(nyPrice, ", #0.00") formats the car’s price according to the
given pattern. The pattern is always to be specified the English way, i.e., a comma as thousands
separator, and a point as decimal separator. This format will be adapted automatically,

depending on your browser’s language settings.

A

10.4. Complex dependencies

ADITO enables you to combine almost arbitrary Views and establish arbitrary dependencies between
them. And, in principle, the dependencies can be arbitrarily nested - i.e., you can define that a View
depends on another View, which in turn depends on a third View etc. Using these combinations,

powerful applications can be built. We will give you a few examples.

10.4.1. MasterDetailLayout

The MasterDetailLayout enables you to specify one View as "master", on which one or more other
Views ("details") depend.

For example, if you open the Context "Company" (in the client, in menu group "Contact Management"),
you select a company dataset and then press the "Open" button. This will open the Context’s
MainView, which has a MasterDetailLayout: On the left, you see the "master", which is the
PreviewView of the company. On the right, you see the "details", which are several Views, sorted in
tabs, e.g., activities, contacts, or attributes. These "detail" Views belong to other Contexts, e.g., Activity,

Person, or AttributeRelation.

Thus, a View having a "MasterDetailLayout" often has no own View elements, but is used as a kind of
frame connecting one View (with one dataset) with one or more dependent Views (each showing one

or multiple datasets).

In most cases, an Entity’s MainView has a "MasterDetailLayout",

e with the PreviewView of the same Entity being the "master" and

o ® various Views of the same or of other Entities - often in table form - being the
"details".

Note that DashletConfigs cannot be added to Views having a MasterDetailLayout.

Now, how to configure such a combination of dependent Views via a MasterDetailLayout?

At first (after creating Context and Entity), in the "Projects" window, we create a View (usually this will
be the MainView) and set its property "layout" to "MasterDetailLayout". Consequently, a property
named "master" will appear below. This will be set later.

Now we define both the "master" View and all "detail" Views:

Double-click on the View having the "MasterDetailLayout" in the "Projects" window. Then, in the
Navigator window, right-click on the name of this View and choose "Add reference to existing View...".

A dialog with the following lines will appear:

A

® EntityField: In this combo box there are one or more options to select:

o "HENTITY": Choose this option, if you want to add a View of the same Entity (i.e., of the
Entity related to the View having the "MasterDetailLayout")

o (if existing:) All Consumers of the Entity related to the View having the
"MasterDetailLayout". Choose a Consumer if you want to add a View of another Entity,
i.e., of the Entity related to the Consumer. In many cases you must first create this

Consumer (and possibly also the related Provider), which is explained below.
e View: All Views related to the selection in the above line "entityField".

® Assign to: Leave empty.

Now, we edit the property "master" of the View having the MasterDetailLayout and set it to the View

that should act as "master". All other referenced Views will automatically be treated as "detail" Views.

In the Navigator window, the "detail" View appears on the same level as the "master" View, however,

without a prefix in the name.

In the client, the "master" View usually appears on the left, while the "detail" related Views appear on

the right, sorted in tabs.

The dependency between the "master"” View and a "detail" View is established using the Provider-
Consumer mechanism: The Provider provides (delivers) "detail" data selected according to a Parameter
specified by the Consumer, which here is the "master" View. (The Provider "exposes" a Parameter,
whose value process is set on Consumer side and works as selection criteria of what data is to be

provided). Technically, this works as follows:

® The Provider side is the Entity (!) of the "detail" View. Here,

O a Parameter must be created, whose name usually refers to the selection criteria
specified by the "master". If, e.g., the Provider provides data of contact persons working
in a specific organisation, the Parameter could be named "Orgld_param". Furthermore,
this Parameter must be exposed (property "expose" = true), i.e. "offered" to the

Consumer.

© a new Provider object must be created, whose name usually refers to the provided data.

If, e.g., the Provider provides data of contact persons, it could be named "Contacts".

o the conditionProcess of the RecordContainer must process the Parameter by including it

as data selection criteria. Here is an example how this piece of code usually looks like:

XXX_entity.RecordContainers.db.conditionProcess

var cond = newMher el f Set (" CONTACT. ORGANI SATI ON_I D', "$param Or gl d_parant');

A

result.string(cond);

In short, this code means: "If Parameter Orgld_param exists (= is "filled"), then return only
CONTACT datasets showing the ORGANISATION_ID handed over in the Parameter. If the
Parameter Orgld_param does not exist (= is not "filled"), then no condition is built, so all
CONTACT datasets are returned.

® The Consumer side is the Entity (!) of the "master" View. Here,

© a Consumer object must be created, whose name is often identical with the name of the
Provider. If, e.g., the Provider provides data of contact persons, the Consumer could also
be named "Contacts". The new Consumer gets a reference to the Provider, by setting its
properties "entityName" and "fiel[dName" (i.e., Provider name) accordingly, e.g.
"Person_entity" and "Contacts". Consequently, all Parameters exposed by the specified

Provider will be visible "under" the Consumer, in grey font color.

The grey font color means that the Parameter is not yet initialized; to
set its parameters (especially, its valueProcess), right-click on the grey
fonted parameter and choose "Initialize" from the context menu. (If
o you want to undo the initialization, right-click on the Parameter again
and then choose option "Restore Default Value". This will reset its font

color from white to grey again, indicating that it is not initialized.)

o set the respective Parameter’s property "valueProcess" accordingly. E.g., the

valueProcess' code for Parameter "Orgld_param" could look like this:
XXX_entity.Consumers. XXX.XXXId_param.valueProcess

result.string(vars.get("$field ORGANI SATIONID"));

This will change the font color of the Parameter name from grey to white.

® The dependency configured on the Consumer side is now also visible in the property

"dependencies" of the Provider object.

Now that the dependency has been established, all Views of the Consumer side are also available for
selection in the dialog "Add reference to existing View..." of the View having the MasterDetailLayout.
E.g., for OrganisationMain_view we could now add a reference to CarDriverFilter_view, by selecting the
Consumer "Contacts" in the dialog’s combo box "EntityField" and then selecting "CarDriverFilter_view"

in the combo box "View" (leave field "Assign To" empty).

10.4.1.1. Example: Showing all reservations of a driver in the MainView

A

Let’s extend Context driver by a View showing all reservations of a specific driver in the
CarDriverMain_view. As soon as the user opens a driver in the MainView (by selecting a driver and

then pressing the "Open" button), all the driver’s reservations should be displayed.

To achieve this, we use the functionality of the "MasterDetailLayout". In an earlier chapter, we had
already assigned this layout to all MainViews of our application. However, at that time we had only
specified that the respective Entity’s PreviewView is the "master" of the layout. Now we come to the
"detail" part of the MasterDetailLayout: We would like to specify CarReservationFilter_view as detail

View, depending on CarDriverPreview_view ("master").

If you try to do this immediately, by choosing "Add reference to existing View..." in the context menu of
CarDriverMain_view (Navigator window), you will notice that here we cannot select
CarReservationFilter_view yet. To make it available for selection, we first need to establish a
dependency between CarDriver_entity and CarReservation_entity, using the Provider-Consumer
mechanism.

At first, we handle the Provider side:

In the "Projects" windows, double-click on CarReservation_entity, so it will be opened in the Navigator
window. Here, right-click on CarReservation_entity and choose "New Parameter" from the context

menu. Name the Parameter "CarDriverld_param" and set its property "expose" to "true".

Again, right-click on CarReservation_entity and choose "New Provider". Name the Provider
"CarReservations".

Click on the RecordContainer "db" and edit its property "conditionProcess" by inserting the following

code:

CarReservation_entity.RecordContainers.db.conditionProcess

import { result } from"@ditosoftware/jdito-types";
i mport { newwherelfSet } from "Sql Builder |ib";

var cond = newher el f Set (" CARRESERVATI ON. CARDRI VER_| D', "$param CarDriverld_parant');
result.string(cond.toString());

This code means: If Parameter CarDriverld_param is "filled" (as it is in the Context CarDriver) then
variable cond is, e.g., "CARRESERVATION.CARDRIVER_ID = '22fe825d-3899-4f1e-873f-f5d65b88e8b2"".
(In the conditionProcess, the word "WHERE" is automatically added.) Then only those
CARRESERVATION datasets are returned that show the CARDRIVER _ID handed over in the Parameter. If
the Parameter is not filled (as it is in the Context CarReservation), then variable cond is empty, and no
condition will be applied. In this case, all CARRESERVATION datasets are shown. (If you are interested to
know in what SQL code this helper function results, simply log cond. t oSt ri ng().)

A

You can log any value by using the methods of library syst em | oggi ng:
Example code for using logging methods
var nyVariable = "testVal ue";
/1 output in the Server | og,
o /1 see "OQutput" w ndow of the Designer
| oggi ng. | og(nyVari abl e) ;

/1 output in the Cient, via popup w ndow
| oggi ng. show(nyVari abl e) ;

Furthermore you can inspect variable values as well as the code processing via the
Designer’s debugging functions. This is explained in the ADITO Designer Manual.

Now we can handle the Consumer side:

In the "Projects" windows, double-click on CarDriver_entity, so it will be opened in the Navigator
window. Here, right-click on CarDriver_entity and choose "New Consumer". Name the Consumer
"CarReservations". The Consumer will consequently appear under the node "Consumers". Set the
connection to the Provider by editing the new Consumer’s properties:

® EntityName: Select CarReservation_entity.

e fiel[dName: Select the name of the Provider, i.e., "CarReservations".

Now, the Provider’s Parameter CarDriverld_param appears as sub-node of the Consumer. Click on this

Parameter and edit its property "valueProcess" by inserting the following code:
CarDriver_entity.Consumers.CarReservations.CarDriverld_param.valueProcess

result.string(vars.get("$field. CARDRI VERI D"));

The font color of the Parameter’s name will change from grey to white.

Now that we have established a dependency between CarDriver_entity and CarReservation_entity, we
can select CarReservationFilter_view as a detail View of CarDriverMain_view: In the "Projects" window,
double-click on CarDriverMain_view to open it in the Navigator window. Here, right-click on

CarDriverMain_view and choose "Add reference to existing View..." in the context menu:

® EntityField: CarReservations (now available, due to the dependency!)

® \iew: CarReservationFilter_view

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

® Assign To: leave empty

Deploy, and open the CarDriver Context in the client. If you now select a driver and then press the
"open" button, the CarDriverMain_view will open, with the CarDriverPreview_view to the left (a box,
showing driver data) and the CarReservationFilter_view on the right, showing all reservations of this
driver, in table form. (You will be able to test this once you have processed chapter "Example: Reserve

this car", further below in this manual.)

10.4.1.2. Example: Showing all reservations of a car in the MainView

Now, with the knowledge obtained in the previous chapter, try it on your own: The task is to extend

Context "Car" by a View showing all reservations of a specific car in the CarMain_view.

First, create a new Parameter for CarReservation_entity (Navigator window: right-click on
CarReservation_entity > New Parameter), name it "Carld_param" (the Parameter name usually refers
to the consuming EntityField) and set its property "expose" to true (this will make it accessible from
outside CarReservation_entity). We need this Parameter in order to "hand over" the CARID of the
selected car from the Context "Car" to the Context "CarReservation" (see later paragraph). Therefore,

fill the valueProcess of this Parameter accordingly.

Establish a dependency via Provider/Consumer, as we had done in the previous example. Then, add

CarReservationFilter_view as a reference to CarMain_view.

In the conditionProcess of the RecordContainer of CarReservation_entity, you can simply add a second
condition for the Parameter referring to CARRESERVATION.CAR_ID:

CarReservation_entity.RecordContainers.db.conditionProcess

var cond = newWher el f Set (" CARRESERVATI ON. CARDRI VER | D', "$param CarDri ver| d_paran')
.andl f Set (" CARRESERVATI ON. CAR_I D', "$param Car | d_paramn');

result.string(cond);

If you are interested to know what SQL code this helper function produces, simply log
cond.toString().

A

10.5. Actions and ActionGroups

An Action in ADITO is an option to execute an arbitrary JDito code. Besides the predefined Actions

(save, new, cancel, delete, etc.), you can specify further Actions according to your requirements.

An ActionGroup is an ADITO model to group Actions for being used in specific ViewTemplates, e.g.,
"Table". These ViewTemplates have special properties for referencing ActionGroups, usually named

"favoriteActionGroup1", "favoriteActionGroup2", and "favoriteActionGroup3".

10.5.1. Configuration

Actions are assigned to an Entity, because they are always executed in an Entity’s Context.

To create and assign an Action, open an Entity in the Navigator window and choose option "New
Action" in the Entity’s context menu. Then, enter a name in camelCase (see ADITO Information
Document AID001, chapter "Spelling & Wording" > "ADITO models") and confirm with OK. The Action’s
name will appear under a new node named "Actions". Click on the new Action and look at its
properties:

e title: The text to be shown in the Actions menu (see below) or as Action button label.

® tooltip: The text to be shown as tooltip of the Action button.

® stateProcess: Code to specify cases when the Action should be in a specific state, e.g., disabled.
By default, all Actions are available.

® onActionProcess: The actual code that will be executed when the user selects the Action.
® isMenuAction: see sub-chapter "Appearance"

® isObjectAction: see sub-chapter "Appearance"

10.5.2. Appearance

In ADITO xRM, Actions are usually shown in the following locations:

® |n the PreviewView

o Selectable via the three-dotted button in the PreviewView. This button is part of some
ViewTemplates (in particular, the "Card"-type ViewTemplate) and usually includes the

default Action "Delete".

o As separate Action buttons (see properties "favoriteActionX" of some ViewTemplates,

particularly "Card")

® |n the FilterView, on the top of some ViewTemplates, e.g., "Table" ("see properties

"favoriteActionGroupX"). Here, Actions can appear

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

O as separate Action buttons;
o clustered in ActionGroups;

© included in the three-dotted button.
Where and when an Action appears, depends on the settings of the following properties:

® isMenuAction: defines if the Action is generally to be shown in the client. If this property is set to

false, then the Action will appear nowhere in the client, whatever the other settings may be.

® isObjectAction: defines if the Action is to be displayed in relation to one specific dataset

(selectable via the three-dotted button in the PreviewView)

® selectionType: see property description (bottom of property window)

In a FilterView, an Action is only shown, if it is part of an ActionGroup, and if this ActionGroup is
specified as "favoriteActionGroup" in the property settings of the respective ViewTemplate (e.g.,

"Table"). This is independent from the state of property "selectionType".
Table 3. Visibility of Action buttons according to property settings

isMenuAction isObjectAction | selectionType Visibility
false false UNBOUND nowhere

true false UNBOUND as button via FilterView (only when

specified via favoriteActionGroup)

false true UNBOUND nowhere (isMenuAction = false)
false false MULTI nowhere (isMenuAction = false)
true true UNBOUND PreviewView (via three-dotted button), as

button via FilterView (only when specified

via favoriteActionGroup)

true false MULTI as button via FilterView (only active, if at

least 1 dataset is selected)

false true MULTI nowhere (isMenuAction = false)

isMenuAction isObjectAction | selectionType Visibility

A

true true MULTI PreviewView (via three-dotted button), as

button via FilterView (only active, if at least

1 dataset is selected & if specified via

favoriteActionGroup)

Here is an example of additional Actions in the "Card" ViewTemplate of the PreviewView, along with

their settings:

CAR DRIVER - PREVIEW X

Frau Birgit Leicht

7eecf09a-0c82-4441-ac9a-62984¢2a3997

iconld

of action2

tooltip

automatically
added

Figure 19. Example of additional Actions in the "Card" ViewTemplate
The property settings of all 3 Actions is, in this case:

® isMenuAction: true
® isObjectAction: true

® selectionType: MULTI

Furthermore, action2 is set in property "favoriteAction1" of the "Card" ViewTemplate of the

PreviewView.

Here is another example, showing Actions that appear on the top of the "Table" ViewTemplate of the

FilterView:

A

Car Driver

CAR DRIVER ID CONTACTID AGE DRIVING EXPERIENCE DRIVING TE
7eecf09a-0c82-4441-ac9a-62984¢2a3997 Frau Birgit Leicht 18 6 Jul30,2
b63e3e60-1cc6-4c00-97e1-068925616fdb Frau Lisa Sommer 31 16 Dec 20, 2003
cea610ed-38f7-45a2-97e6-fa47507addcc Herr Markus Altinger 50 7 Dec10, 2012

Figure 20. Example of additional Actions in the "Table" ViewTemplate

All 8 Actions are included in an ActionGroup (Navigator > Entity > Context Menu > New Action Group):

v E’] CarDriver_entity
> I RecordContainers
Bl Fields
Bl Providers
Bl Consumers
& Actions
action1
action2
action3
MyActionGroup
groupAction1
groupAction2
groupAction3

-3
-3
-3
d:' groupAction4
-3
-3
o

2
?
>
W

groupAction5
groupActioné
groupAction7
groupAction8

Figure 21. Example configuration of an ActionGroup
There are 2 ways to assign an Action to an ActionGroup:
1. Right-click on the ActionGroup and choose option "New Action" in the context menu.

or

A

2. Create a new Action via the context menu of the Entity (Navigator > Entity > Context Menu >

New Action) and then drag and drop it with the mouse pointer into the ActionGroup.
The property settings of all 8 Actions in the above example is as follows:

® isMenuAction: true
® isObjectAction: false

® selectionType: MULTI

Furthermore "MyActionGroup" is set in property "favoriteActionGroupl" of the "Table" ViewTemplate
of the FilterView.

As you can see in the client screenshot, all 8 Actions are inactive. This is because property
selectionType is set to MULTI, but none of the datasets is selected. As soon as one dataset is selected,

all 8 Actions will become active.

You can also see that the first 4 Actions of the ActionGroup are displayed as separate buttons, while all

further Actions are included in an Action list that appears if you click on the three-dotted button.

In the property sheet of some ViewTemplates, particularly those of type "Table", you can set up to 3
ActionGroups as "favoriteActionGroup". Please note: The display logic of property
"favoriteActionGroupl" is different from the logic of properties "favoriteActionGroup2" and
"favoriteActionGroup3". To watch the effect, please add 2 further ActionGroups and distribute the

groupActions to these (using "Drag & Drop") as follows:

A

CarDriver_entity - Navigator
v D CarDriver_entity
> Ml RecordContainers
> Il Fields
> Ml Providers
> Ml Consumers
v (@ Actions
action1
action2
action3
MyActionGroup
-d:' groupAction1
groupAction2
-d:' groupAction3
d:l groupAction4
groupAction5
ActionGroup2
groupAction6
-& ActionGroup3
groupAction?
-d:' groupAction8

Figure 22. Example configuration of multiple ActionGroups

Furthermore, please set, separately for every Action and every ActionGroup, the following properties

(enter any values you like):

e "title": In the client, this text will act as label (if the Action appears as separate button), or as

Action list entry (if the Action appears in a combo box), respectively.

® "iconld" (choose any icon from the combo box): In the client, this icon will appear to the left of

the title - or alone, if "title" is not set.

Setting an icon is especially important, if you view ADITO on a small screen,
g because in this case, the buttons are shown without "title" text (label). Thus,
if you have not set an icon, you cannot identify the button, as it only appears

as empty square.

After deploying, the result in the client should be something like this (select any dataset):

A

a B a Q “? CarPool
Car Driver
= e i} Group Action1 [Group Action2 @ = 1 ActionGroup2 Vv © Action Group3 ™ : 25 Filter
W Group Action 5 a
CAR DRIVER ID CONTACT ID AGE DRIVING EXPERIENCE DRIVING LICENSE ISSUE DATE ~ DRIVING LICENSE ID PARKING FINES SUM ~ SI=
7eecf09a-0c82-4441-ac9a-62984¢2a3997 Frau Birgit Leicht 18 6 Jul 30, 2013 6478294854 0
I b63e3e60-1cc6-4c00-97e1-068925616fdb Frau Lisa Sommer 3 16 Dec 20, 2003 857483925612 0
cea610ed-38f7-45a2-97e6-fa47507addcc ~ Herr Markus Altinger 50 7 Dec10, 2012 TT4838920RX 0
db57a98¢-fd62-47ef-bifa-fc14ch3d2ffc Herr Albert Zweistein 50 0 Oct 31,2019 3485754RS638 0

Figure 23. Example of how multiple ActionGroups appear in the client
As you can see, the display logic is as follows:

® "favoriteActionGroupl":

o The first 4 Actions appear as separate buttons. If the screen is not wide enough, one up to
all buttons are displayed without label, only with the Actions' icons (in this example, this

is the case for groupAction3 and groupAction4).

o All further Actions are included in an Action list that appears if you click on the three-
dotted button.

® "favoriteActionGroup2" and "favoriteActionGroup3": All Actions of these ActionGroups are

grouped in separate combo boxes, showing the respective ActionGroup’s title and icon.

If you watch this example on a very small screen (e.g., of a laptop), all buttons will be shown
"abbreviated", i.e., without title, and a horizontal scroll bar is displayed in order to enable you to reach
all Actions and further buttons (e.g., "Filter"):

Car Driver

In = v] Alt () =l 1T Action Group2 @ Action Group3 WV
|

q

CAR DRIVER ID CONTACT ID AGE DRIVING EXPERIENCE DRIVING LICI =
7eecf09a-0c82-4441-ac9a-62984¢2a3997 Frau Birgit Leicht 18 6 Jul 30,2013
I b63e3e60-1cc6-4c00-97e1-068925616fdb Frau Lisa Sommer 3 16 Dec 20, 2003
ceabl0ed-38f7-45a2-97e6-fad7507addcc Herr Markus Altinger 50 7 Dec10, 2012
db57a98¢-fd62-47ef-h1fa-fc14ch3d2ffc Herr Albert Zweistein 50 0 Oct 31,2019

Figure 24. Example of ActionGroups and Actions to be displayed on a small screen (scroll bar appears)

© 2025 ADITO Software GmbH 130/ 472

A

Now, take some time and play around with these example Actions and their settings, in order to get

familiar with the respective effects.

Then, let’s extend our car pool example project by some useful Actions:

10.5.3. Example: Reserve this car

When a car is selected, the user should have the option to reserve this car via an Action. The effect of

the Action should be that the CarReservation Context is opened, with the respective car preselected.

First, we create a new Action for Car_entity, name it "reserveCar" (spelling convention: camelCase,
starting with lowercase letter), and enter "Reserve this car" as property "title". After deploying, this

Action will be immediately visible in the client, yet without effect.
Enter the following code in property "onActionProcess" of Action reserveCar:

Car_entity.reserveCar.onActionProcess

var parans = {};
var carld = vars.get("$field. CARID");

if (carld) {
parans = {
"Carld_parant : carld
b
}

var recipe = neonFilter.createEntityRecordsReci peBuilder().paraneters(parans).toString();

neon. openCont ext Wt hReci pe(" Car Reservation", null, recipe, neon. OPERATI NGSTATE_NEW ;

Explanations:

® The associative array par ans is used to carry information from the Context Car to the Context
CarReservation, when the latter is opened with the dialog for creating new datasets. In this case,
the only "workload" of par ans is CARID.

e |f you want Context CarReservation to be opened in a new browser tab, you need to set method
openCont ext Wt hReci pe’ s additi onal bool ean paraneter
"pOpenl nNewTab" to "true":
“neon. openCont ext Wt hReci pe(" Car Reservation", null, recipe,
neon. OPERATI NGSTATE_NEW nul |, true)
Just try it and watch the effect.

e Note that parameter "pOpeninNewTab" is only effective in desktop browsers.

A

It will be ignored on tablets or mobile devices, and when targeting
unsupported Views (e.g, PreviewViews or EditViews that have property "size"
set to SMALL).

The above onActionProcess is the "outgoing" process, if you like.

Similar to the Provider/Consumer mechanism, we now need to "catch" this Parameter at the "ingoing"
side, i.e., in the Context CarReservation. We need 2 separate processes: one for the CARID itself, and

one for displaying specific features of the car identified by CARID.

Using method openCont ext W t hReci pe for "jumping" into another Context is
A not possible in the RecordContainer processes on(DB)I nser t, on(DB)Updat e,
and on(DB)Del et e. This can lead to various errors.

CarReservation_entity.CAR_ID.valueProcess

if (vars.exists("$param Carld_parani))

{
result.string(vars.get("$param Carld_paran'));
}
Explanation:

Conditioni f (vars. exi sts("$param Car | d_parant')) isonly true, whenever Context Car
is opened via the "reserveCar" Action. This if clause prevents overwriting the value of CAR_ID in

readonly Views (where the Parameter does not exist).

Instead of CAR_ID, there should be displayed manufacturer, type, and color. We load this feature from
the database with an SQL statement:

CarReservation_entity.CAR_ID.displayValueProcess

var carld = vars.get("$field. CAR_ID");

if (carld)
{
var di spl ayData = newSel ect (" MANUFACTURER, TYPE, COLOR')
.from("CAR")
.where("CAR CARI D', carld)
.arrayRow();

var car Manufacturer = KeywordUtils. get Vi ewal ue($Keywor dRegi st ryCar Pool . car Manuf acturer (), displayData[0]);
var type = displayData[1];
var color = KeywordUtils. getVi ewval ue($Keywor dRegi st ryCar Pool . car Col or (), displayData[2]);

resul t.string(carManufacturer + " " + type + " " + color);

Explanations:

A

® Using prepared statements via Sgl Bui | der is a safe way to execute an SQL statement.
ar r ay Rowspecifies the return type of the SQL query: The contents of the first row is returned
as a one-dimensional array (on the contrary, ar r ay Col umm would return the contents of the

first column as a one-dimensional array).

® The required values are retrieved by SQL. However, instead of writing something like
(..) select MANUFACTURER, TYPE, COLOR from CAR where CARID = carld
()
we use prepared statements. The advantage of prepared statements is, amongst others, a higher

security, because it prevents hacking by SQL injection.

10.5.4. Example: Reserve car for this driver

Now, use the previous example as a pattern for adding an Action that enables the reservation of a car
for a given driver. l.e., we want to first select a driver in Context CarDriver and then "jump" to Context

CarReservation, with the driver preselected. Try it on your own, before reading the solution.
Solution:

First, we create a new Action for CarDriver_entity, name it "reserveCarForDriver", and enter "Reserve
car for this driver" as property "title". Make sure that the Parameter "CarDriverld_param" has been
created, and its property "expose" has been set to "true" (see earlier chapter "Example: Showing all
reservations of a driver in the MainView").

Now, we enter the following code in property "onActionProcess" of Action reserveCarForDriver:

CarDriver_entity.reserveCarForDriver.onActionProcess

inport { neon, neonFilter, vars } from"@ditosoftware/jdito-types";

var paranms = {};
var carDriverld = vars.get("$field. CARDRI VERI D");

if (carDriverld) {
paranms = {
"CarDriverld_param : carDriverld
H
}

var recipe = neonFilter.createEntityRecordsReci peBuil der().paranmeters(parans).toString();

neon. openCont ext Wt hReci pe(" Car Reservation", null, recipe, neon. OPERATI NGSTATE_NEW nul |, true);
We now need to "catch" this Parameter in the Context CarReservation:
CarReservation_entity.CARDRIVER_ID.valueProcess

if (vars.exists("$param CarDriverld_paran'))

{
result.string(vars. get("$param CarDriverld_parani));

A

Instead of CARDRIVER_ID, there should be displayed salutation, first name and last name of the driver .

We load this feature from the database with an SQL statement:
CarReservation_entity.CARDRIVER_ID.displayValueProcess

var carDriverld = vars.get("$field. CARDRIVER ID");

if (carDriverld)

{
var displayData = newSel ect (" SALUTATI ON, FI RSTNAME, LASTNAME")
. from(" PERSON")
.joi n(" CONTACT", "CONTACT. PERSON_| D = PERSON. PERSONI D")
.joi n("CARDRI VER', " CARDRI VER CONTACT_|I D = CONTACT. CONTACTI D")
. wher e(" CARDRI VER. CARDRI VERI D', carDriverld)
.arrayRow() ;
var salutation = displayDatalO0];
var firstnane = displayDatall];
var | astname = displayDatal 2];
result.string(salutation + " " + firstnane + " " + |astnane);
}
Explanation:

As SALUTATION, FIRSTNAME, and LASTNAME are not fields of table CARDRIVER, but of table PERSON,
we need a join in the SQL select statement.

Loading and writing datasets via Sql Bui | der (or via the older methods db. xxx)
ignores the permissions (access rights) configured by the client administrator! To
load or write data respecting these permissions,

® set property "usePermissions" of the respective Entity/EntityFields to "true"

A (checkbox checked) and

® use the functionality of "LoadEntity" and "Write Entity" instead - see

appendix LoadEntity and WriteEntity.

For further information on setting permissions please refer to the ADITO
documentation for client administrators.

10.5.5. Multi Selection Action

To see an example of how a multi selection action can be implemented, take a look at the

A

ChangeParti ci pant St at us_act i on action of the Event Parti ci pant _enti ty of the
XRM Basic project.

In this example an additional context is used, Event Parti ci pant sChangeSt at us. It has it own
view which serves as input. Its entity uses a dataless recordcontainer, contains one field which is linked
via a consumer to the keyword entity to get the participant states. It also contains an action which will

contain the change logic.

The action found in Event Par ti ci pant reads the current selection as recipe and puts in forward
via a parameter into the additional context. The action of the

Event Parti ci pant sChangesSt at us uses the recipe to get all ids of the selected records and
writes the new status via the Sgl Bui | der . At the end of the action the current image (the view of
Event Parti ci pant sChangesSt at us) is closed.

10.6. Calculated fields

The values of some EntityFields are the result of calculations, i.e., they are not only simply loaded from

one single database column.
To assign a value to these kind of fields, there are 2 different ways:

® property "expression" of the EntityField’s RecordFieldMapping in the RecordContainer

® property "valueProcess" of the EntityField
These 2 variants will be explained below.

Calculated EntityFields are often readonly, i.e., they are not editable. In these cases, make sure that its
property "state" is set to READONLY or DISABLED.

10.6.1. expression (RecordContainer)

The preferred way of calculating the value of an EntityField is property "expression" of the EntityField’s
RecordFieldMapping. This property is defined with an SQL term e.g.

® a fix String or number

® the name of a database column or a combination of multiple database columns

® a sub-SELECT

® a complex calculation using specific SQL functions
Whenever an EntityField’s value has to be calculated, you should always first try to realize it this way,

because the second way - using the valueProcess - can have serious performance-related impacts (see

next chapter). Realizing a calculated EntityField via the "expression" property might include the

A

challenge that you are not so familiar with programming complex algorithms via SQL, but still it will be
worth to invest much effort in doing this, in order to avoid performance issues related to using the

valueProcess (see next chapter).

The result of the code inserted in property "expression" will then be included in the "select" part of the

SQL produced by the RecordContainer, e.g., when loading a table.
Example of code of property "expression" of an EntityField’s RecordFieldMapping

var nySql Expression = "' This is a test value."";
resul t.string(nySqgl Expression);

If you would log the SQL produced by the RecordContainer, you would see, for this example, something
like this:

sel ect MYCOLUWNL, MYCOLUM2, ('This is a test value.'), MYCOLUMM, (...)
from MYTABLE

(...)

o As you can see, ADITO automatically surrounds the result of the expression by round

brackets, so you do not need to care for this when writing subselects, etc.

10.6.2. valueProcess (EntityField)

The second way of calculating the value of an EntityField is to use the EntityField’s valueProcess. This

property is defined with JDito code.
Example of code of property "valueProcess" of an EntityField

var nyValue = "This is a test value.";
result.string(nyVval ue);

10.6.2.1. Common use cases

The most common cases of using a valueProcess is

® to preset the value of an EntityField
o when the EditView is opened in order to create new dataset;
o dependent on the value of another EntityField.

® to calculate an EntityField’s value, when a calculation is not possible via the expression of the

RecordFieldMapping (see previous chapter). But, in this case, consider the following warning!

A

10.6.2.2. Warning

The same warning that was given for the displayValueProcess, also applies for the
valueProcess of an EntityField. The following examples are only for demonstration
purposes. Be aware that using the valueProcess of an EntityField can be a
performance killer:

Whenever you want to calculate the value of an EntityField, using the value’s
"expression" property in the RecordContainer usually enables a higher performance
than other ways, in particular, than using property valueProcess of the EntityField
(see below): The technical background is that the former simply extends the SQL
statement of the loading process, while the latter initiates an additional loading
process, which is executed separately for every single dataset.

However, if you want to create a new dataset that includes a predefined value for a
specific field (or a combo box for selecting from a list of values), then setting
"expression" is not enough, but you additionally need to set the valueProcess for
this field.

To sum it up: Using the valueProcess of an EntityField can be a performance killer.
Thus, as a rule of thumb, you should always try to calculate the value via SQL in the
RecordContainer, using the "expression" property. If you need a value at creation
time, you can additionally (not alternatively!) program a valueProcess. If both
"expression" and valueProcess are filled, the ADITO system automatically ignores the
valueProcess (but not the displayValueProcess!), whenever a value can be retrieved
via "expression".

Find related information in appendix "Accessing the value of an EntityField".

10.6.2.3. Conditional execution

In most cases a valueProcess contains an "if" clause to define a condition for what code is to be

executed, or if the valueProcess is to be executed at all. In this context, you need to consider that the

valueProcess is triggered at various occasions (see following chapter). Thus, you should define the

conditions for executing the respective code very precisely.

Example:

If you want to preset the value of an EntityField only in case it has not been set yet, the following code

would be unsufficient, as an existing value would be overwritten:

result.string("preset subject text");

Instead, you need to included suitable conditions, like those in the following example:

A

if (vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_NEW &&
vars. get ("$this.value") == null)

{
}

result.string("preset subject text");

10.6.2.4. Trigger

The valueProcess is triggered at various occasions that cannot be listed completely, as there are many

influencing factors like concurrency etc. Instead, these are the rules and conditions for the trigger.
When will the valueProcess of an EntityField principally be executed?

1. Depending on the operating state (var s. get (" $sys. operati ngstate"))

a. VIEW
In Operating state VIEW, ADITO tries to minimize the loading time by preferring to load

the value via the RecordContainer. Therefore, the valueProcess is only executed, if

i. the EntityField’s value is available in the client, i.e., the EntityField is referenced in a

ViewTemplate, and

ii. the value of the EntityField has not already been loaded via the RecordContainer

(e.g., via the RecordFieldMapping’s property "expression").
This principle is also true for the displayValueProcess.

b. NEW/EDIT
In the operating states NEW and EDIT, the valueProcess

m will be executed for every relevant EntityField, i.e., in these operating states, more
EntityFields are involved than in operating state VIEW: The valueProcess is
executed for all EntityFields that are connected in the RecordContainer, i.e., that

are being saved in the database - as well as all mandatory EntityFields.
m is often used for presetting values or transforming values input by the user.

2. Dependencies between EntityFields:
If the value of an EntityField is accessed in any process (e.g., but not only, in the valueProcess of
another EntityField), the EntityField’s value must be calculated under the actual conditions,

which also can mean the execution of its valueProcess.

As performance problems are sometimes related to undiscovered executions of the
valueProcess, it is generally helpful to activate JDitoLogging and track all executed

processes. This will also reveal all occasions the valueProcess is triggered, which can

A

be the basis for performance optimization. (Find more information in chapter

Logging.)

10.6.2.5. Examples

In the xXRM project, you can find a lot of examples of implementations of calculated EntityFields: Simply

do a full-text search for the terms "expression" or "valueProcess" and scan the results.

Besides, we will now also extend our carpool example project by a few valueProcesses and expressions.

10.6.2.5.1. Example: Driving experience

In CarDriver_entity, the driving experience of a driver (field "drivingExperience") is calculated on the
basis of the issue date of the driver’s driving license (field DRIVINGLICENSEISSUEDATE).

To display the driving experience in years, we enter the following code:

CarDriver_entity.drivingExperience.valueProcess

var drivingLi censel ssueDate = vars. get ("$fiel d. DRI VI NGLI CENSElI SSUEDATE") ;
if (drivingLicensel ssuebDate) {

var drivingExperience = Math.fl oor(DateUtils.getDayDifference(drivingLicensel ssueDate)/ 365)
resul t.string(drivingExperience);

Explanation:

We calculate the driving experience (rounded to years), using the predefined function

DateUti| s. get DayDi f f er ence and dividing the result by 365 (which is simple but not 100%
precise, of course - you might replace it by a better algorithm, if you like).

The above example and the following examples are only for demonstration
purposes. As explained before, you should always be aware that using the
valueProcess of an EntityField can be a performance killer and that you should
A always prefer to realize calculation logic in the property "expression" of the
corresponding record field, if this is possible. You may try this on your own, for the

above example and for the below examples, if you like.

10.6.2.5.2. Example: Age

The age of a driver (CarDriver_entity’s field "age") is calculated on the basis of the value of
Person_entity’s field DATEOFBIRTH, whose value is stored in the database field PERSON.DATEOFBIRTH.
Now, as you have seen the preceding example and you know how to load fields from the database, try

to write the code for the valueProcess on your own, before looking at the solution.

© 2025 ADITO Software GmbH 140/ 472

A

Solution:
To display the age, we enter the following code:

CarDriver_entity.age.valueProcess

var contactld = vars.get("$field. CONTACT |ID");
if (contactld) {

var dateOBirth = newSel ect (" DATEOFBI RTH")

. from(" PERSON")

.j oi n(" CONTACT", " CONTACT. PERSON | D = PERSON. PERSONI D")
. wher e(" CONTACT. CONTACTI D', contact | d)

.cell();

if (dateO'Birth) {
var age = Math.floor(DateUtils.getDayDifference(dateOBirth)/365) ;
result.string(age);

Explanations:

First, we retrieve the date of birth by a SQL select statement on table PERSON. Other than
arrayCol utm(), which we had used before, cel | () returns one single database field. Then, we
proceed the same as for field drivingExperience (see above).

As mentioned before, for performance reasons, you should avoid using a
g valueProcess or displayValue process without filling also the "value.expression" /
"displayValue.expression" processes in the RecordContainer. Therefore, here is an

example of how to calculate the age from a date of birth via SQL code.

The following example code refers to the xRM project’s standard Context "Person": Simply add an
EntityField "age" to Person_entity and add this new field as new column of PersonFilter_view’s

ViewTemplate "Persons". Then add the following code in the corresponding "expression" process:
Person_entity.db.age.value.expression

var sql Utils = new Sgl Maski ngUtils();
var sql = sql Utils.year FronDat e(" CURRENT_DATE")
£ oo
+ sgl Utils.yearFronDat e("dat eof birth")
+ n - n
+ Sql Bui | der. caseWen(
II(II
+ sqgl Uil s. mont hFronDat e(" CURRENT _DATE")
+ " <" 4+ sqglUils.nmonthFronDat e("dateofbirth")

A

OoRrR ("
+ sqgl Uil s. mont hFronDat e(" CURRENT _DATE")
+ " =" 4+ sqglUils. nmonthFronDat e("dateofbirth")
+ " AND "
+ sgl Uil s. dayFronDat e(" CURRENT_DATE")
+ " <" + sqglUils.dayFronDate("dateofbirth")

.then("1")
. el seVal ue("0")
.toString();

result.string(sql);

After deploying, you will see the age displayed in the new column of PersonFilter_view (for each
PERSON dataset that includes a DATEOFBIRTH value).

0 Now, try to use this code pattern for creating a similar suitable code for process

CarDriver_entity.db.age.value.expression.

10.6.2.5.3. Example: Sum of fines

CarDriver_entity’s field "speedingFinesSum" is also a calculated field. It sums up all values of
CarReservation_entity’s field "speedingFine", as far as referring to the given driver. Thus, we again need

a database query for our valueProcess. Try it on your own, before looking at the solution.

A

Solution:

CarDriver_entity.speedingFinesSum.valueProcess
var carDriverld = vars.get("$fi el d. CARDRI VERI D") ;
if (carDriverld) {

var speedi ngFi nesArray = newSel ect (" SPEEDI NGFI NE")
. f r om(" CARRESERVATI ON')

. wher e(" CARRESERVATI ON. CARDRI VER | D', carDriverld)
.arrayCol um();

var sum = 0.0;
for (let i = 0; i < speedingFinesArray.length; i++) {
i f (speedingFinesArray[i]) {
sum += par seFl oat (speedi ngFi nesArray[i]);

}
}

result.string(sum;

Explanations:

e This time, we use function ar r ayCol umm() , because we want to get all values of a column,
SPEEDINGFINE. As ar r ay Col urm(') always returns an array of Strings (ignoring the data type
of the database column), we must convert it into a decimal value (function par seFl oat)

before summing it up. For simplicity’s sake, we ignore the currency here.

® The solution via a loop was only used to demonstrate function ar r ay Col unm() . You will
surely have noticed, that the better performance will be achieved by calculating the sum directly
in the SQL statement. Try also this way now, by modifying the code. You may use function

cel | () inthis case, as this returns only one single value, as string, not as array.

e if (speedingFinesArray[i]) reflects the "implicit type conversion" functionality of
JavaScript. Here, it is a simple way to avoid the sum becoming NaN, if a CARRESERVATION
dataset shows no SPEEDINGFINE value - as, in this case, speedi ngFi nesArray[i] is
converted into the boolean value "false".

Of course, instead of calculating the sum via a "for" loop, you can also retrieve the
o sum via a modified SQL statement, in one step. Try it by yourself - but be aware that
this might restrict your ADITO project to a specific database dialect (as SQL "sum"

functionality differs between the dialects of the various database types).

Next, try to use your knowledge in order to write the code for the valueProcess of field

"parkingTicketFinesSum" by yourself, before looking at the solution.

A

© 2025 ADITO Software GmbH

144 / 472

A

Solution:
CarDriver_entity.parkingTicketFinesSum.valueProcess

var carDriverld = vars.get("$fi el d. CARDRI VERI D") ;

if (carDriverld) {

var par ki ngTi cket Fi nesArray = newSel ect (" PARKI NGTI CKETFI NE")
. from(" CARRESERVATI ON")

. wher e(" CARRESERVATI ON. CARDRI VER | D', carDriverld)

.arrayCol um();

var sum = 0. O;
for (let i = 0; i < parkingTicketFinesArray.length; i++) {
i f (parkingTicketFinesArray[i]) {
sum += par seFl oat (par ki ngTi cket Fi nesArray[i]);
}
}

result.string(sum;

10.6.2.5.4. Example: Sum of damages

Car_entity’s field "damages" is also a calculated field. It summarizes all texts of CarReservation_entity’s
field "damage", as far as referring to the given car. Thus, we again need a database query for our

valueProcess. Try it on your own, before looking at the solution.

Solution:

Car_entity.damages.valueProcess
var carld = vars.get("$field. CARID");
if (carld) {
var damagesArray = newSel ect (" DAMAGE")
. f r om(" CARRESERVATI ON')
. wher e(" CARRESERVATI ON. CAR_I D', carld)
.arrayCol um();

var al | Damages = dammgesArray.join(";

result.string(all Damages);

A

Furthermore, it is recommended to set property contentType of Car_entity’s field "damages" to

LONG_TEXT, as this results in a scrollable text box shown in the client.

10.6.2.5.5. Example: Mileage

The value of Car_entity’s field mileage is the maximum value of CarReservation_entity’s field

MILEAGERETURN, as far as the respective car is concerned. Try to write the required valueProcess on

your own, before looking at the solution.

A

As always, there are multiple ways of solving the task - this is a suggestion:
Car_entity.mileage.valueProcess
var carld = vars.get("$field. CARID");
if (carld) {
var maxM | eage = newSel ect (" max(M LEAGERETURN) ")
. from(" CARRESERVATI ON")
. wher e(" CARRESERVATI ON. CAR I D', carld)
.cell();

result.string(mxM | eage);

10.6.2.5.6. Example: carValue

The value of the car depends on its price and on its age. Per day, the value decreases by 0.03%.
Furthermore, if the car has any damage, its value should be reduced by another 10%. Try to write the

required valueProcess and displayValueProcess on your own, before looking at the solution.

A

Our suggested solution is:

Car_entity.carValue.valueProcess

var price = vars.get("$field. PRICE");
var dateOf Manufacture = vars. get ("$fi el d. MVANUFACTUREDATE") ;
var dameges = vars.get("$field.damages");

if (price & dateO Manufacture) {
var value = price;
var agelnbDays = Math.floor(DateUtils.getDayDifference(dateCO Manufacture));
/1 just a random percentage as exanpl e
var val ueLossPercent = -0.03;
/! random fornmula, simlar to
/'l calculation of "conmpound interest”
val ue *= Mat h. pow((1+(val ueLossPercent/ 100)), agel nDays);

i f (damages) {
/1 just a random factor as exanple
value *= 0.9;

}

resul t.string(val ue);

Car_entity.carValue.displayValueProcess

var carValue = vars.get ("$this.value");
var currency = vars.get ("$fiel d. CURRENCY");

if (carValue && currency) {
result.string(text.formatDoubl e(carVal ue, "#, ##0.00") + " " + currency);

}

10.6.2.5.7. Example: Availability

Car_entity’s field AVAILABILITY indicates whether or not a car is currently available, i.e., if it is currently
lent (reserved) or not. Furthermore, a reservation should not be possible, if a car is not available in the

requested timespan.

First try to write the required valueProcess on your own, before looking at the solution.

A

Our suggestion for the solution is:

Car_entity.availability.valueProcess

var carld = vars.get("$field. CARID");

i f

(carld) {

var currentReservationld = newSel ect (" CARRESERVATI ONI D")
. f r om(" CARRESERVATI ON')

. wher e(" CARRESERVATI ON. CAR_I D', carld)

.and(" STARTDATE < CURRENT_TI MESTAMP")

. and(" ENDDATE > CURRENT_TI MESTAMP")

.cell();
var availability = "NO';
if (currentReservationld == "") {

availability = "YES";
}

result.string(availability);

If you are interested to know what SQL code this helper function returns, please refer to appendix

"Database Access", chapter "SQL Helper Functions".

To decline a reservation of a car that is not available in the entered timespan, we use the property

"onValidation" of CarReservation_entity. The code of this property will be executed, whenever the user

enters a value of a field.

CarReservation_entity.onValidation

var
var
var
var

carld = vars.get("$field. CARID");

startDate = vars.get("$fiel d. STARTDATE") ;

endDat e = vars. get (" $fi el d. ENDDATE");

reservationld = vars. get ("$fiel d. CARRESERVATI ONI D") ;

if (carld && startDate && endDate)

{

var futureReservations = newSel ect (" CARRESERVATI ONI D, STARTDATE, ENDDATE")
. fron(" CARRESERVATI ON")

. wher e(" CARRESERVATI ON. CAR_| D", carld)

. and(" ENDDATE > CURRENT_TI MESTAMP")

.table();
for (let i =0; i < futureReservations.|length; i++)
{

| et aReservationld = futureReservations[i][0];

let aStartDate = futureReservations[i][1];
| et aEndDate = futureReservations[i][2];
if ((reservationld != aReservationld) & !(aStartDate > endDate || aEndDate < startDate))
{
result.string("Car is not available for the requested tinespan.");
br eak;

A

Explanations:

® At first, we check if the user has selected a car as well as the start date and the end date of the
reservation timespan.

® Then we load STARTDATE and ENDDATE of all reservations of the selected car, as far as they
reach into the future (we do not need the past ones, as reservations will be done only for
present or future)

® In aloop, we check if any of the existing reservations overlap with the timespan the user has
selected (in fact, this "if" condition means "the opposite of no overlap"). If so, the result of the

process is a text indicating that the car is not available for the requested timespan.
e |f any text is given as result of the onValidation process, an automatism makes sure that
o the validation is considered as "false";
o the given text is displayed to the right of the "Save" button;

o the "Save" button is disabled until the next call of the onValidation process.

The onValidation process is one of several processes being executed when an Entity
is processed. It is important to consider the order, in which these processes are

A internally handled. Find more information in appendix "Order of execution of Entity
processes". The onValidation process should only be used to validate data. Don’t
react to changes here!

Loading and writing datasets via Sql Bui | der (or via the older methods db. xxx)
ignores the permissions (access rights) configured by the client administrator! To
load or write data respecting these permissions,

® set property "usePermissions" of the respective Entity/EntityFields to "true"

A (checkbox checked) and

® use the functionality of "LoadEntity" and "Write Entity" instead - see

appendix LoadEntity and WriteEntity.

For further information on setting permissions please refer to the ADITO
documentation for client administrators.

Now that we have configured the EntityField "availability", we can use it, e.g., in a

ScoreCardViewTemplate that is placed as footer of the CarPreview_view (see chapter ScoreCard for

A

further information):

® Open CarPreview_view in the Navigator window.

® Add a ViewTemplate of type "Score Card". In the "Add new ViewTemplate" dialog, choose

"Assign to ... footer".
® Configure the ViewTemplate’s properties as follows:
o title: Can be left empty, as the title of the EntityField will be used automatically.
o fields: Choose EntityField "availability"
After deploying and refreshing, the ScoreCardViewTemplate shows "YES" or "NO", depending on the
actual availability. Now, we can optionally add a link to the ViewTemplate, in order to execute an
Action:
® Create an Action named "availabilityAction"
® Un-check the checkbox of property "isObjectAction"

® Fill property onActionProcess with a code that shows a popup window including a sentence

stating if the car is available or not:

var mnmyMessage;

if (vars.get("$field.availability") == "YES") {
myMessage = translate.text("This car is available.");
} else {

myMessage = translate.text("This car is not available");

}
questi on. showessage(nyMessage) ;

® Now you can reference the new Action in property "fieldActions" of the

ScoreCardViewTemplate.

After deploying and refreshing, hover over the ScoreCard with the mouse pointer: It has now got a link

to the above Action, which opens a popup dialog showing a text.

A

10.7. AggregateFields

AggregateFields are ADITO models designed for aggregating EntityField values, e.g.

® counting datasets (e.g., via their ID column)
® summing up values

® showing minimum, maximum, or average values
In most cases, aggregations are related to a grouping.

A plain example of an implementation of AggregateFields is Context "Offer" in the ADITO xRM project.
We will use this example to show the appearance of AggregateFields in the client and to explain how

they can be configured in the ADITO Designer.

10.7.1. Appearance

In the client, navigate to Context "Offer" (menu group "Sales"). In the FilterView of this Context
(OfferFilter_view), click on the view selection button (see upper right corner): Amongst other
ViewTemplates, you can choose between 3 variants of ViewTemplates of type
"DynamicMultiDataChart", which are all column charts, based on a preset grouping according to
Offer_entity’s EntityField STATUS (holding values like "Checked", "Open", "Sent", "Won"):

® Count Chart shows how many Offer datasets have which STATUS value.

® Sum Chart shows, separately for each STATUS value, the sum of all NET values (EntityField NET)
of Offer datasets that have the respective STATUS value.

® Probability Chart shows, separately for each STATUS value, the average probabilty (EntityField
PROBABILITY) of all Offer datasets that have a specific STATUS value.

Besides "DynamicMultiDataChart", there are further ViewTemplate types suitable
for processing AggregateFields. Besides, AggregateFields can also be used in a

Consumer. Find further information in chapter Properties allowing AggregateFields.

10.7.2. Configuration
10.7.2.1. when using DbRecordContainer
To configure an aggregate functionality, please proceed as follows:

1. Create an EntityField (and give it a title) as so-called "parent field" for the AggregateField (see
below). As for the aggregate-related ViewTemplates of OfferFilter_view, these are Offer_entity’s
EntityFields COUNT (Count), NET (Total net), and PROBABILTY (Probability).

A

2. Add an AggregateField to the new EntityField (and give it a title): Right-click on the EntityField
and choose option "New AggregateField" from the context menu. This will open a dialog

requesting name and parent field.

a. The name will be preset in the syntax "<EntityField name>_aggregate", which can be left

unchanged ("COUNT _aggregate", "NET_aggregate", and "PROBABILITY aggregate").

b. The parent field is, by default, the EntityField to which the AggregateField has been

added. In most cases, this can remain unchanged. (Exceptions are explained later.)

3. Open the RecordContainer node (e.g. "db") and double-click on the corresponding "xxx.value"

RecordFieldMapping, e.g. COUNT _aggregate.value, in order to initialize it.
4. In the "Properties" window, you can now configure the properties

a. recordField: Select the EntityField holding the values that are to be aggregated.
Alternatively, you can specify an SQL code in property "expression". If both properties are
set, the ADITO logic will exclusively use "expression" (same logic as for the

RecordFieldMapping of an EntityField).

b. aggregateType: Select the type of aggregation, e.g., COUNT, SUM, AVG (average),
MIN(imum), or MAX(imum).

5. Create a new ViewTemplate that can process AggregateFields (see chapter Properties allowing
AggregateFields). In our above example, these are ViewTemplates of type

"DynamicMultiDataChart", which are assigned to OfferFilter_view.
6. Set the new ViewTemplate properties:
a. title (e.g. "Sum chart")
b. chartType (here: COLUMN)

c. defaultGroupFields: As the scale of the x-axis is the result of a data grouping, enter the
EntityField that determines the grouping in property "defaultGroupFields". In our
example, it is the EntityField STATUS.

d. columns: The values of the y-axis (= here: the height of the columns) are provided by an
EntityField - in our 3 column chart examples, these are the EntityFields having
AggregateFields assigned to: COUNT, NET, and PROBABILITY, respectively. Additionally, you
need to set the corresponding AggregateField in columns aggregateEntityField, i.e.,

COUNT _aggregate, NET_aggregate, and PROBABILITY_aggregate, respectively.

e. yAxisLabel: Optionally, you can set a label for the y-axis here.

10.7.2.2. when using JDitoRecordContainer

AggregateFields can also be applied when using a JDitoRecordContainer. The first steps are similar to

when using a DbRecordContainer (see above).

A

A good pattern for learning the configuration of AggregateFields in a JDitoRecordContainer is the ADITO
XRM project’s Context "Turnover". Proceed as follows:
® | ogin to an ADITO xRM project that includes demo data.

® |n the global menu, click on "Sales forecast" (menu group "Sales"). This will open the Context

that appears named "Turnover" in the ADITO Designer.

® Scan through the various ViewTemplates in the GroupLayout of this Context’s FilterView
(internal name: "TurnoverDynamicMultiDataChart_view") and get familiar with the provided

functionalities.

® |n the Designer, navigate to Context "Turnover" and scan through its elements, e.g., inspect the

configuration of the ViewTemplates assigned to TurnoverDynamicMultiDataChart_view.
® Read property "documentation" of Entity "Turnover_entity".
e Study this Entity’s configuration (EntityFields, RecordFieldMappings, AggregateFields etc.)

e Study the JDitoRecordContainers very carefully: Their "contentProcess" properties include a

special grouping and result format.

o The contentProcess of RecordContainer "jdito" has a comprehensive inline code

documentation, which will help you to understand the technique.

o Also study the configuration of JDitoRecordContainer "jditoDynamicMultiDataChart", as

well as the code of its contentProcess.

10.7.3. displayValueProcess of an AggregateField

To format an AggregateField, you can use the displayValue or the displayValueProcess.

AggregateFields currently can only be formatted by using the displayValueProcess.
o An expression exists, but as the system builds the aggregate from the return of the
expression, it is not possible to use it for extra formatting or adding further elements

to the result of the aggregate function.

Example of a displayValueProcess of an AggregateField

result.string("#: + vars. get ("$this.value"))

10.7.4. Usage in filter

If you want to use an AggregateField in a filter, set property "isFilterable" of the corresponding
parentField’s RecordFieldMapping to true. It will then appear in the filter component (to the right of
the FilterView) with the title of the AggregateField’s parent field (not of the AggregateField itself), so

A

you can manually set a filter condition.

Furthermore, you can use AggregateFields also in the filterConditionProcess. Then, the following

functions may be helpful:
e Slocal.isAggregateCondition: true, if the condition, for which the filterConditionProcess is
executed, is based on an AggregateField; else false

e Slocal.conditionHaving: If a FilterExtension is executed due to an aggregation field, this variable

returns the condition to be included in the subselect
® Slocal.columnPlaceholder: The value of the place holder, if you filter according to attributes und

thus neet to retrieve the correct column name.

10.7.5. Usage in Consumer

AggregateFields can also be used in a Consumer, via its properties

® |ookupldField
® targetContextField
® targetldField

® sortingField

o If you want to show 2 aggregations in the same Entity, you need to use a second

Consumer.

10.7.6. Properties allowing AggregateFields

Aggregate fields can be specified in various properties of the following ADITO models:

1. ViewTemplates
a. properties "entityField" and "columns"/"fields":
m Actions

CardTable

®m DynamicMultiDataChart
®m DynamicSingleDataChart

® Gantt

Generic

GenericMultiple

A

m ScoreCard
m Table
m TitledList
m TreeTable
b. ActionlList: properties "titleField", "descriptionField", "iconField"

2. Consumer: properties "lookupldField", "targetContextField", "targetldField", "sortingField"

A

10.8. Field Groups

A Field Group is an ADITO model used for combining EntityFields, along with an additional

configuration for editing.

Let’s use our car pool project for creating an example: Our task is to have both the EntityFields
MANUFACTURER and TYPE set as property titleField of ViewTemplate CarPreviewCard (included in

CarPreview_view):

CAR X

[}

"N,

MERCEDES €220

green
4293416 USD

When the edit button ("pencil”) to the right is clicked, both EntityFields should be editable separately:

CAR %

Upload Image A Drop image here

Mercedes

C220

green v

42,9346

Configuration:

Open Car_entity in the Navigator window. Right-click on folder "Fields" and choose "New Field Group"
from the context menu. In the following dialog, enter a suitable name, e.g.,
MANUFACTURER_AND_TYPE_fieldGroup.

In ViewTemplate CarPreviewCard, select the new Field Group in property titleField.

The central property of a FieldGroup is a valueProcess, in which you can combine any available

EntityFields. The code for the above example is simple:

A

inmport { result, vars } from"@ditosoftware/jdito-types";

var manufacturer = vars.get("$fiel d. MANUFACTURER") ;
var type = vars.get("$field. TYPE");

result.string(manufacturer + " " + type);

Making the EntityFields MANUFACTURER and TYPE both editable separately is even simpler: In the
Navigator window, drag and drop these EntityFields on the FieldGroup, then they appear subordinated
to the FieldGroup:

MANUFACTURER
MANUFACTURER_AND_TYPE_fieldGroup
O MANUFACTURER

Y PE
mileage
PICTURE

The 2 EntityFields will then be editable in this order, as soon as the client user clicks the edit button
("pencil") to the right.

Do not mistake the edit buttons: There is a further edit button to the /eft hand side
of the CardViewTemplate. This button opens the EditView, while, in our case, we

o need the other edit button, which is to the right of the titleField. This edit button
only refers to the EntityFields shown in the CardViewTemplate.

You may change the order of the editable EntityFields again by drag & drop in the Navigator window of
the Designer.

If you click on the subordinated EntityFields in the Field Group, you see that no properties are shown.
This is 0.k., because the only purpose of these EntityField references is to determine, that, and in which

order, the EntityFields can be edited in the client.
Advanced examples:

In the xXRM project you can find various advanced examples of an implementation of a Field Group, e.g.,
FULL_NAME_fieldGroup, a Field Group of Person_entity. This Field Group combines the EntityFields
SALUTATION, TITLE, FIRSTNAME, MIDDLENAME, and LASTNAME, as well as ORGANISATION_NAME,
which is not editable. If you inspect the valueProcess of this FieldGroup you see that it references the
Entity’s contentTitleProcess, which in turn is generated via the valueProcess of a separate EntityField

named contenttitle.

A

10.9. Advanced filter options

10.9.1. Dynamic filter values

Besides fix filter values, ADITO enables the client user to specify also dynamic filter values. Look at an
example included in the xRM project: In the filter component of ActivityFilter_view, you can filter
according to property "Responsible". If you then open the "Value" combo box, you can not only select
from the system’s Employee records, but you can also choose value "me". This is a dynamic filter value,
because it depends on the logged-in ADITO user (Employee).

o= . FILTER X
2= Filter S

Grouping reset

Activities: 119 __
Group by

Condition reset
New filter X A
Responsible
n etwas Geduld, bis wir uns
equal
slgeprodukten auf unserer
Value ~

ne
me

FIRSTNAME LASTNAME DEPARTMENT

9 Tim Admin IT/Service

~
3 Birgit Leicht Distribution
n Christian Pahst Nictrihitinn / Field staff

Figure 25. Example of dynamic filter value "me" (Context "Activity")
In the Designer, this feature is configured as follows:

Activity_entity’s EntityField RESPONSIBLE has a Consumer "Employees", which depends on
Employee_entity’s Provider "Employees". This Provider’s property "filterVariablesProcess" includes the

core code of the feature:
Employee_entity.Employees.filterVariablesProcess
var res = {

"gl obal . user.contactld": translate.text(
"${ FI LTER_DYNAM C_VALUE_ME}")

};

resul t. object(res);

The result of the filterVariablesProcess can be an arbitrary number of key-value pairs, with

A

® key being the variable whose value is to be used
® value being the display value to be used in the client

In the above example, the result means "Show the text 'me' as additional filter value. If the client user
selects it, use the value of variable $gl obal . user. cont act | d as filter value."

This principle can be used with any Sglobal und Ssys variable. If required for this purpose, further Ssys
variables can be ordered from ADITO’s development department. But you can also define your own
Sglobal variables viavar s. set (" $<gl obal . xxx. yyy>", vari abl eVal ue) in process

"autostartNeon".

The technical background, why this feature is available in the Provider model is:
As you can (optionally) specify a lookupldfield in the Provider in order to use a different UID, it must be

possible to filter also according to different values.
Hypothetical example:

® UID: CONTACTID

® |ookupldfield of Provider "#PROVIDER" (the UID will be used)
-> In this case, a dynamic filter "my company" requires the CONTACTID of the user’s company.

® |ookupldfield of Provider "XYZ": ORGANISATIONID
-> In this case, a dynamic filter "my company" requires the ORGANISATIONID of the user’s

company.

10.9.2. Filter presets

Besides filters set by the client user, it is also possible to include customized filter presets, e.g., to be

automatically executed when a Context is opened.

10.9.2.1. FilterBuilder

JDito includes the FilterBuilder, which is a builder pattern that allows you to define/configure even
complex filters quite comfortably and intuitively. (In earlier versions you had to realize this via a big

JSON string, created manually.)

To use this functionality, you first need to import the system module neonFi | t er . It includes the

methods

e creat eFi |l t er Goup, which creates an object of class Fi | t er G oup

e createFilterCondition,whichcreates an objectofclass Fi | t er Condi ti on

You can create multiple instances of these objects. Each can be configured in detail and then nested -

A

which finally results in an (extended) filter.

The handling of these methods and objects is similar to the usage of the "extended Filter" in the client.
Therefore, we will create an arbitrary example of an extended filter in the client and then learn how to

configure the same filter in JDito.

First, click on "Open extended filter" in the FilterView of Context "Contact".

FILTER X
Grouping reset
Group by v
Condition reset
New filter x v

Add condition
Join conditions by: m one

Open extended filter

Here is an example of an extended filter, containing 4 filter groups (represented by the lines starting
with the all/one switch), each with 0 to 2 filter conditions (represented by the lines with grey

background).

A

Contact

n one Add condition Add group

Status not equal "Inactive" X

all m Add condition Add group

ﬂ one Add condition Add group

Lastname equal "Smith" x

Gender equal "Female" X

ﬂ one Add condition Add group

Lastname starts with "Mill" x

Gender equal "Male" X

The effect of this filter is to show all "Contacts" (= datasets of Person_entity) that are

® not inactive AND
o EITHER female and having the last name "Smith"

© OR male and having a last name starting with "Mill"

Now, this is how the same filter is configured in JDito (cf. labeled screenshot below):

© 2025 ADITO Software GmbH 162 /472

A

Examples of how to use the filter builder pattern

var filterGoupl = neonFilter.createFilterG oup();
filterGoupl. nergeQperat or (neonFil t er. MVERGE_OPERATOR_AND) ;

var filterConditionNotlnactive = neonFilter.createFilterCondition()
.field("STATUS")

. searchQperat or (neonFi | t er. SEARCH OPERATOR_NOT_ EQUAL)

.cont ent Type(neonFi | ter. CONTENT_TYPE_TEXT)

.value("Inactive")

. key (" CONTACTSTATI NACTI VE") ;

filterGoupl. addFilterCondition(filterConditionNotlnactive);

var filterGoup2 = neonFilter.createFilterGoup();
filter G oup2. nergeQperat or (neonFi |t er. MVERGE_OPERATOR OR) ;
filterGoupl. addFilter Goup(filterG oup2);

var filterGoup3 = neonFilter.createFilterGoup();
filter G oup3. nergeQperat or (neonFilter. MVERGE_OPERATOR_AND) ;
filterGoup2. addFilterGoup(filterGoup3);

var filterConditionLastnameSnmith = neonFilter.
createFilterCondition()

.field("LASTNAMVE")

. searchQper at or (neonFi | t er. SEARCH OPERATOR_EQUAL)
.content Type(neonFilter. CONTENT _TYPE_ TEXT)
.value("Smth")

.key("Smith");

filterGoup3. addFilterCondition(filterConditionLastnaneSmth);

var filterConditionGenderFemal e = neonFilter.createFilterCondition()
.field("CGENDER")

. searchQper at or (neonFi | t er. SEARCH OPERATOR_EQUAL)

.cont ent Type(neonFi | t er. CONTENT_TYPE_TEXT)

.val ue(" Feral e")

ckey("1");
filterGoup3. addFilterCondition(filterConditionGenderFenal e);

var filterGoup4 = neonFilter.createFilterGoup();
filter G oup4. nergeQperat or (neonFil t er. MVERGE_OPERATOR_AND) ;
filterGoup2. addFilterGoup(filterGoupd);

var filterConditionLastnaneM || = neonFilter.createFilterCondition()
.field("LASTNAME")

. searchQperat or (neonFi | t er. SEARCH OPERATOR_STARTSW TH)

.cont ent Type(neonFi | ter. CONTENT_TYPE_TEXT)

A

.value("MII")
key("MI1I1");

filterGoup4. addFilterCondition(filterConditionLastnameMI1);

var filterConditionGenderMale = neonFilter.createFilterCondition()
.field("CGENDER")

. searchQper at or (neonFi | t er. SEARCH OPERATOR_EQUAL)

.cont ent Type(neonFi | t er. CONTENT_TYPE_TEXT)

.val ue(" Mal e")

key("nt);

filterGoup4. addFilterCondition(filterConditionGenderMal e);

A

Contact L

filterGroup 1

n one Add condition Add group

Status not equal “Inactive" X filterConditionNotinactive
filterGroup 2

all m Add condition Add group
filterGroup 3
ﬂ one Add condition Add group

Lastname equal "Smith" % filterConditionLastnameSmith

Gender equal "Female" X filterConditionGenderFemale

filterGroup 4
ﬂ one Add condition Add group

Lastname starts with "Mill" X filterConditionLastnameMill

Gender equal "Male" X filterConditionGenderMale

The above code is simplified. In practice, of course, you would reference
KeywordEntries not directly, but via the usual JDito methods, e.g.,

e key($Keywor dRegi stry. cont act St at us$i nactive())
o instead of . key (" CONTACTSTATI NACTI VE")

e val ue(KeywordUil s. get Vi ewal ue($Keywor dRegi stry. co
nt act St at us(),
$Keywor dRegi st ry. cont act St at us$i nactive()))

© 2025 ADITO Software GmbH 165 /472

A

instead of . val ue(" Il nactive")

As you can see, creating a FilterGroup is always the starting point. "Into" this FilterGroup, you can add

("nest")

® ejther a FilterCondition

® or another FilterGroup, which in turn can have FilterGroups or FilterConditions added ("nested")

This "nesting" of FilterGroups and other FilterGroups or FilterConditions can, in theory, be continued up

to an unlimited depth (with limits as for performance, of course).
The methods mean:

® FilterGroup:

o . mergeQper at or : The operator (mathematical term: "logical connective") to be
applied for connecting the filter group’s conditions and subordinated filter groups.
Possible values: "and", "or". The parameter should be specified by using the respective
constants given in neonFi | t er, e.g.,, neonFi | t er. MERGE_OPERATOR_AND.

o . addFi | t er Group: "Nests" one filter group "into" another. The subordinated filter
group’s result will be connected with the filter conditions using the specified
mer geQper at or (see above).

o . addFi | t er Condi ti on: Specifies a filter condition to be applied in this filter group.
This filter condition will be connected with further filter conditions as well as with

subordinated filter groups' results using the specified mer geQper at or (see above).

o . toJdson() : Converts the filter group and all its nested content into a big JSON string. In
earlier ADITO versions, this was required for passing the filter to specific JDito methods
that did not yet accept the filter object as argument, but only a JSON string - e.g.,
neon. set Fi | t er . But now, in most cases, you do not need to convert the filter into a
JSON string, because methods like neon. set Fi | t er accept the FilterGroup itself as
argument. Also process properties like initFilterProcess (see below), accept the
FilterGroup to be passed as result, without the need to convert it into a JSON string first:
result.string(<nmyFilter G oup>) (butdo NOT use
resul t. object (<myFilter G oup>) inthese cases).

® FilterCondition:
o . fi el d: The EntityField the filter condition refers to

o . cont ent Type: The contentType of the EntityField. The parameter should be specified
by using the respective constants given in neonFi | t er, e.g.,
neonki | t er. CONTENT_TYPE_TEXT.

A

o . sear chQper at or : The search operator (relational operator) to be applied for the
comparison between the values of the EntityField and the value given in method . key.
Examples: "greater than", "equals"”, "starts with". The parameter should be specified by
using the respective constants given inneonFi | t er, e.g.,

neonkFi | t er. SEARCH OPERATOR EQUAL.

o . key: The value to compare the EntityField’s values with when the filter is executed. This

value is NOT displayed in the client.

o . val ue: The value to be displayed in the client when the filter has been set (NOT used
for filtering, only for displaying purposes!) If there is no difference between the values of
. key and . val ue, then . val ue must be specified anyway - simply repeating the value

of . key(see, e.g., the above example "filterConditionLastnameSmith") .

10.9.2.2. initFilterProcess

If you want a specific filter to be preset when a Context is opened (i.e., when calling the FilterView), the
most common way is to use the Entity’s initFilterProcess. The required result can easily be configured

using the FilterBuilder (see previous chapter).

Here is an example task, which can be used as pattern: When opening the FilterView of Context Car, we
want to see only cars, whose license plate number includes the letter "M". This requires the following

code:

Car_entity.initFilterProcess

inmport { neon, neonFilter, result, vars } from"@ditosoftware/jdito-types";

if (vars.get("$sys. presentationnpde”) === neon. CONTEXT_PRESENTATI ONMODE_FI LTER)
{

var recordState = vars.get("$sys.recordstate");
if (recordState != neon. OPERATI NGSTATE_SEARCH)

{
var filter = neonFilter.createFilterG oup()
. mer geQper at or (neonFi | t er. MERGE_OPERATOR_AND)
.addFi | terCondi ti on(neonFilter.createFilterCondition()
.field("LlI CENSEPLATENUVBER")
. key("M")
.val ue("M")
. sear chQper at or (neonFi | t er. SEARCH_OPERATOR_CONTAI NS)
.content Type(vars. get ("$property. LI CENSEPLATENUMBER. cont ent Type"))
)
result.string(filter.toString());
}

Find more information about the difference between "operating state" and "record

A

state" in the appendix "Operating state vs. record state".

Here is another example, from the xRM project. This code makes sure that only "active" company

datasets are shown:

Organisation_entity.initFilterProcess (fragment)

var filter;

(-

if (vars.get("$sys.presentationnode") === neon. CONTEXT_PRESENTATI ONMODE_FI LTER)
{

var statuslnactive = $Keywor dRegi stry. contact Status$i nactive();

filter = neonFilter.createFilterG oup()
. mer geQper at or (neonFi | t er. MERGE_OPERATOR_AND)
.addFi | terCondi tion(neonFilter.createFilterCondition()
.field("STATUS")
. key(statuslnactive)
.val ue(KeywordUtil s. get Vi ewal ue($Keywor dRegi stry. contact Status(), statuslnactive))
. searchQperat or (neonFi | t er. SEARCH_OPERATOR_NOT_EQUAL)
cont ent Type(neonFi | t er. CONTENT_TYPE_TEXT)

}

result.string(filter);

Filter referencing a FilterExtension:

If your filter condition is related to a FilterExtension (see chapter "FilterExtension"), the syntax of the

argument of method f i el d is like this:
"H#EXTENSI ON. Testfilter Extension. TestfilterExtensi on#TEXT"

Here is a code fragment as an example:
Example of referencing a FilterExtension in a filter condition

(...)

var filterCondition = neonFilter.createFilterCondition()
.field("#EXTENSI ON. TestfilterExtension. TestfilterExtensi on#TEXT")
. key(conpanyl d)
.val ue("13")
. sear chQOper at or (neonFi | t er. SEARCH_OPERATOR_EQUAL)
.content Type(neonFi |l ter. CONTENT _TYPE_TEXT) ;

(...)

10.9.2.3. neon.setFilter

A

If you want a specific filter to be applied in another part of your project - e.g., in an Action - you need to
use method neon. set Fil ter:

Pattern for setting a filter in JDito
var filter = neonFilter.createFilterG oup();
(...) I/ configuration of filter - cf. above exanples

neon. setFilter ("#ENTI TY", filter);

(In earlier ADITO versions, ‘neon.setFilter'required a JSON string as argument, but now you can simply

pass the filter builderpattern (FilterGroup) as shown in the example.)

10.9.3. FilterExtension

FilterExtension is an ADITO model used for extending the standard filter (which are controlled via the
"isFilterable" properties of the RecordFieldMappings in the RecordContainer) by an additional filter

option - e.g., a filter criteria that is related to a field of another Entity.
Examples in ADITO xRM:

e "Favorites_filter", a FilterExtension included in the RecordContainers of several Entities, e.g., of

Organisation_entity.

® "Phase_filter" ("Phase_filterExtention"), a FilterExtension included in the RecordContainer of

Salesproject_entity.

To understand these examples, you might first study the following paragraphs.

10.9.3.1. General example

Generally, a FilterExtension can be added as follows:

10.9.3.1.1. Creating a new FilterExtension

Open your Entity in the Navigator, right-click on its RecordContainer, and choose "Add Filter Extension"

from the context menu. Enter a name of your choice, e.g., "hasMyEntityFieldSet".
Now, fill the new FilterExtension’s properties as follows:

10.9.3.1.2. General properties

e "title": Enter the text of the respective list item to appear in the filter’s combo box "Property",

e.g. "Has my EntityField set".

A

® "contentType": Enter the data type of the values to be entered or selected in the filter’s field
"Value". This data type will then, amongst others, determine the list of relational operators from
which the user can select in the filter component’s field "Operator". For our example, the
contentType should be set to "TEXT".

10.9.3.1.3. filterValuesProcess

Fill property filterValuesProcess only if you want to select the values (in the filter’s field "Value") via a

combo box. The result of this property’s process must be an array of value pairs:

Example of data structure of filterValuesProcess result

(...)

var nyFilterValues = [];

nyFi | ter Val ues. push(["nyl D1", "nyconbo boxListltenl"]);
myFi | terVal ues. push(["nyl D2", "myconbo boxListlten2"]);
nyFi | t er Val ues. push(["nmyl D3", "nyconbo boxListltenB8"]);

(...)
resul t. object (nyFilterVal ues);

The second values of the value pairs are displayed in the combo box, while the first values are to
evaluate the selection in the filterConditionProcess (see below); often this first value is a key (e.g., the
UID of a dataset).

In many cases, the above result array is generated via an SQL selection:
Example of filterValuesProcess using an SQL selection

var myFilterVal ues = newSel ect (" Myl DCOLUWN, MYCOLUMNFORCOVBOBOXLI STI TEMS")
. from(" MYTABLE")
.table();

result.object(nyFilterVal ues);

o If, however, you want to enter the value as free text (no selection via combo box),

then property filterValuesProcess must remain in default status (empty).

o The specific code of the filterValuesProcess suitable for the carpool example will be

added in a future version of this manual. You may try it by yourself meanwhile.

10.9.3.1.4. useConsumer/consumer

Checking property useConsumer enables you to use lookup functionality via a Consumer. It is an

alternative to specifying a filterValuesProcess: As soon as you have checked this checkbox, property

A

filterValuesProcess disappears and property "consumer" appears instead. Here, you can select a

Consumer that delivers the selectable filter values, with the corresponding Provider Entity’s

e contentTitleProcess or (if set) LookupView to be used for displaying the selectable values in the

combo box;

® UID column (= its primary key) acting as value to be evaluated in the filterConditionProcess (see

chapter below)

If you uncheck property useConsumer again, property filterValuesProcess (and its value) will reappear
instead of property "consumer". The values of these alternative properties will always remain stored,

independently from the value of property useConsumer.

10.9.3.1.5. filterConditionProcess

The property filterConditionProcess is used for reacting to the value the user has input/selected in the
"Value" field of the filter component. The result of this process is an SQL condition that will be added to
the conditionProcess of the RecordContainer (i.e., to the "WHERE" part of the SQL code used for filling
the FilterView). Like in the conditionProcess, the SQL code words "WHERE" and "AND" must not be

included.
The following variables are available in the filterConditionProcess:

® The user’s input/selection can be retrieved via the local variable "rawvalue":
vars. get ("3l ocal . rawal ue") This variable holds

o the text typed in by the user, if the input was done via a free text field (see above,

filterValuesProcess)

o the first value of the value pair corresponding to the user’s selection, if the input was

done via a combo box (see above, filterValuesProcess)

Furthermore, there are 2 Slocal variables to retrieve the relational operator that the user

has selected in the "Operator" field of the filter component:

e "comparison":var s. get (" $l ocal . conpari son") This variable holds a String value
representation of the selected operator, e.g. "EQUAL", "CONTAINS", or "STARTSWITH". This
operator selection can then be evaluated via "if" clauses or via "switch/case" (here, you can, if
required, use the Sql Bui | der . XXX functions, e.g., Sql Bui | der . EQUAL() - see example
code below).

Possible values of $| ocal . conpar i son are EQUAL, GREATER, LESS, GREATER_OR_EQUAL,
LESS_OR_EQUAL, NOT_EQUAL, CONTAINS, CONTAINSNOT, STARTSWITH, ENDSWITH, ISNULL, and
ISNOTNULL. Furthermore, there is a value named EQUAL_ANY, if there is a comparison with

multiple values - meaning that at least one of the values matches (in contrast to EQUAL,

meaning that all elements match). Value NONE means that there is no operator.

® "operator":vars. get (" $l ocal . operat or") This variable holds an Integer value
representation, deduced from the selected operator. However, it is not unique for every
operator (some operator selections result in equal Integer values). Experienced users can use
this value to simplify the evaluation of the selected operator, especially in SQL statements. But
do not be confused by this variable: You can make use of the full FilterExtension’s functionality

by ignoring variable "operator" and evaluate only variable "comparison" (see above).

® "operator2":vars. get (" $l ocal . oper at or 2") : The relational operator as special

character, mainly to be used in SQL statements, e.g. ">".
Here are examples showing how the filterConditionProcess can be designed:

Example of filterConditionProcess evaluating value selection via combo box

/1 the first part of the array returned by filterVal uesProcess, e.g., a UD
var rawal ue = vars.get("$l ocal .rawal ue");

// the relational operator coded as |nteger nunber (non-unique!), e.g. "2"
var operator = vars.get("$local.operator");

/1 the relational operator as special character to be used in SQ statenents, e.g. ">"
var operator2 = vars.get("$l ocal .operator2");

// the relational operator as cleartext in String format, e.g. "NOI_EQUAL"
var conparison = vars.get("$l ocal.conparison");

/1 useful 1o0gging for understandi ng the above vari abl es
/1l ->just try various values and rel ational operators

/1 and inspect the | og output
logging.log("-------------------- > rawalue =" + rawal ue);
logging.log("-------------------- > operator = " + operator);
logging.log("-------------------- > operator2 = " + operator?2);
logging.log("-------------------- > conparison =" + conparison);
/1 Exanpl e:

/1 Assum ng that ANOTHERTABLE has been used in filterVal uesProcess,
/1 so ANOTHERTABLE. ANOTHERTABLEI D i s here given in rawal ue
/1 and now used for filtering MYTABLE via its col uimm ANOTHERTABLE | D

var nyPrimaryld = rawal ue;
var sql Condition = "";

swi t ch(conparison) {

case "EQUAL":
sql Condi tion = newMher e(" MYTABLE. ANOTHERTABLE_| D', nyPrinmaryld, Sql Buil der.EQUAL());
break;

case "NOT_EQUAL":
sqgl Condi ti on = newMher e(" MYTABLE. ANOTHERTABLE | D', nyPrinaryld, Sqgl Buil der. NOT_EQUAL());
br eak;

case "I SNULL":
sqgl Condi tion = "MYTABLE. ANOTHERTABLE I D | S NULL";
break;

case "I SNOTNULL":
sqgl Condi tion = "MYTABLE. ANOTHERTABLE I D | S NOT NULL";
br eak;

© 2025 ADITO Software GmbH 172 /472

A

defaul t:
sql Condition = "1 = 2";
}

resul t.string(sql Condition);

Example of filterConditionProcess evaluating value input via free text (no filterValuesProcess required in

this case)
var nyUserlnput = vars.get("$l ocal.rawal ue");
/| operator selection is ignored here

var nyFilterCondition = newher e(
" MYTABLE. MYCOLUWN",
myUser | nput,
Sql Bui | der. EQUAL()) ;

result.string(nyFilterCondition);

o The specific code of the filterConditionProcess suitable for the carpool example will
be added in a future version of this manual. You may try it by yourself meanwhile.

10.9.3.1.6. groupQueryProcess

Property groupQueryProcess is an option to group data provided via a FilterExtension. It requires no
specific EntityField, because the grouping is created in the process itself. The result of the

groupQueryProcess is an SQL string that returns the grouping.

The groupQueryProcess is triggered when the client user selects a FilterExtension-related "Group-by

value in the "Grouping" section of the filter component of the FilterView.
The grouping will only work if a filterConditionProcess is defined.

Example in xRM:
groupQueryProcess of Phase_filter ("Phase_filterExtention"), a FilterExtension of the "db"

RecordContainer of Salesproject_entity ("Opportunity").

Opportunity

A % Fiter | [FILTER x
Opportunities: 16 _GROUPING esel
PROJECT NUMBER ¢ PROJECTTITLE + compANy # CLASSIFICATION & DAYSINACTIVE ¢ CREATEDON & PROJECT START # ROLLOUT & PHASE ¢ =«
» Contact (6) SALPROJPHASECONTACT oup by o
~ Qualification (3 SALPROJPHASELEAD conomon)
m 009 DC [11 0ct 2022, 08:27:52 28 Apr 2023, 14:00 Qualification 20% Join conditions by m one
1003 BC 88 16 Jun 2022, 13:22:17 10 Mar 2023, 12:59 12 0ct 2023 Qualification 20% X
Rl 1004 tics GmbH BC 47 6Jul 2022,13:22:17 10 Mar 2023,12:59 12 Mar 2024 Qualification 20% Property ~ Operat: ~
» Prospect (2) SALPROJPHASEPROS
» Offer (2) SALPROJPHASEOFFER
~ Negotiation (3) SALPROJPHASENEGO fiter ¢
m 006 Buct nsgruppe BC 54 6Aug2022, 132217 25Jan 2023, 1259 16 Mar 2024 Negotiation 20% SAVED FILTERS
B - Erst B 0 31Un 2022, 13227 5 Nov 2022, 1300 Negotiation 80% ave new fite (o]
[oo Weister « 55 10ct2022,143250 26 Apr2023,13:59. 22 Apr 2024 Negotiation 20% LAST FILTERS

As you can see, this FilterExtension is not used for filtering (which you can additionaly do via the
EntityField PHASE). Its purpose is to enable grouping of Opportunity datasets by PHASE and still having

them in the correct alphabetical order.

This is the configuration of Phase_filter:

Phase_filter - Properties
v

type filterExtension
documentation == Phase_{filterNot used for filtering, the phase filtering is p...
title O ELT

TEXT
useConsumer v
consumer SalesprojectPhaseStepper

filterConditionProcess import { Salesproject, SalesprojectPhaseFilterUtils } from "...
groupedRecordField SALESPROJECT.PHASE

titteRecordField $$STITLERECORDFIELD_PLACEHOLDER$$S
isGroupable v

groupQueryProcess import { Salesproject, SalesprojectPhaseFilterUtils } from "...
v Search

filtertype

Step-by-step explanation of how to implement a groupQueryProcess:

Add a new FilterExtension.
® Check property "isGroupable" (otherwise, the grouping option is not visible in the client)
® Set groupedRecordField: This is the EntityField by which the grouping will be done.

® Set titleRecordField: This is the EntityField that will later be used as displayValue for the groups.
As in this property a string can be entered, you can alternatively set a placeholder string and
replace it later, e.g., by a join or (if it is not too long) subselect/caseWhen statement - see

groupQueryProcess of Phase_filter.

® groupQueryProcess: Here, you are free to do what is required, as long as the result is a suitable

A

SQL string that includes a "group by" clause. You may have a look at the groupQueryProcess of
Phase_filter to learn the approach. Here you have access to various useful variables (see chapter

FilterExtensionSet). Variables used in Phase_filter are:

o Slocal.condition: The condition that is given by filter and filterConditionProcess. If

present, the condition needs to be appended to the SQL (see Phase_filter)

o Slocal.count: Boolean indicating if the process is executed to calculate the count or for
loading the data itself. If only the count is needed, the SQL should, for performance
reasons, select only something like "1". If the data is to be loaded, take the column list
(see below) and replace the placeholder text for the displayValue (if required, see
Phase_filter)

o Slocal.columnlist: string with columns, separated by comma (order: groupedRecordField,

titleRecordField [, n aggregate fields])

Filter extensions are not automatically respected by the index. This means, if, e.g.,
you want to use a FilterExtension like "Supervisor assignment equals YES" in the

o access rights, you need to re-build this filter in the index. If you do not do this, then,
in the index, there will be shown no result for the respectiv IndexGroup. Find more
information in the ADITO document AID093_Indexsearch.pdf.

10.9.3.1.7. supportsFilterExtensionGrouping

It is possible to use FilterExtensions and FilterExtensionSets (see chapter FilterExtensionSet) on groups
with RecordContainers without paging. If the property "isPageable" is disabled on a RecordContainer,
the additional property support sFi | t er Ext ensi onGr oupi ng is shown. If this property is set to

t r ue, the FilterExtensions are also shown when using grouping.

This has to be used with care, because it leads to all data being reloaded for every
row of grouped data. The mechanism may cause a huge amount of data being

loaded and most likely will negatively affect the system’s performance!

10.9.3.2. Specific example task

In Context CarDriver, a filter option should be added that enables us to see only drivers who have ever
reserved a specific car. In terms of the FilterView,

® the filter’s "Property" is "has reserved car"

® the filter’s "Operator" is "equal"

® the filter’s "Value" is a list showing all cars

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID093_Indexsearch.pdf

A

This feature can be generated as follows:

10.9.3.2.1. Creating a new FilterExtension

Open CarDriver_entity in the Navigator, right-click on its RecordContainer, and choose "Add Filter

Extension" from the context menu. Enter a name of your choice, e.g., "hasReservedCar".

10.9.3.2.2. Setting the FilterExtension’s properties
Fill the new FilterExtension’s properties as follows:
======= General properties

e "title": Enter the text of the respective list item to appear in the filter’s combo box "Property",
e.g. "Has reserved car".

® "contentType": Enter the data type of the values to be entered or selected in the filter’s field
"Value". This data type will then, amongst others, determine the list of relational operators from
which the user can select in the filter component’s field "Operator". For our example, the
contentType should be set to "TEXT".

======= Further properties

Now, try to complete the example task on your own, by configuring all required further
properties/processes.

o A sample solution will be added in a future version of this manual.

A

10.9.4. FilterExtensionSet

You will understand the content of this chapter better, if you first read the previous

chapter FilterExtension.

FilterExtensionSet is an ADITO model used for extending the standard filter (controlled via the
"isFilterable" properties of the record fields in the RecordContainer) by additional filter options, partly

similar to the FilterExtension, but more complex and powerful.
A FilterExtensionSet can be generated as follows:

Open an Entity in the Navigator, right-click on its RecordContainer, and choose "Add Filter Extension

Set" from the context menu. Enter a name of your choice.

10.9.4.1. Example

Here is an example of how to configure a FilterExtensionSet: Given we want to manage trainees,

including their performance at school (grades in English, German, and math).

This example of a FilterExtensionSet is to demonstrate the 3 options to load the values (directly from
the database; dropdown with filter values from filterValuesProcess; dropdown with filter values from

Consumer) and the grouping.

In the filterConditionProcess, in turn, we again have 3 options that are quite common with
FilterExtensions: A boolean evaluation (yes/no), and two evaluations with type TEXT (one of it simple,

and one more complex).

All defined filter and groupings in the set are directly refering to the same table as the RecordContainer
does - therefore, the examples are a little bit "artificial", but nevertheless comparably easy to

understand, as you do not have to deal with subqueries etc.

This example, for itself, is not meant as "best practice", but it demonstrates well how
to handle a FilterExtensionSet, without having the need to call complex functions or

generate/require complex SQL queries.

Now, first, we set up a Context "Trainee", including a "Trainee_entity" with several EntityFields. And we
include this Context in a new menu group in the Global Menu. Furthermore, we create a database table
and connect it with the Entity and its EntityFields. Most of this preparatory work can be realized via
Liquibase: Please update your ADITO project, including its databas, using the corresponding Liquibase
and .aod files in appendix Trainee example. Then, everything will be prepared to continue with the

following paragraphs.

A

In the project tree, double-click on Trainee_entity and unfold its RecordContainer "db" in the Navigator
window. There, if you unfold the node "FilterExtensions", you see a FilterExtensionSet named

"example_filterSet":

example_filterSet - Navigator
v PR Trainee_entity
v [@ RecordContainers

v E db

v (@ FilterExtensions
E example_filterSet

Now we will configure this FilterExtensionSet’s properties step-by-step, along with some explanations
as code comments. Furthermore, reading the various properties' property description will help you to

understand the example.

First, make sure that property "filtertype" is set to BASIC. (The other option, "EXTENDED", would mean

that the FilterExtensionSet’s features are only available via "Open extended filter conditions".)
10.9.4.1.1. Creating Consumer for gender-related field

o The following code snippet is only required for making the example work properly. It
is not directly related to the basics of a FilterExtensionSet.

The code of the valueProcess of ContainerName_param of Consumer "KeywordGenders"

import { result } from"@ditosoftware/jdito-types";
i mport { $Sal utationKeywords } from "Sal utati onKeywords registry";

result.string($Sal utati onKeywords. personGender ());

10.9.4.1.2. filterFieldsProcess

The code of "example_filterSet"'s property filterFieldsProcess

inport { result } from"@ditosoftware/jdito-types";
inport { KeywordUtils } from"KeywordWils_lib";
inport { $SalutationKeywords } from "Sal utationKeywords_registry";

//no local variables avail able

var filterFields = [
/1 No dr opdown
{
nanme: "FlI LTER_GRADEENGLI SH',
title: "Gade English entered?",

cont ent Type: "BOOLEAN',
i sG oupabl e: true,

groupedRecor dFi el d: " CASE WHEN TRAI NEE. GRADEENGLI SH |'S NOT NULL THEN 1 ELSE 0 END',
titleRecordFiel d:"CASE WHEN | SNULL(TRAI NEE. GRADEENGLI SH) = 0 THEN 'Ja' ELSE 'Nein' END',

nanme: "FlI LTER_GRADEGERMVAN',
title: "Grade Gernan entered?",
content Type: "BOOLEAN',

i sGoupabl e: true,

groupedRecor dFi el d: " CASE WHEN TRAI NEE. GRADEGERVAN |'S NOT NULL THEN 1 ELSE 0 END',
titleRecordFiel d:"CASE WHEN | SNULL(TRAI NEE. GRADEGERVAN) = O THEN 'Ja' ELSE 'Nein' END',

nanme: "FlI LTER GRADEMATH',
title: "G ade math entered?",
content Type: "BOOLEAN',

i sGoupabl e: true,

groupedRecor dFi el d: "CASE WHEN TRAI NEE. GRADEVATH | S NOT NULL THEN 1 ELSE 0 END',
titleRecordFiel d:"CASE WHEN | SNULL(TRAI NEE. GRADEMATH) = 0 THEN 'Ja' ELSE 'Nein' END',
Iy

// dropdown => uses filterValuesProcess (only for this one)
{

nanme: "FI LTER _GRADE",

title: "G ade",

content Type: "TEXT",

hasDr opDownVal ues: true,

i sG oupabl e: false,

}

// dropdown => uses Consuner in current entity
{

nane: "FlI LTER_GENDER',

title: "Gender",

content Type: "TEXT",

hasDr opDownVal ues: true,

i sGoupabl e: true,

consuner: "Keywor dGenders",

groupedRecor dFi el d: " TRAI NEE. GENDER",
titleRecordFiel d: KeywordUWils. get Resol vedTi t| eSql Part ($Sal ut ati onKeywor ds. per sonGender (), "TRAI NEE. GENDER")

I:

result.string(JSON stringify(filterFields));

10.9.4.1.3. filterValuesProcess

mnr

The code of "example_filterSet"'s property filterValuesProcess

import { logging, result, vars } from"@ditosoftware/jdito-types";

let filter JSON. parse(vars.getString("$local .filter"));

| et val ues [1;
switch(filter.nane)({
case "FI LTER_GRADE":
val ues = |
["5", "excellent"],
["4", "good"],

© 2025 ADITO Software GmbH 179 /472

["3", "satisfactory"],
["2", "less than satisfactory"],
["1", "unsatisfactory"]

]

br eak;

resul t. obj ect (val ues);

10.9.4.1.4. filterConditionProcess

mnr

The code of "example_filterSet"'s property filterConditionProcess

import { logging, result, vars } from"@ditosoftware/jdito-types";
inport { newMhere, SqglBuilder } from"Sql Builder_Iib";

/lall possible |local variables

/11 et columPl acehol der = vars. get("$l ocal . col umPl acehol der");
//1et columtype = vars. get("$local.columtype");

//var conparison = vars.get("$local.conparison");

//let condition = vars.get("$local.condition");

/1l et conditionHaving = vars. get ("$l ocal . condi ti onHavi ng");
/11et isAggregateCondition = vars.get("$l ocal.isAggregateCondition");
//1et name = vars.get("$l ocal.name");

/11 et operator = vars.get("$local.operator");

/llet operator2 = vars.get("$l ocal.operator2");

/11et placeholder = vars.get("$l ocal.placehol der");

/1l et rawal ue = vars. get ("$l ocal . rawal ue");

/llet value = vars.get("$local.value");

| et rawal ue = vars. get("$l ocal . rawal ue");
| et conparison = vars.get("$l ocal.conparison");

A

| et name = vars.get("$l ocal.nanme"); //e.g. Trainee_entity.exanple_filterSet.Fl LTER GRADENVATH

let filterName = nanme.split(".")
.pop(); // e.g. FILTER GRADEMATH

let colum = "TRAINEE. " + name.split("_")
.pop(); //e.g. GRADENATH

et cond = newhere();

switch (filterName)

{
case "FI LTER_GRADEENGLI SH":
case "FlI LTER GRADEGERMAN':
case "F|I LTER_GRADENVATH':

{
et nullOperator = "IS NULL";
swi tch (conparison)
{
case "EQUAL":
nul | Operator = rawalue == 1 ? "I'S NOT NULL" : "IS NULL";
br eak;
case "NOT_EQUAL":
nul | Operator = rawalue == 1 ? "IS NULL" : "I'S NOT NULL";
br eak;

case "I SNULL":
nul | Oper at or

"1'S NULL";

© 2025 ADITO Software GmbH

180/ 472

A

br eak;
case "| SNOTNULL":
nul | Operator = "I'S NOT NULL";
br eak;
}
cond. and(colum + " " + null Qperator);
}
br eak;
case "FI LTER_GRADE":
{
| et operator = null;
swi tch (conparison)
{
case "EQUAL":
cond. and(
newMher e(" TRAI NEE. GRADEENGLI SH', rawval ue, Sql Bui |l der. EQUAL())
. or (" TRAI NEE. GRADEGERVAN', rawVal ue, Sql Buil der. EQUAL())
.or (" TRAI NEE. GRADEMVATH', rawval ue, Sql Bui | der. EQUAL())
)
br eak;
case "NOT_EQUAL":
cond. and(
newMher e(" TRAI NEE. GRADEENGLI SH', rawval ue, Sql Bui | der. NOT_EQUAL())
. or (" TRAI NEE. GRADEGERVAN', rawVal ue, Sql Bui |l der. NOT_EQUAL())
.or (" TRAI NEE. GRADEVATH', rawVal ue, Sql Bui |l der. NOT_EQUAL())
)
br eak;
case "I SNULL":
cond. and(
newMher e(" TRAI NEE. GRADEENGLI SH |'S NULL")
.and(" TRAI NEE. GRADEGERMAN | S NULL")
. and(" TRAI NEE. GRADEMATH |'S NULL")
)
br eak;
case "I SNOTNULL":
cond. and(
newMher e(" TRAI NEE. GRADEENGLI SH |'S NOT NULL")
. and(" TRAI NEE. GRADEGERMAN | S NOT NULL")
. and(" TRAI NEE. GRADEMATH |'S NOT NULL")
)
br eak;
}
}
br eak;

case "FI LTER_GENDER':
{

| et operator = null;

swi tch (conparison)
{
case "EQUAL":
cond. and(col um, rawval ue, Sql Buil der. EQUAL());
br eak;
case "NOT_EQUAL":
cond. and(col um, rawval ue, Sql Bui |l der. NOT_EQUAL());
br eak;
case "I SNULL":
cond. and(colum + " IS NULL");
br eak;
case "I SNOTNULL":

© 2025 ADITO Software GmbH 181 /472

A

cond. and(colum + " |'S NOT NULL");

br eak;
}
}
br eak;
}
I oggi ng. | 0g(JSON. stringify({
rawval ue,
conpari son,
nane,

cond: cond.toString()
}, onull, "\t"));

result.string(cond.toString());

10.9.4.1.5. groupQueryProcess
The code of "example_filterSet"'s property groupQueryProcess

import { logging, result, vars } from"@aditosoftware/jdito-types”
i mport { newwhere, SqlBuilder } from "SqlBuilder_|ib";

/lall possible |ocal variables

//1et columlist = vars.get("$local.columlist");
//1et colums = vars.get("$local.colums");

//let columtype = vars. get("$l ocal.columtype");
/11et condition = vars.get("$local.condition");
//let contenttype = vars.get("$l ocal.contenttype");
//1et count = vars.get("$local.count");

//let fieldname = vars.get("$local.fieldnanme");
//let grouped = vars.get("$local.grouped");

/11 et groupedlist = vars.get("$local.groupedlist");
//let nane = vars. get("$l ocal.nane");

/11et order = vars.get("$local.order");

var sql = new Sql Buil der ()
if (vars.get("$local.count")) // TRUE if the count of the records is needed

{
sql .select("1");

}

el se

{
et columlist = vars.get("$l ocal.columlist");
sql .select([columlist]);

}

sql . from(" TRAI NEE") ;

et condition = vars.get("$local.condition");
if(condition!=" ")

{

© 2025 ADITO Software GmbH 182 /472

A

sqgl . where(condition);

| et grouped =

sql . order By(grouped) ;

vars. get ("$l ocal . grouped");
sql . groupBy(grouped);

result.string(sql.toString());

10.9.4.2. Further examples

Further, more complex examples of FilterExtensionSets are included in the ADITO xRM project. For

example, a FilterExtensionSet named "Attribute_filter" is included in the RecordContainer of several

Entities, e.g., in Organisation_entity and in Person_entity. This FilterExtensionSet enables the client

user to filter the Entity’s datasets according to the attributes assigned to them (e.g., the attribute

"Loyalty" of Organisation/Company or Person/Contact datasets).

10.9.4.3. Available local variables

The following "Slocal" variables can, amongst others, be accessed in the code of a FilterExtensionSet’s

properties:

Name

Slocal.count

Slocal.columnlist

Slocal.condition

Slocal.groupedlist

Slocal.order

Slocal.name

Description

TRUE if the count of the records is needed

String with the columns (and expressions) expected to be returned by
the query

the (filter) condition that’s being used (if used in a grouping, then it
includes the group hierarchy); see example in appendix ("Slocal
variables")

String with the columns (and expression) used for grouping

String that contains the order expression how the grouped items have

to be sorted

String value of the "name" property, if a filterField was returned by the

filterFieldsProcess; every filterField has its unique name

A

10.9.4.4. useConsumer

If you are already familiar with FilterExtensionSets, please note that the "useConsumer" functionality
(see chapter "FilterExtension" above) is also available for FilterExtensionSets. You can configure it via
the JSON config object that is set in the result of the filterFieldsProcess: Simply add attribute

"consumer" and set the Consumer’s name as its argument. Here is a universal code example:
Example of result of filterFieldsProcess relating to a Consumer

var nmyConfig = [];
(...)
myConfi g. push({

name: (...),
title: (...),
content Type: (...),
hasDr opDownVal ues: (...)
i sGoupable: (...),
groupedRecordField: (...),
titleRecordField: (...),
consumer: "MyConsumer Nane",

(...)
1)

myConfig = JSON. stringify(myConfig);
result.string(nyConfig);

10.9.4.5. groupQueryProcess

Grouping via groupQueryProcess is also available for FilterExtesionSets. The approach is similar to the
groupQueryProcess of FilterExtensions. The difference is only that the required properties
"groupedRecordField" and "titleRecordField" are filled in the filterFieldsProcess. In the
groupQueryProcess the usual Slocal variables are available (Slocal.columnlist, Slocal.condition,

Slocal.groupedlist, etc.), and you can use them to build your SQL statement that makes the grouping.

You may study an example in xXRM, e.g., groupQueryProcess of ClassificationGroup_filter, a

FilterExtensionSet of several Entities, e.g., of Organisation_entity or Salesproject_entity.

A

10.9.5. EntityRecordsRecipe

As the name suggests, EntityRecordsRecipe is a definition ("recipe") of datasets (records) of a specific
Entity. It can be built and configured quite intuitively, with several options, e.g., to specify a filter (via a

FilterGroup object, see chapter FilterBuilder) or a list (as array) of UIDs of records to be excluded.

You can consider EntityRecordsRecipe to be a kind of extended filter that can be applied, e.g., when a

Context is opened, or when records are loaded via LoadEntity.

10.9.5.1. Technical background

An EntityRecordsRecipe does NOT hold the records (datasets) theirselves, but it defines them - like a
recipe defines the ingredients required to cook a meal. Basically, it’s a filter, whose result can optionally
be further reduced by a set of "UIDs to be excluded".

Formerly, this definition could exclusively be done via a set of the single UIDs of all corresponding

records. This principle

e did not scale very well, as additional or changed records always meant that the set of UIDs had
to be adjusted-

® could cause performance and memory issues, if the Entity held millions of records, causing a
huge set of UIDs.

Therefore, EntityRecordsRecipe was introduced, providing a scalable and well-performing solution for
defining an entirety of records without having to indicate every single UID. An example in the client
showing the benefit of this approach is the "select all" button of a table: If you check it and
subsequently uncheck 3 single records, an EntityRecordsRecipe is being built defining "all datasets
without UIDs xxx, yyy, and zzz". (This EntityRecordsRecipe is available in variable

"Ssys.selectionsRecordsRecipe" - see chapter further below.)

10.9.5.2. General usage

The ADITO system uses EntityRecordsRecipe internally, e.g., to hold and process a definition of the
records selected by the client user - see chapter on variable "Ssys.selectionsRecordsRecipe" further

below.
If you, however, want to create a new EntityRecordsRecipe, then proceed as follows.

The first step is to create a builder object:

var entityRecordsReci peBuilder = neonFilter.createEntityRecordsReci peBuilder();

A

This object has several methods, allowing to specify various options. Each method returns the builder
object itself, so a "chaining" of methods is possible - similar to LoadEntity or "SqlBuilder". Technically,

the conditions resulting from these methods are combined with a logical "AND".
The most common methods to call are:

e entity(<Name of Entity>):Definition of the Entity, given as its name String, e.g.,
.entity("Person_entity").Ifthisisthe only method you call, then the definition is
"ALL records of the Entity". In SQL terms, the effect of this method is "... FROM <joined

database tables of the Entity’s RecordContainer>".

e filter(<filter>):Filterthat restricts the record definition to specific conditions. The filter
can be given as FilterGroup object (see chapter FilterBuilder) or as JSON String. In SQL terms, the
effect of this method is "... WHERE <filter conditions>".

e ui dsExcludelist(<Array of U Ds>): Specifies a list of UIDs of all records that are to
be excluded from the remaining records. In SQL terms, the effect of this method is "... WHERE
xxxID NOT IN ('UID1', 'UID2', ...)".

e uidslncludelist(<Array of U Ds>):Specifies a list of UIDs of records to which the
definition is to be restricted. In other words: This is the "maximum" of records - which can be
further reduced by the conditions given in the other methods (. ui dsExcl udel i st or
.filter).Donotbe mislead by the name: This list does NOT "add" additional records to those
specifiedin. fi | t er, but it defines that the UIDs of the records described by the
EntityRecordsRecipe must be included in this list of UIDs. Or, in SQL terms, the effect of this
method is a condition like "... where MYTABLEID in (‘UID1', 'UID2', ...)".

NOTE: If the argument of method ui dsl ncl udel i st is

© an empty Array, then nothing is loaded subsequently

o null, then there there is not any UID-related restriction at all (= same as if this setter

method was not executed at all)

10.9.5.3. Usage in "openContextWithRecipe"

The following example will help you to understand how the EntityRecordsRecipe works. This code

opens the FilterView of Person_entity, with the datasets

® restricted to persons whose last name starts with letter "B"

e without (excluding) the persons "Frank Baer" and "Christine Burger"

You may include this code, e.g., in the onActionProcess of a test Action of Person_entity. (see chapter

Actions)

Person_entity.TestActionGroup.testAction.onActionProcess

/1 Definition of test filter that is restricting records
/1 to those with LASTNAME starting with letter "B"

var nyFilterCondition = neonFilter.createFilterCondition()
.field("LASTNAME")

. sear chQper at or (neonFi | t er. SEARCH_OPERATOR_STARTSW TH)
.content Type(neonFi |l ter. CONTENT_TYPE_TEXT)

-key("B");

var nyFilter = neonFilter.createFilterG oup()

.addFi I terCondition(myFilterCondition);

/1 Definition of array holding U Ds (CONTACTI Ds)
/1 of "Frank Baer" and "Christine Burger"
var nyUidList = ["701569b7-d791-4682- 89al- bf 26682187af", "a38al9f 6-6255-47b0-bbea-138bae2271c4"];

/1 Definition of EntityRecordsReci peBuil der

var nyEntityRecordsReci pe = neonFilter.createEntityRecordsReci peBuil der()
.entity("Person_entity")

/1 applying filter

filter(nmyFilter)

/'l excluding records of "Frank Baer" and "Christine Burger"

. ui dsExcl udel i st (myUi dLi st);

/'l opens PersonFilter_viewwth 1 record ("Carl Bush")
neon. openCont ext Wt hReci pe("Person", "PersonFilter_view', nyEntityRecordsReci pe,
neon. OPERATI NGSTATE_SEARCH, nul |, fal se);

Here is a modified example, without using method f i | t er, resulting in exactly 2 records ("Frank

Baer" and "Christine Burger"):

Person_entity.TestActionGroup.testAction2.onActionProcess

(...)

var nyEntityRecordsReci pe = neonFilter.createEntityRecordsReci peBuil der()
.entity("Person_entity")

/'l restricting to records of "Frank Baer" and "Christine Burger"
.uidslncludelist(mUidList);

And here is an example that combines a filter with a "include list" (resulting in only 1 record, "Christine

Burger"):
Person_entity.TestActionGroup.testAction3.onActionProcess

/| Definition of test filter that is restricting records
/1 to those with LASTNAME starting with letter "B"

var nyFilterCondition = neonFilter.createFilterCondition()
.field("FlI RSTNAVE")

. sear chQper at or (neonFi | t er. SEARCH_OPERATOR_STARTSW TH)
.content Type(neonFi | t er. CONTENT_TYPE_TEXT)

key("C);

var nyFilter = neonFilter.createFilterG oup()

.addFi I terCondition(nmyFilterCondition);

/1 Definition of array holding U Ds (CONTACTI Ds)
/1 of "Frank Baer" and "Christine Burger"

© 2025 ADITO Software GmbH 187 /472

A

var nyUidList = ["701569b7-d791- 4682- 89al- bf 26682187af ", "a38al9f 6-6255-47b0- bbea- 138bae2271c4"];

/1 Definition of EntityRecordsReci peBuil der

var myEntityRecordsReci pe = neonFilter.createEntityRecordsReci peBuil der()
.entity("Person_entity")

/1 applying filter

filter(nyFilter)

/'l restricting to records of "Frank Baer" and "Christine Burger"

. uidslncludelist(mU dList);

/'l opens PersonFilter_viewwth 1 record ("Christine Burger")

neon. openCont ext Wt hReci pe("Person", "PersonFilter_view', nyEntityRecordsRecipe,
neon. OPERATI NGSTATE_SEARCH, null, fal se);

10.9.5.4. Usage in "LoadEntity"

EntityRecordsRecipe can also be used to define the records to load via "LoadEntity" (see appendix
LoadEntity): Simply specify an EntityRecordsRecipe instance as parameter of the LoadRowsConfig’s
method f r omEnt i t yRecor dsReci pe. Here is an example using the same EntityRecordsRecipe as

in the example code of the previous chapter:

Person_entity.TestActionGroup.testAction4.onActionProcess

(...)

var nyEntityRecordsRecipe = (...) // see previous chapter
var nyLoadRowsConfig = entities.createConfigForLoadi ngRows()
/1 can be skipped, as it is included in EntityRecordsRecipe
[l.entity("Person_entity")

.fields(["FI RSTNAME", "LASTNAME'])

.fromEntityRecordsReci pe(nyEntityRecordsReci pe)

var myRows = entities. get Rows(nmyLoadRowsConfi g);

[l [{"FIRSTNAME": "Carl", "LASTNAVE":"Bush"}]

| oggi ng. | og(JSON. stringify(n/Rows));

10.9.5.5. Usage in customized methods

In principle, there are almost no limits for integrating EntityRecordsRecipe also in customized methods.
In fact, your application’s performance can be significantly improved if you use it whenever required, or

if you refactor your existing customized code with respect to EntityRecordsRecipe.
Here is an example of how an integration can look like in a customized code (just as pattern):

Example pattern for using EntityRecordsRecipe in a customized method

var attributevValue = (...);

A

var activeStatusFilter = neonFilter.createFilterCondition()
.field("STATUS")

. searchQper at or (neonFi | t er. SEARCH_OPERATOR_EQUAL)

. key($Keywor dRegi stry. cont act St at us$acti ve())

.content Type(neonFi | ter. CONTENT_TYPE_TEXT);

var af fectedContact sRecordsReci pe = neonFilter.createEntityRecordsReci peBuil der ()
.entity("Person_entity")

.filter(activeStatusFilter)

. paraneters({"NoConmRestriction_paran: "EMAIL"});

AttributeRel ati onUpdateUtils. addAttri bute(
$Attri buteRegi stry. deliveryTern(),
"Person",
af f ect edCont act sRecor dsReci pe,
attri buteVal ue);

The argument of method . fi | t er can either be a filter object (as shown in the
above example), but it could also be a JSON filter object (stringified) instead.

o Method . fi | t er only works, if also method . ent i t y is used (unlike parameters,
uids, etc.).

10.9.5.6. $sys.selectionsRecordsRecipe

The system variable "Ssys.selectionsRecordsRecipe" holds an EntityRecordsRecipe describing the
Entity’s name and the records selected by the client user.

The ADITO system automatically reacts to changes of the value of "Ssys.selectionRecordsRecipe" - i.e.,

subsequent processes will be executed, e.g., the titleProcess of an Action.

The content of an EntityRecordsRecipe depends on the value of the Entity’s property

"recordsRecipeSupported". If this property’s value is

® false, then the description of the selected records is exclusively done via "uidsIncludelist" - while
the variables "Ssys.selections" and "Ssys.selectionRows" are still working. This enables you to
write and apply processes already using EntityRecordsRecipe even for Entitys that do not yet
support it.

® true, then also EntityRecordsRecipe’s methods "filter" and "uidsExcludelist" might be used -
depending on the situation ("select all" button checked or not, filter defined or not, etc.). For
most Entitys, this state should be the standard.

If property recordsRecipeSupported is set to true, then variables
a "Ssys.selections" and "Ssys.selectionRows" will be deactivated (holding
"null"). This is intended, in order to draw your attention to those parts of your

code that have not yet been transferred to support of EntityRecordsRecipe.

A

Please refer to the corresponding chapter in the Update Manual, which is

available in the customer area of the ADITO web site.

(The above principle is also used for "Sfield.<consumer>.selectionRecordsRecipe".)

This is an example code of a test Action of Person_entity, opening the FilterView again, restricted to the

selected records (i.e., all records of the FilterView with checkboxes checked by the client user).

Person_entity.TestActionGroup.testAction5.onActionProcess

var nmyEntityRecordsReci peAsJSON = vars. get ("$sys. sel ecti onsRecor dsReci pe");

/'l 1 ogging the selected records
I ogging.log("------ > " + nyEntityRecordsReci peAsJSQON);

neon. openCont ext Wt hReci pe(" Person", "PersonFilter_view', nyEntityRecordsReci peAsJSON,
neon. OPERATI NGSTATE_SEARCH, nul |, false);

Now, to be more exact, $sys. sel ect i onsRecor dsReci pe holds the EntityRecordsRecipe not as
EntityRecordsRecipeBuilder object, but as JSON string.

You can simply convert this JSON string into an EntityRecordsRecipeBuilder object, by specifying it as

parameter of the create method:

var nyEntityRecordsReci pe = neonFilter.createEntityRecordsReci peBuil der(vars. get("$sys. sel ectionsRecordsRecipe"));

()

Subsequently, you may modify this object (e.g., by calling methods fi | t er orui dsExcl udel i st -

see previous chapter) and use it for any purpose.

10.9.5.7. Example: Notifications

In the xXRM project' Notification_entity, you can find an example of the usage of EntityRecordsRecipe. In
the client, a "select all" button is available, allowing the user to select all Notification records (and, if
required, unselect single records afterwards) - including those that will appear not before you scroll

down or to the next "page".

After selecting Notification records, the user can change their state all at once. In the corresponding
Actions' onActionProcesses the EntityRecordsRecipe approach is used. See also the functionality of

Notification_lib and the ADITO platform methods notification.xxx, e.g.

e notification.updateUserNotificationsStateBul k,whichin turn requires

method

https://www.adito.de/login

e notification.createUpdateStrategy

A

© 2025 ADITO Software GmbH

191/ 472

10.9.6. Context filter (content search)

Several ViewTemplates provide the option to display a so-called Context filter. Its visual expression is

the horizontal content search bar that is shown in the upper part of the ViewTemplate.

Example:

[+]
Q

Keyword Entries: 847

(] Key # Title (original language) # Title (translated) % Active & Essential $ =
O~@
:| YESNOYES
(] YESNONO
| » ActivityCategory (13)
VISIT Visit Operation
MAIL E-Mail Mail
PHONE Phone Phone
ONLINE-MEETING Online-Meeting Online-Meeting

LETTER Letter Letter

Fax Fax

[Tt TatRTs onrp Ao Do T -~ Do T o

Figure 26. Example: The Context filter of Context KeywordEntry

Q fa)# Keyword Entries: 4

Key = Title (original language) # Title (translated) # Active & Essential + =
[= ActivityCategory (1)
(] FAX Fax
(] =+ CommunicationMediumCampaign (1)
(] CAMPAIGNFAX Fax
[] = InboxMedium (1)
(] FAX
[7] = TicketSource (1)

) FAX

Figure 27. Example: Filter criteria "fax"

A

Via the Context filter, you can enter filter terms that are then processed in different ways, depending
on the ViewTemplate’s type and some specific settings. This chapter gives an overview and further

details.

10.9.6.1. Availability

The following ViewTemplate types are able to show and process a Context filter, if their property
hi deCont ent Sear ch is set to false:

® BreadCrumbTreeTable: This type is not yet available via "Add View Template...", but it is
automatically used on devices MOBILE and TABLET, if a Tree or TreeTable type is used, and
property useBr eadCr unbs is set to true.

® CardTable

® DynamicMultiDataChart
® DynamicSingleDataChart
® MultiEditTable

® ResourceTimeline

® Table

® Tiles

® Timeline

® Tree

® TreeTable

Furthermore, this filter/search feature is also available in the ADITO xRM project’s View
"DefaultLookup_view" (of Context "Default_context"), which has a ViewTemplate of type "List". Here,
you can configure the lookup component that is to be used, if no specific lookupView is set in a
Context. As the ListViewTemplate is not yet available via "Add View Template...", it needs to be

configured in the source code of DefaultLookup_view:

Source code of "DefaultLookup_view", including its ListViewTemplate "DefaultList"

<?xm version="1.0" encodi ng="UTF-8"?>
<neonVi ew xnl ns="http://ww. adi t 0. de/ 2018/ ao/ Model " xni ns: xsi ="ht t p: / / www. w3. or g/ 2001/ XM_Schema- i nst ance"” VERS|I ON="1. 2. 3"
xsi : schemaLocati on="http://ww. adi t 0. de/ 2018/ ao/ Mbdel adito:// nodel s/ xsd/ neonView 1.2.3">
<name>Def aul t Lookup_vi ew</ nane>
<maj or Mbdel Mode>Dl STRI BUTED</ maj or Mbdel Mode>
<l ayout >
<nonelayout />
</l ayout >
<chil dren>
<li st Vi ewTenpl at e>
<name>Def aul t Li st </ nane>
<entityFiel d>#ENTI TY</entityFi el d>
</listVi ewTenpl at e>
</ children>

A

</ neonVi ew>

10.9.6.2. Evaluation

The term(s) entered in the Context filter are evaluated by different instances in different ways,

depending on the ViewTemplate type and the RecordContainer’s property settings:
® The ViewTemplate component performs the filtering, if the RecordContainer’s properties
i sPageabl e andi sRequi reCont ai ner Fi | t eri ng are both set to false.

o ResourceTimeline: Checks, if at least one of the strings of the filter value is included in the

title (logical "OR" - unlike all other cases).

o BreadCrumbTreeTable (see chapter Availability), Tiles, Tree, and TreeTable: Checks, if the
columns of a row include all filter terms.

© DynamicMultiDataChart and DynamicSingleDataChart: no filtering

® The RecordContainer performs the filtering, if it is filterable, i.e., if property
i sRequi reCont ai ner Fil t eri ngis set to true. Then, the filter checks, if the columns of a
row include all filter terms. If, additionally, a filter is set in the FilterView’s filter component (right

hand side of the FilterView), then a combined filter is constructed, joined with a logical "AND".

o JDitoRecordContainer, IndexRecordContainer, DBRecordContainer: Filter will be set, and

the data will be loaded anew.

o DatalessRecordContainer or no RecordContainer: no filtering

A

10.10. RecordContainers

A RecordContainer is the ADITO model that defines the way how the data of an Entity is retrieved
(loaded) and persisted (saved). There are various types of RecordContainers, which are described in the

following chapters.

Depending on the purpose, it can be suitable to define more than one RecordContainer per Entity. An

example of this is KeywordEntry_entity in the ADITO xRM project.

A RecordContainer includes the option to utilize a cache, in order to increase the
performance of the ADITO system for repetitive requests of the same data. This is

described in the appendix RecordContainerCache.

10.10.1. Database RecordContainer

A Database RecordContainer (dbRecordContainer) is a RecordContainer that enables an easy-to-
establish connection of specific EntityFields with specific database columns. In the background, this
RecordContainer automatically generates all required SQL statements for loading (SELECT), changing
(UPDATE), saving (INSERT), ordering (ORDER BY), and deleting (DELETE) data.

Furthermore, you can optionally write specific parts of the SQL statement by yourself, e.g., by using

® the RecordContainer’s properties
o fromClauseProcess (FROM)
o conditionProcess (WHERE)
o orderClauseProcess (ORDER BY)

® a RecordFieldMapping’s property "expression"

In the carpool example of this manual, you can find several examples of how to use
a dbRecordContainer. Furthermore, you can find detailled information in appendix

Database Access, chapter "Basic SQL Statement".

10.10.1.1. COUNT queries

When a dbRecordContainer loads data from the database, in many cases, a SELECT COUNT(*)

statement is executed automatically, before the SELECT statement of the actual data is executed.

10.10.1.1.1. Purpose

The automatic SELECT COUNT queries have several reasons, particularly,

A

® the number of datasets is stored in specific variables, e.g., $sys. dat ar owcount

e the SELECT statement for retrieving the actual data is skipped, if SELECT COUNT(*) results

in 0 (no datasets available).

10.10.1.1.2. minimizeCountQueries

Usually, a SELECT COUNT(*) statement consumes only minimal system resources. If, nevertheless,
you want to reduce the frequency of SELECT COUNT(*) queries, you can set the
dbRecordContainer’s property "minimizeCountQueries" to true. However, before using this property,

read its property description carefully, in order to avoid unpleasant side-effects.

10.10.1.1.3. Caching not required

When your dbRecordContainer utilizes a cache, please note: Despite caching is active, still a SELECT
COUNT(*) statement is executed. The reason for this is that SELECT COUNT(*) queries are
generally excluded from being cached, as it is assumed that these queries consume only minimal

system resources.
10.10.2. JDitoRecordContainer

10.10.2.1. Introduction

While a dbRecordContainer has a database as data source, a JDitoRecordContainer has JDito code as
data source. (Of course, the JDito code itself can include a loading from the database.) The result of this
code is an array. This array must provide the data in a specific order, which can be configured in the
JDitoRecordContainer’s property "recordFieldMappings". The data source array is the result object of

property "contentProcess".
To establish a JDitoRecordContainer, proceed as follows:

® Open the respective Entity in the Navigator window.

Right-click on it and choose "New RecordContainer" from the context menu.

A dialog appears, in which you choose "JDitoRecordContainer" as type and enter an arbitrary

name.

The new RecordContainer will appear as sub-node of node "RecordContainers". Click on it and

edit its properties:

o recordFieldMappings: Add the EntityFields to be filled by the JDitoRecordContainer.
IMPORTANT:

m The order of the fields will be the order of the data in the array built in the

contentProcess (see below).

A

m An EntityField named 'UID' (spelled exactly like this!), with contentType TEXT must

always be present and included in the record field mapping.

o contentProcess: This code must return a nested array acting as data source. The order of
the data in the array must be exactly the order of the fields in the recordFieldMapping

(see above). In principle, the contentProcess looks like this:

XXX_entity.myJDitoRecordContainer.contentProcess

var entityFiel dlval uel
var entityFiel d2val uel
var entityFi el d3val uel

(...)

nonn
—~
-

var nyDataArray = [];

nyDat aArray. push([entityFi el dlval uel, entityFiel d2val uel, entityFiel d3val uel]);
nmyDat aArray. push([entityFi el dlval ue2, entityField2val ue2, entityFi el d3value?]);
nmyDat aArray. push([entityFi el dlval ue3, entityFiel d2val ue3, entityFi el d3val ue3d]);

resul t. object (myDat aArray);

Example:

Open Turnover_entity (Context "Turnover") in the Navigator window. Click on RecordContainers > jdito:
The sub-nodes appear in exactly the order defined in Entity recordFieldMappings (and thus, not in

alphabetical order).

Now, look at the contentProcess: The resulting array is included in the variable char t Dat a, which is

filled in a loop including the following line:

/1 EntityFields: U D, PARENT, CATEGORY, X, Y
chartDat a. push([key, countDataSet. parent, countDataSet.category, countDataSet.x, countDataSet.count]);

Finally, the array is returned: r esul t . obj ect (chart Dat a) ;

The data retrieved and structured in the Turnover_entity is displayed in the client in various charts,
organized in a GrouplLayout: Click, e.g., on Sales > Opportunity > MainView > tab Forecast, which
includes TurnoverDynamicMultiDataChart_view in the upper right part: Just view the different charts

(using the View selection button in the upper right corner).

10.10.2.2. Advanced explanations

The JDitoRecordContainer is one of the currently four types of RecordContainers that serve as a data
source of an Entity. Its speciality lies in its flexibility, as the data source is a JDito process (property
"contentProcess"). The advantage of increased flexibility comes with the drawback of having to code

sorting, paging, and filtering by yourself, within the contentProcess. The source of your data depends

A

on its purpose. You can use the Sql Bui | der to interface with the database, or you could also use the

net module to access web services and use those as the source of your data.
If you use a JDitoRecordContainer, be always aware that you need to handle sorting,
paging and filtering by yourself. Otherwise it will simply be not supported by your

Entity, even if you have activated the corresponding properties.

Important properties

cordAlias Data_alias

recordFieldMappings UID value | ATTRIBUTE PARENT ID.wv

w

import(“Co

ords

| lib"):import(™s

import(“Sgl_ib");mport("s

® jDitoRecordAlias

This defines the default alias, which is used by the database access methods in all of the

RecordContainer’s processes. In many cases, this property will be set to "Data_alias".
® recordFieldMappings

Here you map your EntityFields to the result value of your contentProcess.

g The order of the mapping has to be the same as the order of the arrays
returned by your contentProcess.

® isPageable

This determines if paging is active. In your contentProcess you will then get access to
$l ocal . page (page to be loaded) and $| ocal . pagesi ze (number of datasets per page to
be returned).

® jsFilterable

A

This property determines if your Entity is filterable or not. If active, you get access to

$l ocal . filter,which consists of a map that contains the field, the operator, and the value.
isRequireContainerFiltering

This informs your RecordContainer that filtering should be done serverside. Without this, the
result is filtered by the receiving client. If you deal with a large number of datasets, this can give

a big boost to performance.
isSortable

This turns sorting on. You get access to $| ocal . or der, which contains a map consisting of

the fieldname as key and the sorting direction as value.
contentProcess

This is the actual data source of your RecordContainer. In this process, you have to gather your

data and at the end return it as a twofold nested array. For example:

var data = |
["UD1", "VALUEL. 1", "VALUE2. 1", "VALUE3. 1"]
,["ulD2", "VALUEL. 2", "VALUE2. 2", " VALUES3. 2"]
, ["uUD3", "VALUEL. 3", "VALUE2. 3", " VALUE3. 3"]

l;

resul t.object(data);

rowCountProcess

This process is used to determine the number of datasets. If it is missing, the contentProcess is
executed twice, which can lead to a performance loss, if the contentProcess involves extensive
data manipulation in order to generate the data. If you can determine the number of datasets in

an easier way, you should do so here.

hasDependentRecords

If your datasets are interdependent, e.g., in a parent-child structure for trees, then you should
check this flag. In particular, this flag has effects when deleting datasets: If it is set to true, then
the contentProces will always run after every deletion and thus update (rebuild, refresh) all data

and their structure correctly.

onlnsert

This process is used, if you add new datasets to the Entity. Here you should handle how your

data is saved. The process is executed per data row. You get access to $l ocal . r owdat a,

A

which contains the data of the data row. For example:

var rowdata = vars.get("$l ocal.rowdata");
var col ums [

"Ul D'

, " C1"

, 2"

, " C3"

1

var values = |
rowdat a[" Ul D. val ue"]
, rowdata[" Cl. val ue"]
, rowdat a[" C2. val ue"]
, rowdat a[" C3. val ue"]

1;

new Sql Bui | der (). i nsertDat a(" YOURTABLE", colums, null
val ues) ;

In the onlnsert process, do not access EntityField values via $f i el d variables, as
o these may contain outdated values at that time. Use $| ocal . r ondat a or

$l ocal . i ni ti al Rowdat a instead (see chapter Slocal.rowdata and

Slocal.initialRowdata and appendix Slocal variables).

® onUpdate

This process handles the edit of data. Here you have access to $| ocal . changed, which
contains an array holding all changed EntityFields. For getting the data, $| ocal . r owdat a is
provided, too. To get the data for the update, you have to loop over the array you got from

$l ocal . changed and use these as index to access $| ocal . r owdat a. The UID of the row
to be updated can be accessed by reading from $l ocal . ui d

var changedFi el ds = vars. get ("$l ocal . changed");
var rowbData = vars.get("$l ocal.rowdata");

var colums = [];
var data = [];

for(let field in changedFi el ds)
{
/1l According to the spelling guidelines (see Al D001),
/1l EntityFields that represent database col ums
/1 should be naned |ike the database col ums.
/1 This enables us to just split the field
[l 1dentifier "NAME. value" at the dot to get the nane

A

/1 of the database colum at index O.
col ums. push(changedFi el ds[field].split(".")[0]);
dat a. push(rowDat a[changedFi el ds[field]]);

}

newher el f Set (" YOURTABLEID = '" + vars.get("$local.uid") +"'")
. updat eDat a(true, "YOURTABLE", colums, null, data);

In the onUpdate process, do not access EntityField values via $f i el d variables, as
o these may contain outdated values at that time. Use $Il ocal . r owdat a or
$l ocal . i niti al Rowdat a instead (see chapter Slocal.rowdata and

Slocal.initialRowdata and appendix Slocal variables).

® onDelete

This is the process that handles the deletion of data. Here you only get the variable
$l ocal . ui d to identify the dataset that is to be deleted.

newher el f Set (" YOURTABLEID = '" + vars.get("$local.uid") +"'")
.del eteDat a(true, "YOURTABLE");

o In the onDelete process, do not access EntityField values via $f i el d variables, as
these may contain outdated values at that time.

The code examples above are assuming you are using a database as your data
source.

o If you want to use a web service, you have to design the properties onlnsert,
onUpdate, and onDelete accordingly, in order to send the new/changed data back to

the web service.

10.10.2.3. Step-by-step example

Now, for learning and testing purposes, let’s build our own Entity with a JDitoRecordContainer step-by-

step.
At first, we create a new database table with some columns:
Table name: MYTEST

Columns:

A

e MYTESTID: char(36)
e MYNUMBERFIELD: int

® MYTEXTFIELD: varchar(50)
As usual, we update the Alias Definition in order to have the new table available in ADITO.

Then, we create a new Context "MyTest", an Entity and EntityFields according to the naming

conventions - with one exception: The EntityField holding the primary key is only named "UID".
MyTest_entity

e UID
® MYNUMBERFIELD: contentType = number
® MYTEXTFIELD

Create a FilterView, a PreviewView and an EditView, and set the EntityFields and properties accordingly.

(We do not need a MainView for our example.)

Add the new Context to a suitable place in the Global Menu (application >
_SYSTEM_APPLICATION_NEON > ...).

Now we are ready to create the JDitoRecordContainer: Open the Entity in the Navigator window and
right-click on the Entity’s name. Choose "New RecordContainer". In the following dialog, select type
"iDitoRecordContainer" and enter simply "jDito" as name. Then, a new folder "RecordContainers" will

appear, with sub-node "{} jDito" in it.

Click on "jDito", in order to set its properties. For this test example, we will only set some of the
properties.
® DitoRecordAlias: Data_alias
e recordFieldMappings (to simplify matters, we skip the display values):
o UlD.value
© MYNUMBERFIELD.value

© MYTEXTFIELD.value

A

jDito - Navigator
v r_"’ MyTest_entity
v [RecordContainers

W OrderEditor % v '[]' jDito
O UID.value

+ 0 MYNUMBERFIELD.value
O MYTEXTFIELD.value
= v [Fields

property
UID.value
MYNUMBERFIELD.value

MYTEXTFIELD.value B MYNUMBERFIELD

O MYTEXTFIELD
o uID
> I Providers

(0], Cancel

Figure 28. RecordFieldMappings of a simple JDitoRecordContainer

Always keep in mind the order of the RecordFieldMappings, as this order will be

important in most of the processes.

o isfilterable: true

® contentProcess: This is the central process of a JDitoRecordContainer. Here, the data is loaded
and (if required) filtered. The variable Slocal.idvalues contains the id(s) of (if so) selected
dataset(s) (row(s)), to be shown in the Preview. The variable Slocal.filters contains the filter, e.g.,

set by the client user via the filter component of the FilterView.

import { result, vars } from"@ditosoftware/jdito-types";
inport { FilterSgl Translator } from"JditoFilter_lib";
import { newSel ect, SqlBuilder } from "SqglBuilder_|ib";

var query = newSel ect ("MYTESTI D, MYNUVBERFI ELD, MYTEXTFI ELD")
.from("MYTEST");

if (vars.exists("$local.idvalues") && vars.get("$local.idvalues"))

{
/'l selected roms), to be shown in the Preview
query. wherel f Set (" MYTEST. WTESTI D', vars. get ("$l ocal .idval ues"), SqlBuilder.IN());

}

else if (vars.get("$local.filters"))

{
/1 load with filter
var filterCondition = new FilterSgl Transl ator(vars.get("$local.filters"), "MTEST");
query. wherel fSet (filterCondition.getSqgl Condition());

}

var data = query.table();

resul t. object(data);

® onlnsert: This is the process to control how new datasets are inserted (saved). Use the EditView

A

for entering example data for MYNUMBERFIELD and MYTEXTFIELD (not for MYTESTID/UID, as
this column/field will be automatically handled in the background), and fill the onlInsert process
accordingly, e.g., like this:

import { vars } from"@ditosoftware/jdito-types";
import { SqlBuilder } from "Sql Builder |ib";

var rowdata = vars.get("$l ocal.rowdata");

// The columms' order nmust match the order of the val ues.
var colums = |
/!l In the database, the ID colum is naned

/'l according to the nam ng conventions (see Al D001)
"MYTESTI D'

, " MYNUMBERFI ELD'

, "MYTEXTFI ELD"

l;

/'l The val ues' order nust match the order of the col ums.
var values = |
/1 In an Entity with a JDitoRecordCont ai ner,
/[l the IDfield nmust always be naned "Ul D'.
rowdat a[" Ul D. val ue"]
, rowdat a[" MYNUVBERFI ELD. val ue"]
, rowdat a[" MYTEXTFI ELD. val ue"]
1
new Sql Bui | der (). i nsertData("MYTEST", columms, null
val ues);

® onUpdate: This process handles the update (change) of existing datasets, e.g., via the EditView.

In this example, its code can be kept short:

inport { vars } from"@ditosoftware/jdito-types";
import { newherelfSet } from "Sqgl Buil der _|ib";

var changedFi el ds = vars. get ("$l ocal . changed");
var rowbData = vars.get("$l ocal.rowdata");

var colums = [];
var data = [];

for(let field in changedFi el ds)

{
/1 According to the spelling guidelines (see Al DO001),
/1l EntityFields that represent database col ums
/1 should be naned |ike the database col unms.

© 2025 ADITO Software GmbH 204 / 472

A

/1 This enables us to just split the field
/1l i1dentifier "NAME. value" at the dot to get the nane
/1 of the database colum at index O.
col ums. push(changedFi el ds[field].split(".")[0]);
dat a. push(rowDat a[changedFi el ds[field]]);

}

newerel f Set ("MYTESTID = '" + vars.get("S$local.uid") + "' ")
. updat eDat a(true, "MTEST", colums, null, data);

® onDelete: This process handles the deletion of datasets. If more than one dataset has been
marked, the onDelete process is executed separately for every marked dataset, with variable
Slocal.uid filled accordingly. In many cases, the code of the onDelete process can be kept quite
simple, e.g., like this:

import { vars } from " @ditosoftware/jdito-types”;
import { newherelfSet } from"Sqgl Builder |ib";

newherel f Set ("MYTESTID = '" + vars.get("S$local.uid") + "'")
.del eteDat a(true, "MYTEST");

This simple step-by-step example should help you to get a little bit more familiar with
JDitoRecordContainers, which are, in practice, often way more complex. Indeed, the above example
would never be used in practice, as a DbRecordContainer would fit the task better, because it already

includes automatisms for, e.g., interpreting the filter.

The power of a JDitoRecordContainer lies in its flexibility, to load or calculate, filter, sort, insert, update
and delete data nearly without any restrictions. Otherwise, its disadvantage is its complexity and that

you have to care manually for things that are automated in a DbRecordContainer.

A common use case that often requires a JDitoRecordContainer, is a Tree structure.

10.10.2.4. Filtering a JDitoRecordContainer

In the previous chapter you can see already a plain example of integrating a filter in a
JDitoRecordContainer. However, to enable also complex filtering, you can find further functions in
library JDitoFilter_lib, e.g., the very useful FilterSqlTranslator. These functions are either for filtering the
data manually or for building an SQL condition.

In the JDitoRecordContainer of, e.g., the Contexts Attribute, Manager, or Workflow you can find

examples of how the various helper functions for building filters are applied.

A

10.10.3. IndexRecordContainer

In ADITO, the "index" is a kind of parallel data container that can be filled with selected data of
connected ADITO databases (e.g., name and address of contact persons or companies). By this data
reduction, by a special data structure, and by a special database (comparable with a NoSQL database)
the data included in the index can be scanned and read very quickly, using the Apache Solr search

engine.

An IndexRecordContainer can be used in various ways, of which the "Global Search" is the most
common: If you click on the search button in the web client’s Global Bar, you open a search field, in
which you can enter search terms, e.g., the name "Smith"; then, in the result, amongst others, all
persons or companies are listed that have a name including "Smith". By clicking on one of them, the

corresponding dataset is opened, ready for further processing.

Besides the "Global Search", an IndexRecordContainer can also be used as an alternative data source
for EntityFields, if the usage of a DB or JDito RecordContainer is not suitable or does not show the
required performance. In the ADITO xRM project, several FilterViews are filled by using an

IndexRecordContainer.

To keep the index up-to-date, it is connected to ADITO’s audit process. This process is called for every
change in the database. In the "Projects" window, you can find the audit process under process >

internal > process_audit.

Please find detailed explanations on the purpose and usage of an IndexRecordContainer in the ADITO

Information Document AID093 "Indexsearch".

https://solr.apache.org/
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID093_Indexsearch.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID093_Indexsearch.pdf

A

10.10.4. DatalessRecordContainer

A DatalessRecordContainer makes it possible to use an Entity without loading or writing data via the
RecordContainer. This enables the mere entry of data, which can then be read and processed, e.g., via

an Action.

Example: If you want to request specific information before opening the actual Context, you could
realize this via an Entity having a DatalessRecordContainer. Via an Action, the information could
subsequently be extracted from the EntityFields and then be passed to another Entity via method
neon. openCont ext Wt hReci pe, using a Parameter.

Examples in ADITO xRM:

There are several examples of the usage of a DatalessRecordContainer in the ADITO xRM project - just

do a full-text search for the term "datalessRecordContainer".

An easy-to-understand example is "BulkMailTesting_entity". This Entity’s View "BulkMailTesting_view"
is opened, when, in the FilterView of Context "BulkMail", a dataset is selected and Action "Test email"
is called via the three-dotted button in the CardViewTemplate of the PreviewView - see
BulkMail_entity.testMail.onActionProcess. BulkMailTesting_view is only required for selecting a contact
and entering the recipient email address - both are temporary data that does not need to be stored
anywhere: After the user has pressed the button "Test email", the data is extracted in process
BulkMailTesting_entity.testMail.onActionProcess (do not mistake this process with the onActionProcess
quoted before) and used for sending out the test email. If the user had set the switch "Save settings" to
true, then CONTACT_ID and email recepient are stored in the database table BULKMAIL - i.e., the table
referring to BulkMail_entity. Thus, BulkMailTesting_entity itself does not need database access and

therefore uses a DatalessRecordContainer.

You may wonder why a DatalessRecordContainer also features the property "alias"
(for specifying the default alias), when in fact there is no database access in this
case. Well, this is simply a matter of consistency: "alias" must be a common property
o of all types of RecordContainers. This has technical reasons, because the existence
of a RecordContainer with an "alias" property is a prerequisite for all methods that

allow database access on Entity level (e.g., in Actions).

If you open the PreviewView of an Entity connected to a DatalessRecordContainer,

and there is an Action involved that does not cause a "jump" to another Entity, then

please make sure that the PreviewView is closed via the following code line at the
o end of the onActionProcess:

neon. cl osel mage(vars. get ("$sys. currenti nage"), true);

Otherwise, the PreviewView will remain open, and the user will not get any

A

feedback, when the Action is finished, but he must close the window manually.

© 2025 ADITO Software GmbH 208 / 472

A

10.11. Tags

o To understand this chapter, please first read the chapter on the ViewTemplate type
Favorite.

Tags are useful if you want to "attach a label" to specific datasets, in order to mark them for various
purposes. They will then appear in Context "Favorite" (see "star" button in the sidebar of the client),
grouped according to property "Tag", to keep track of these datasets in an ordered way. (Exception:

Datasets exclusively tagged by Hashtags do not appear in Context "Favorite".)

Some use cases require tags to be set not by the user, via a ViewTemplate of type "Favorite", but via an
Action or via an automatism.

In principle, you could customize the assignment of tags simply by creating the required datasets in the
system tables ASYS_ RECORDGROUP and ASYS_RECORD (see chapter Favorite). However, the preferable
way to do this is to use the methods of a library named "tag", which can be imported via

import { tag } from"@ditosoftware/jdito-types";

There are different methods for tagging and un-tagging, as well as for getting a tag object - but the

principle steps are always the same:

1. You create a purpose-specific config object.

2. You execute the actual method for (un-)tagging itself, with the config object as parameter.

Example:
The execution of the following example code (e.g., to be included in the onActionProcess of a test
Action) adds a tag titled "Test Tag" to a dataset of Context "Offer", visible in the client of the current

user:

var userld = tools.getCurrentUser()["name"];

/'l OFFERI D of denmp dataset "1004-1" of Ofer_entity
var recordld = "ab61911c-88c5-4d79-9ac?2-f41f 21154dbe";

/[l creating the config object

var config = tag.createAddTagConfig();
config.sethj ect Type("Ofer");
config.set Row d(recordld);
config.setTagTitl e("Test Tag");
config.set TagType(tag. FAVORI TE_GROUP) ;
config.setUserld(userld);

/1 adding the tag

A

tag. add(config);

The methods used in this example code should be self-explanatory, if you have read chapter Favorite

before.
Depending on the purpose, the config object must be created with one of the following methods:

® t ag. creat eAddTagConfi g()

e t ag. creat eGet TagConfi g()

® t ag. creat eGet TaggedObj ect ByDat aConfi g()
® t ag. cr eat eGet TaggedOhj ect Byl dConfi g()

e t ag. cr eat eGet TaggedOhj ect sConfi g()

e t ag. creat eGet TagsConfi g()

® t ag. cr eat eUnt agByCont ext Confi g()

e t ag. cr eat eUnt agByDat aConfi g()

e t ag. creat eUnt agByl dConfi g()

® t ag. creat eUnt agMul ti pl eByl dConfi g()

Each config object has individual configuring methods and is to be set as parameter of one of the

corresponding excution methods:

e add(pConfi g)

e unt ag(pConfi g)

e get Tags(pConfi g)

e get Publ i cTags(pConfi g)

e get Taggedbj ect s(pConfi)

Besides, there are further utility methods like

e get TagAl i as()
e | ookupHasht ags(pl nput Pat t ern)
e suggest Hasht ags(pTagConfi g)

All methods are well-documented via JSDoc, which you can access as usual (via the auto-completion).

10.12. Notifications and observations
10.12.1. Basics
Notifications are pieces of information shown in ADITO

1. in the NotificationFilter_view, available via the "Bell" icon in the left upper corner of the ADITO

web client:

Here, one or multiple notifications are displayed in a table, with the option to filter them, mark

them as "read", etc.:

= Fiter | = Grouping reset X
Notifications: 11 srosy e

Title % Date % User ¢ Description % = Condition reset;
) exportliquibaseSystemalias_serverProcess May 15, 2024, 2:37 PM Serverprozess wurde ausgefiihrt Join conditions by al S

Konditionen / Preisliste Mar 19, 2024, 4:05 PM Isommer Eigenschaft wurde gesetzt auf "Konditionen / Preisliste” ur State equal "New" x v

Beurteilung / Mitarbeiterzahl Mar19, 2024, 4:05 PM Isommer Eigenschaft wurde gesetzt auf "Beurteilung / Mitarbeiterz: 5 State equal "Unread" x v

Austausch zur aktuellen Situation Mar19, 2024, 4:04 PM Isommer Datum wurde gesetzt auf "07.12.2021 06:21" & + Add filter condition

101 | Projekt - Fortsetzung | Offen Mar19, 2024, 4:03 PMIsommer Roll Out wurde gesetzt auf "07.09.2022" und Projektstart w 7 Open extended fiter conditions

Besprechung Inhalte Angebot Mar 19, 2024, 4:01PM Isommer Datum wurde gesetzt auf "26.11.202115:58"

Notifications

Saved filters a
Abstimmung wegen unklarer Anforderungen Mar 19, 2024, 4:01PM Isommer Datum wurde gesetzt auf "30.11.202115:38" Save new er B
Besprechung Inhalte Angebot Mar 19,2024, 3:59 PM Isommer Richtung wurde gesetzt auf "eingehend" und Datum wurde Last filters R
Ansprechpartner aktualisiert Mar 19, 2024, 3:58 PM Isommer Richtung wurde gesetzt auf "Intern” und Datum wurde ges <Alle>
[Typ] =Neu, =Ungelesen °
Infobrochiire runtergeladen Mar 19, 2024, 3:54 PM Isommer Datum wurde gesetzt auf "08.12.202110:52"

=Neu, =Ungelesen

O Apply filter

Kldrung der technischen Voraussetzungen Mar 19, 2024, 3:51PM Isommer Datum wurde gesetzt auf "09.12.202115:46"

2. via a popup appearing in the lower right corner of the web client (once per one single
notification), given that you had once accepted being notified by ADITO

Notifications can be triggered in various ways, in particular via

® changes of data that is covered by "observation". Observations can be set by the web client user,
in various ways - find more information in the ADITO end user training course "Notifications and

observations" and the corresponding documentation.

® storing datasets that include hyper-references to a specific ADITO user (Employee), e.g., "(...)
@)J.Smith (...)"

® incoming telephone calls - find extensive information in the ADITO Information Document
AID018 "CTI".

® manual triggering of a notificaton via JDito

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID018_CTI.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID018_CTI.pdf

A

10.12.2. Setup

Every new ADITO cloud system comes with a ready-to-use notification functionality. This includes a
notification queue, in which all notifications remain (e.g., as long as someone is offline), until it is

possible to deliver them to the respective users (recepients).

Normally, you do not need to customize anything to use notifications. (In case you have an earlier
ADITO system without notification functionality, contact ADITO for further instructions.) Also, the
triggering of notifications via hyper-references is already built-in and does not need to be configured or
activated. The setup of CTl is explained in the ADITO Information Document AIDO18 "CTI".

Thus, the only functionalities that require customizing are manual notification triggers and observation.

10.12.2.1. Manually triggered notifications

You can arbitrarily trigger a notification manually via JDito, by using the backend methods of class

noti fi cation.There are 2 steps:

1. Create and set a configuration object

2. Execute the notification trigger, using the configuration object - with "execute" actually meaning

to add a notification to the list (queue) of notifications to be sent to the user(s)

Here is an example, included in the ADITO xRM project. You may use this example as a pattern to

design your own notification triggers:

KnowledgeManagement_entity.Likes.onActionProcess.js

(...)

l et notificationConfig = notification.createConfig()
.addUser Wt hl d(enpl oyeeUser | d)
.forcedPriority(notification. PRIO LOW
.notificationType("Like")

.initial State(notification. STATE_UNSEEN)
.caption(caption)
.description(description);

notification.addNotificationWth(notificationConfig);
(...)
10.12.2.2. Observation

If you want to augment an Entity with the option to "observe" one or multiple datasets of it, you need

to add specific Actions and configure them accordingly.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID018_CTI.pdf

A

As a first step, add Observation_entity as sibling to the Entity that is to be observed. See, e.g.,

KnowledgeManagement_entity:

|| KnowledgeDiscussion_entity

E] KnowledgeLink_entity

91 KnowledgeManagement_entity

'_iL KnowledgeManagementCategory_entity

KnowledgeManagement_entity - Properties

siblings Observation_entity
useFavorites v
recordsRecipeSupported v

Setting this sibling makes sure that the corresponding actions (see below) will be updated

automatically. (Otherwise, e.g., it would be possible that an observation can be added multiple times.)

Furthermore, in the RecordContainer’s process onDBInsert/OnDBUpdate/onDBDelete you need to add

the function
Event Handl er. onl nsert ()/ Event Handl er. onUpdat e() / Event Handl er . onDel et e

0.

Then, open Dependency_lib (in the project tree, under process > libraries) and add the connection of

the dependent Entities.

10.12.2.2.1. Observation of selected datasets

Selected datasets can be observed (and "un-observed") via a corresponding Action in the PreviewView,

executed by the web client user:
vinneiT anlucsiici AJLD>

May 6, 2024, 1:33 PM

m & O

M Observe dataset r
Tags a

[= Export HTML

Enter tag
nly Like

¢ {} Open admin view
Q

To include this functionality, proceed as follows:

1. Add an ActionGroup named "observeActionGroup".
2. Under this ActionGroup, add 2 Actions named "observe" and "cancelObservation".

3. Configure these Actions' properties, following the pattern given in several Entities of the ADITO

A

XRM project, e.g., KnowledgeManagement_entity.

An even faster approach is to simply
® copy & paste this ActionGroup from another Entity of the ADITO xRM project,
e.g., KnowledgeManagement_entity;

® adapt parameter "pUid" of method
Observation. acti onSt at eRecor dsReci pe in property

"stateProcess"

10.12.2.2.2. Observation of filtered datasets

Selected datasets can be observed (and "un-observed") via a corresponding Action in the FilterView,

executed by the web client user:

— - n
= A B & a = + @ TA
A Observe Filter : 25 Filter = Grouping reset %
. Group by v
Knowledge entries: 2
Title % Category # Author # Last change + = o Condition reset
SO Hilfe beim E-Mail schreiben Lésungen Isatou Jammeh May 6, 2024, 2:01PM 0 Join conditions by m G2
SO Sendeverfolgung fiir den Kunden L&sungen Isatou Jammeh May 6, 2024, 2:01 PM 0 Author equal * Isatou Jammeh" x -
E Author v equal v
q‘f Isatou Jammeh v
o

4 Add filter canditian

To include this functionality, proceed as follows:

® Add the functionality for observing selected datasets, as explained in chapter Observation of

selected datasets

® Select ActionGroup "observeActionGroup" as favoriteActionGroup of the TableViewTemplate (or

TreeTableViewTemplate etc.) of your FilterView.

10.12.3. Notifications with multiple ADITO servers

If your system includes multiple ADITO servers, it would be negative, if each server managed only his
own notifications, independently from the notifications triggered on the other servers. In this case,

server A had no information what happens on server B, and vice versa.

Example:
Each managed ADITO cloud system consists of at least one background server and one foreground
server. Now, if a CTl telephone call came in at the background server, the respective user would get no

notification, as they is logged into the foreground server.

A

To avoid this, a so-called cluster messaging server needs to be applied, in order to ensure a distributed
notification management. Therefore, every managed ADITO cloud system comes with an installation of
Apache Ignite as pre-configured, ready-to-use cluster messaging server. (Besides, ADITO utilizes Ignite
also as remote cache server, see chapter Shared caching with multiple ADITO servers.) Its alias has the
type "Cluster Messaging", see AliasConfig:

"B default X

Editor Users Source History

lcon Config
__ CONFIGURATION
Instance Configurati...
__ SYSTEMALIAS

Database (MariaDB ...
ClusterMessaging
Cluster Messaging ' \a...
EICIEIE

==k Database (MariaDB ..
= Data_alias_noAudit
=k Database (MariaDB ..

If this alias is not present yet, you need to add it first:
1. In the project tree, right-click on node "alias" and choose "New" from the context menu.
report

language
role

alias,

2. A dialog named "Create New Model" appears. Here, type in a suitable name (e.g.,

"ClusterMessaging").

https://ignite.apache.org/

A

@ Create New Model X

Project: dev-twtest4-c2-adito-cloud

Name: ClusterMessaging

Type: alias

3. A dialog named "Create AliasDefinition Model" appears. Here, select the type "Cluster

Messaging".

W Create AliasDefinition Model X

& Database
ﬂ IBM Lotus Domino (REST)
@ Telemetry
& Remote Cache
Cluster Messaging ! ‘ache
Index Search

WA] i
= Workflow engine

d‘" Authentication Provider

ﬁ} Workflow Modeler

4. Deploy your project. Then, the new alias appears in the AliasConfig.

Now, check if the cluster messaging alias is set as value of the project property "clusterMessagingAlias'
(see preferences > PREFERENCES_PROIJECT, in the project tree):

Projects n X __ PREFERENCES_PROJECT X
v dev-twtest4-c2-adito-cloud [ADITO xRM]
system
preferences

] PREFERENCES PROJECT projectName ADITO XRM
application YSTEMALIAS

context _____ SYSTEMALIAS
notificationtype v JDito

entity

dashboard jditoMaxContentSize 55M

renderer V¥ Recordcontainer Cache

process recordContainerCachingAlias RecordContainerCache
test 4H

Editor Source History

v System

service v Cluster Messaging Cache
report
language
role

alias ClusterMessaging
v

multilingualismindexSearchLocales [de, en]
v Userhelp

clusterMessagingAlias ClusterMessaging
v Internationalisation

>
>
>
>
>
>
>
>
>
>
>
>
>
>

others
.eslintrc.json

o=

If it is not set yet,

1. setit now,

2. deploy your project,

3. restart the ADITO server,

4. re-establish the tunnel to your cloud system,

5. reconnect to your your system, in order to see the AliasConfig again.

Now, if you click on the cluster messaging alias in the AliasConfig, you can inspect its properties in the
"Properties" window. Here, you should see that the address of the cluster messaging server (properties
"host" and "port") has been set automatically:

Projects
v D Editor Users Source Hist]
&1 default
lcon Config
@ ___ CONFIGURATION
Instance Configurati...
- SYSTEMALIAS
5 Database (MariaDB ...
é ClusterMessaging
o= Cluster Messaging (a.
= Data_alias
= Database (MariaDB ..
= Data_alias_noAudit
ClusterMessaging_dev - Properties Sk Database (MariaDB ..
defaultDbRepository
Mailrepository ...
EwsClientPlugin
Plu...
Exchange
<unknow...
Exchange_devintern
<unknow..
flowableEngine
Workflow engi...
IndexSearch
Index Sear..

IDOEEOOOI0T

v

aliasConfig

comment Managed by ADITO cloud. Changes might be reverted. |..
v

v Address:
host adito-ignite.dev-twtest4-c2-adito-cloud.sve.cluster.local
port 47500

mailServerMAP

D D i 2 i 1]

A

This semi-automatic activation of a cluster messaging server only works for
managed ADITO cloud systems, as these systems by default come with a pre-
configured, ready-to-use installation of a cluster messaging server. If, however, your
system is an unmanaged cloud system, you first need to order the transformation of

your system to a managed cloud system from ADITO.

ADITO does not offer support of integrating cluster messaging servers into "on
premise" (not cloud-based) systems. Although, in principle, this is possible, the
installation and integration of a cluster messaging server must be realized by the
customers themselves.

A

10.13. Adding an ATTRIBUTES tab

Several of the ADITO xRM-Project’s Contexts have a tab named "ATTRIBUTES" available in their

MainView. Attributes are specific features that can be assigned to certain datasets.

w B .,l® «§ Contact Management ‘

C%tact - Mr. Carl Bush

< ACTIVITIES 360 DEGREE OTHER CONTACTROLES APPOINTMENTS/TASKS ATTRIBUTES DOCUME
Mr. Carl Bush #

Lockman LLC - @

CB

ATTRIBUTE VALUE

+ ASSESSMENT

TAGS ~ Loyalty high

COMMUNICATION F v

Figure 29. Example of an "ATTRIBUTES" tab, in PersonMain_view
These are the steps to add a similar ATTRIBUTES tab to the MainView of another Context:

1. Create 2 Consumers:

a. one Consumer that should be named "Attributes" and includes the following property

settings:
m entityName: AttributeRelation_entity
m fieldName: AttributeRelations

m onValidation: cp. Person_entity:

result.string(AttributeRelationUtils.validateAttributeCount(vars.get("$field. CONTACTID'), ContextUtils
.getCurrent Contextld(), "Attributes"));

(replace CONTACTI Dby the EntityField that is related to the Context’s primary
key)

b. one Consumer that should be named "AttributeTree" and includes the following property
settings:
m entityName: AttributeRelation_entity
m fieldName: TreeProvider

c¢. For both Consumers, fill Parameters ObjectRowld_param and ObjectType_param

. Adapt Views:

"Attributes" , see above)

. EditView: Assign View reference to AttributeRelationMultiEdit_view (via Consumer

MainView: Assign View reference to AttributeRelationTree_view (via Consumer

"AttributeTree" , see above)

. Create FilterExtensionSet "Attribute_filter", if the Attributes should be filterable (see chapter
FilterExtensionSet and use, e.g., Person_entity as pattern).

. In the Entity’s afterUilnit property, place the code required for the automatic presetting of the

Attributes when a new dataset is being created - see, e.g., Person_entity

if(vars.get("$sys.recordstate") ==

{

AttributeRel ationUtils. preset Mandat oryAttri butes(ContextUtils. getCurrentContextld(),

}

neon. OPERATI NGSTATE_NEW

"Attributes");

. Add your Context in method At t ri but eUt i | . get Possi bl eUsageCont ext s() (in
library AttributeUtil |ib):

Source

History =

x {} AttributeUtil_lib.process.js X

. In the Web Client, navigate to Context "Attributes" (in menu group "Administration") and add

the Context to section "Usage" of every Attribute that you want to be available in your Context

(or create a new Attribute for you Context first, respectively).

Example:

2@

Attribute

TITLE (ORIGINAL LANGUAGE)

Assessment
ndustry

Target group
Creditworthiness
Risk

Loyalty

O ¥ o A |

Product type

x4
1

Employee count

Cramnatitar

TITLE

Assessment
Industry

Target group
Creditworthiness
Risk

Loyalty

Product type
Employee count

Camnatitar

TYPE

Group

Selection

Selection

Selection

Selection

Selection

Selection

Mumber

Groan

& Administration

Attributes: 225

USAGE =

Employee, Preduct, Contact, Opportunity
Company, Lead Import

Opportunity, Company, Contact
Company

Company

Lead Import, Company, Contact

Product

Company

Camnany

ATTRIBUTE

(-

DETAILS

Assessment / Loyalty #

s

§F oA
Assessment - ®
Yes
Loyalty
§F oA

Minimal 1, Maximal 1

Minimal 1, Maximal 1

A

10.14. Adding a LOGS tab

Several of the ADITO xRM-Project’s Contexts have a tab named "LOGS" available in their MainView. This
kind of logging is not directly related to changes of EntityField values, but to changes of the content of
the corresponding database columns (i.e., it is not available for calculated EntityFields that are not

mapped to database columns).

w = 1® Q. «§ Contact Management ° ho) @

Company - Fahey, Spencer and Armstrong ?

£ WEB VISITS CHECKLIST ENTRIES ADVERTISING DUPLICATES LOGS <

Fahey, Spencer and £
Armstrong G search for new Entries iy
Cust-No.: 1793
Logs: 7
§ I - -
15 Dec 2021, 1:19:31 pm o Admin
Kommunikation Phone: "+44 20 3245 1844" eingefligt. Kommuni...
14 Dec 2021, 3:16:28 am ® Admin
Eigenschaft Assessment / Target group: "Interessent” eingeflgt.
~
TaGs 29 Jun 2021, 10:10:55 am ® Admin
Ty Enter tag Kommunikation E-Mail geandert.

Figure 30. Example of a "LOGS" tab, in OrganisationMain_view
These are the steps to add a similar LOGS tab to the MainView of another Context:

® Prerequisites:

o Logging must be generally enabled for the ADITO system, via setting property
"databaseAuditEnabled" to "true". You can find this property, if (in the "Projects" window)
you double-click on system > default and then double-click on " CONFIGURATION".
Then, in the "Navigator" window, navigate to Modules > Database.

Projects X 4 {i} CONFIGURATION_default X Navigator

SR Editor Source History

v Database
305
databaseAuditEnabled sl
off

- CONFIGU

renderer

Restart the server.

o Logging must be generally enabled for the project, via setting property
"databaseAuditAlias" to " __SYSTEMALIAS". You can find this property, if (in the "Projects"
window) you open node "preferences" and double-click on __ PREFERENCES_PROJECT.

Then, in the "Navigator" window, navigate to Modules > Database.

Projects X 4 PREFERENCES_PROJECT X Navigator

i My T

ystes

[defauit oot

nrafars

HandlingMethod
v Audit

databaseAuditAlias

databaseAuditAlias

T ab alias in the changes in the database are to
in the audit tabl DIT.

Restart the server.

o Logging must be enabled for the respective database table(s), by setting its property
"auditMode" to BLOB (in the Alias Definition):

Projects {} sqllibprocessjs X Dataalias X ORGANISATION - Navigator
5 =
preferences Editor v r History € &
B application
M conte

Ml notificationtype

report
age RDERITEM

>
>
>
>
>
>
>
>
>
>
>
>
> ERLINK
v N

v (o

& o

=1

=
@

ORGANISATION - Properties

i i L s i s s M MM L i i e e el

entityDb ER TuR
> EE UNRELATEDDUPL
TPLANEMPLOYE
[TPLANENTRY
TPLANENTRYLINK

ionNeeded to st

orType
neratorinterval [IR

Scan Services Search Results

© Logging must be enabled for every database column that is to be logged, e.g., for table
ORGANISATION’s column CUSTOMERCODE. This requires the following steps:

m Right-click on the database column in the Alias Defintion and choose option "Edit

properties":

A

NISATION
CUSTOMERCODE

DATE_EDIT Delete
DATE_NEW Rename...

INFO

Edit properties..

Find Usagas k
NISATIONID I

m Add a "custom property" via the "plus" button, name it "log" (exactly spelled like
this!) and set its type BOOLEAN:

@ Custom properties X

Mame Type Description
log Boolean

m Then, a new boolean property appears in the property sheet of the column. (If not,
simply click on another column and than back again.) Set this property to "true"

and set the title to be used for the log entries:

@ CUSTOMERCODE - Properties *

CUSTOMERCODE
'

title Customercode

type entityFleldDb

description

dbhame

m Don’t forget to deploy all changes and (as for the project/system-wide settings)
restart the server.

A

© The corresponding Entity must have the "standard" EntityFields DATE_EDIT, DATE_NEW,
USER_EDIT und USER_NEW.

® Create a Consumer (usually named "LogHistories").
® Set the new Consumer’s properties as follows:

o entityName: LogHistory_entity

o fieldName: LogHistoryProvider

® Double-click on the new Consumer’s Parameter "tablenames_param" and set the Parameter

valueProcess according to this pattern:

var res = [];

res. push({id: vars.get("$field. Wl DFIELD"), tableNames: ["MYTABLENAME"]});
res = JSON.stringify(res);

resul t.object(res);

In this pattern, "MYIDFIELD" and "MYTABLENAME" are, of course, placeholders that must be
replaced by the actual name of the related database table(s) and by the name of the EntityField

related to the respective database table’s primary key.

Here is an example of Organisation_entity:

var res = [];

res. push({id: vars.get("$field. CONTACTID"), tableNames: ["CONTACT", "COMVUNI CATION', "ADDRESS"', "AB_ATTRI BUTERELATI ON',
" COMVUNI CATI ONSETTI NGS"1}) ;

res. push({id: vars.get("$field. ORGANI SATIONID"), tableNanes: ["ORGANI SATION']});

res = JSON. stringify(res);//currently only strings can be passed as param
resul t.object(res);

® Properties "expose" and "mandatory" of the new Consumer’s Parameter "tablenames_param"

must both remain in default state "true".
® |n the "Projects" window, double-click on the MainView that should get the LOGS tab.

® |n the "Navigator" window, right-click on the MainView and choose "Add reference to existing

View".
® As "EntityField", choose the new Consumer that you had created before (see above).
® As "View", choose LogHistoryFilter_view.

® Click OK, deploy - done!

You can set the language of the log entries in Loghistory_lib (in the project tree,

o under process > libraries):

{} Leghistory_lib.processjs X

ce History)

Changing this value will only effect future log entries. Existing log entries will always

remain unchanged.

On request, ADITO can provide you with a "Blueprint" that facilitates adding a LOGS
tab.

Further useful custom properties:

Besides the custom property "log" (see above) there are further custom properties, which need to be

set for specific use cases:

e "keyword" (Type: String); purpose: resolving keywords. Example:

B Custom properties X

Description

Qutput

® "translatedlLog" (Type: IDito); purpose: resolving displayValues. Example:

Projects % {} Data_alias.aliasDefinitionSub.entityGroup. CONTACT ISOLANGUAGE translatedLog property s X ISOLANGUAGE - Navigator

History [TESFR RS e 7

ustom properties

Output

"autoMapTrueFalse4Log" (Type: Boolean); purpose: resolving booleans without having to do this

via translate4Log. Example:

+

ADVERTISING
A CoNnTACT_D
E_ED

CODE

g CTID

autoMapTrueFalse - -
title Ac S material

type b

"tableRef" (Type: String); purpose: required in order to log changes in tables to which there is a
logging dependency (like in the above example of Organisation_entity and, e.g.,
COMMUNICATION). Example:

+

PRODUCT_ID
ICEID

Sutput

10.15. Adding Tasks

This chapter explains how to add "Task" functionality to a Context, using the example of Context

"Organisation".
These are the required steps:

1. Add a Consumer that points to Provider "Tasks" of Task_entity - can be copied from

Organisation_entity:

Tasks - Properties

v

name

WebTr
WebTr

externallnitFilterProcess import { result } fron ditosoftw. .. Srlial

v Activity

2 Potota ool 1ot tatatototn

>
>
>
>
>
>
>
>
>
>
>
>

||

v

tions

EDITABLE Search Results

¥ single selection

2. In the Context’s MainView, add a reference to TaskFilter_view:

Navigator
v [T OrganisationMain_view
> OrganisationPreview_view
arch_view
DegreeFilter_view

shart_view
sationConditionPricelist_view

anisationTaskAppointment_view

3. Add Action "newTask" - can be copied from Organisation_entity:

Projects Organisation_entity * newTask - Navigator

N

Source History

O
[

newTask - Properties Il Provide
Properties Others

v

L

£ %3 B R ¥ B S B R B B B B B SR o

name
title New project

type entityActionField newTask
newletter

v Tool tip newAppointment

v Processing grants
o addToCampaign
openLocation
openAroundLocation
orgReport
orgReportDispatch

v Activity
EDITABLE
stateProcess import { result } from itosoftwarefjdito-typ..
¥ lcon
iconld EVAADIN TA

v Action
onActionProcess L fr ditosoftware/jdito-type..

openAdminView

4. For being available in the selection of the "Connections"-labelled ViewTemplate (of Contexts

Tasks, Activities, etc.)...
.

Activity

Campaign

@ _
Campaign Step

Descri
Company @"

testl 4

Contact
Contract

Fuant

..the following steps are important:

a. Context Uti |l s. get Cont ext s(..) (Context_lib): Add your Context to the whitelist:

A

The above applies to unmodularized projects. On the contrary, in
modularized projects, you usually work with so-called
Servicelmplementations, which are iterated over in function

o Context Utils. get Cont ext s(..) of ContextUtils_lib. For
further details, see the ADITO Information Document AID123
"Modularization".

b. Object_entity: Create a Consumer and connect it to a suitable Provider of your Context:

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

Projects Object_entity X Organisations - Navigator
> aicoTemplate Source Hist | D Object_entity
TeamsActivitylmport Il RecordContainers
Te: nel & Fields

o TITLE

o up
Parameters
Providers

ASTTeamMember
lotification

A

onsumers

wujeLLrier

Objectlink

B DRERDDEOE]

>
>

Organisations - Properties Departments
he Employees
name Organisations Event_consumer

type

entityName Organisation Organisations

fieldName OrganisationsVialndex Mt
PrivatePersons
Products

Projects
Projecttickets
ResourceOperations
Salesprojects
SupportTickets
Tasks

Activity

vvvvvvvv\vrvvvvvvvvvv.‘r..

Tatototototatotat o' otatotatatototatotata

EDITABLE

single selection
SINGLE

() T T W T T W T T T T

c. ContextUtils. get Cont ext Consumer (Context_lib):
Add your Context and the new Consumer (see previous step) of Object_entity (see

previous step):

msumer =

Contex

The above applies to unmodularized projects. On the contrary, in

modularized projects, you usually work with so-called
e Servicelmplementations, which are iterated over in function

Context Util s. get Cont ext Consurmer (..) of ContextUtils_lib.

A

For further details, see the ADITO Information Document AID123

"Modularization".

© 2025 ADITO Software GmbH 231/472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

A

10.16. Auto-generated Primary Keys

The following procedure is not required, if you have checked the checkbox "UID
o Table" in the RecordContainer’s property "linkiInformation" (see above). However,
you may use it as configuration pattern, if you want to include further fields with an

auto-generated UID as content.

For testing purposes, we had inserted the values of the primary keys (e.g., CARID) by ourselves (see
Liquibase xml files). In most cases, however, this should be done automatically, whenever a new
dataset is generated. To achieve this, we enter some code in the property "valueProcess" of all
EntityFields related to the primary key of the database table corresponding to the Entity: CARID,
CARDRIVERID, CARRESERVATIONID.

Car_entity.CARID.valueProcess.js, CarDriver_entity.CARDRIVERID.valueProcess.js,
CarReservation_entity.CARRESERVATIONID.valueProcess.js

i f(vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_NEW ({

result.string(util.getNewlUU D());
}

Explanation:

e resul t issimilar to what you may know as "return".

® . stri ng means that the result value is a text.

uti | isthe library holding utility functionality.

get NewUUl D() returns a new randomly generated UID

The conditioni f (vars. get ("$sys.recordstate") ==
neon. OPERATI NGSTATE_NEW restricts the auto-generation to only the creation mode (i.e.,
cases when the "plus" sign is clicked). Whenever the system is in another state (VIEW, EDIT), the

field simply shows the stored value.

10.17. PreviewMultiple

While the "normal" PreviewView always refers to one single dataset (selected in the FilterView), the
PreviewMultiple allows to show processed, summarized, and aggregated data of multiple selected

datasets. The respective View is set in the Context’s property "previewMultiple".

Example:
Context "Offer" includes a PreviewMultiple that summarizes the total net and the probability of offer

datasets that have been selected in the FilterView:

i} A Observe IDs = H =& = OFFER b4
Offers: 25
OFFER NUMBER 4 COMPANY # PERSON # s = 102311 Gpen I
1024-1 OmniTech Open
1020-1] Open -
| 1023-1 Nedick's Open
10221 Glob Group Open
10211 Skyscraper Bau GmbH Herr Tom Weil} Open
| 1020-1 Industrial Steel AG Open 1016-1] Won I
1019-1 Bucher Unternehmensgruppe Herr Wilhelm Kainz Approv
0 100k 200k 300k 400k 500k
1018-2 Industrial Steel AG To chec
@ Total net (EUR)
| SE 1018-1 Industrial Steel AG Sent
SE 1017-1 Glob Group Sent - =
I 1016-1 Skyscraper Bau GmbH Won ~ Open (2) 143,700.00
SE 1015-1 Schéferland Handelswelt GmbH Sent [>.00000
10141 Meister Messebau Herr Dr. Gerhard Tauber Won 128,700.00
SE | 10131 Glob Group Sent b Sent () 425,100.00
10121 Glob Group Checke:
597,300.00 56%
m 1A 1 M minbme A mmmmbemes Sann bl] [Ty, sSum @ Probability
Configuration:

The Offer Context’s property "previewMultiple" references a View named OfferPreviewMultiple_view.

This View has a HeaderFooterLayout and includes 3 ViewTemplates:

e OfferChart: This ViewTemplate shows a bar chart that enables a comparison of the total net of
the selected Offer datasets. The label of a bar is the result of Offer_entity’s contentTitleProcess.

The configuration of the ViewTemplate is quite simple:
o type: DynamicMultiDataChart
o columns: NET

o chartType: BAR

© 2025 ADITO Software GmbH 233 /472

A

® StatusTreeTable: This ViewTemplate shows a TreeTable that groups the offers' total net according

to status ("open", "sent", "won", etc.), including the sum of all selected offers that have a

specific status. Configuration of this ViewTemplate:
o type: TreeTable
o columns:
m entityField: NET
m aggregateEntityField: NET aggregate
o defaultGroupFields: STATUS
o hideActions: true

® AggregatedValues: This ViewTemplate is set as footer of OfferPreviewMultiple_view. It shows, as
"score cards", the sum of the total net of all selected offer datasets as well as the average

probability of all selected offer datasets. Configuration:
o type: ScoreCard
o entityField: OfferAggregates (= a Provider of Offer_entity, without further configuration)

o fields: NET_aggregate, PROBABILITY_aggregate

A

10.18. Paging

From the ADITO client user’s point of view, paging means that (e.g., in a table) the datasets of a Context
are not loaded all at once, but step by step if you scroll down, in blocks (pages) of n datasets. Usually,
the client user notices only a small break when scrolling down, before the next n datasets have been
loaded.

From the customizing point of view, the paging approach depends on the RecordContainer you use.

10.18.1. Paging with a DbRecordContainer

Simply navigate to your RecordContainer and set its property "isPageable" to true (checkbox checked).
That’s all. The data will then be loaded in pages of 400 datasets.

10.18.2. Paging with a JDitoRecordContainer

Normal paging:

(loading the data in blocks of n datasets while the client user scrolls down)
Prerequisites:

® isPageable = true
® isGroupable = false

® rowCountProcess is present
To implement normal paging, you need 2 variables:

e Slocal.page: returns the number of the page that is requested (0, 1, 2, 3...)

e Slocal.pagesize: returns how many rows (datasets) are to be loaded per page

A rough, not recommendable implementation of paging would be to finish the contentProcess like this:

var page = vars.exists("$local.page") ? vars.get("$local.page") : false;
var pageSi ze = vars. exists("$l ocal . pagesi ze") ? vars.get("$l ocal.pagesize") : fal se;

i f (pageSi ze)

{

var startRow = page == false ? 0 : page * pageSi ze;
var endRow = startRow + pageSi ze;

res = res .slice(startRow, endRow)

}

Then only the requested rows are returned, but still all rows are loaded. Thus, this kind of "paging"

does not have an added value. The better way is to load only the requested datasets, using the above

A

mentioned 2 variables.

Paging on basis of grouping:
(on the basis of grouping, the datasets are grouped tree-wise)
® isPageable = true
® isGroupable = true
® rowCountProcess is present
You can learn how to implement this kind of paging by looking at the RecordContainers of, e.g., the
Contexts
® SalesprojectConversionRate
® Turnover
As soon as grouping is applied, variable Slocal.grouped is set, and you do not need to return the data,

but the respective groups. If you open a group and there are no sub-groups below, then the respective

data is to be returned. The filter of the grouping(s) is then included in variable Slocal filters.

10.18.3. Further information

For any RecordContainer, you need to decide if you use caching or paging. It is not possible to use both
at the same time.

A

10.19. Storing user-specific data outside ASYS_USERS

User-specific data such as title, configuration, etc. is stored in the system table "ASYS_USERS". As this

table is already very large, it should not be further extended by customizing.

Instead, if you intend to store further user-specific data, it is advisable to store this data in a separate
table within your Data_alias (not the system alias!). This approach improves performance by reducing
the amount of data that needs to be loaded from ASYS_USERS.

The prerequisite for this new table is the use of the OBJECT_ID and OBJECT_TYPE columns. An
illustrative example is the Entity TopicTreeTopicConfiguration_entity with its corresponding database
table TOPICTREETOPICCONFIGURATION.

10.20. Lookup for translated values

In an international context, lookup functionality is usually refering to translated search content. How

this can be realized, depends on the type of RecordContainer:

® DBRecordContainer: Use the SQL expression for the displayValue as Filter. However, depending

on the SQL, this could be a performance issue.

®]DitoRecordContainer: Can be filled via the contentProcess

A

10.21. Export

As you can see, e.g., in the FilterView of Context Person, there is an Action named "Export", which

enables you to export specific fields of specific datasets. This is how it works:

1. Open PersonFilter_view.

2. Mark a few or all datasets.

3. Execute Action "Export" in ActionGroup "Serial Actions".

4. Choose an export template, e.g. "Persons with addresses".

5. Enter a filename of your choice for the csv export file to be generated.

6. Click button "export using the selected template".

Contact

G e B = Fiter | = EXPORTTEMPALTE SELECTION x

reate operation task
Contacts: 110 10
0 Campaign

PICTURE SALUTATION ¢ TITLE & FIRSTNAME EMALL PHONE ADDRESS + = Datasets are exported
A evel E: el Personen mit Anschriften v

Herr Tim — bt tadmin@meinefirma.adito.de +49 8743 9664433 Liebigstrafe 3 - DE 84051 Essenbach
2 Add to bulk mai

myExportFile
Herr asuk = Add to serial letter 1o SE akiyama@rixnerupp.de +49 6553244312 SchioBfreiheit 1A - DE 19288 Ludwigslust

Herr Markus

n Herr Markus W Set attribute |AG maltinger@industrial-steelde +49406352-109 Rathausmarkt 1 - DE 20095 Hamburg

Matthias Bogen +49 176 48525800 PfeilstraRe 7 - DE 28217 Bremen =7 CECTEE RS SHEEEE

u Herr Markus Altinger Skyscraper Bau Gmb mattinger@skyscraper-bau.de Rathausallee 50 - DE 22846 Norderstedt

eAl Fean Fanria L Frtl GmhH swstemarti de +A0UTIEM Darketrala f - DE NAQTA SrhAnawalda

7. Navigate to your notifications (bell icon).

8. Click on notification "Download ready".

9. Navigate to the PreviewView and click button with download icon.
10. Find your export file in your download folder.

Now we want to implement this export feature also for our Context CarDriver. Please proceed as
follows:

® Set CarDriver_entity’s properties "useFavorites" and "recordsRecipeSupported" both to "true"
(checkbox checked)

® Copy action "Export" from Person_entity to CarDriver_entity. This requires the following steps:
o Create an ActionGroup in CarDriver_entity and name it, e.g., "FilterViewActions".

o Navigate to Person_entity and unfold ActionGroup "filterViewActionGroup". Here, right-

click on Action "export" and choose option "Copy".

o Navigate back to CarDriver_entity and right-click on ActionGroup "FilterViewActions".
From the context menu, choose option "Paste". This will copy Action "export" with all its
properties, in particular, onActionProcess (containing the export logic) and stateProcess

(making sure that the Action is only enabled, if at least one dataset is marked).

A

® Set the copied ActionGroup in one of the properties "FavouriteActionGroupX" in the

TableViewTemplate assigned to CarDriverFilter_view.

® Open ExportTemplate_lib (in the project tree, under process > libraries) and add
"CarDriver_entity" in function Export Tenpl ateUti | s. exportabl eEntities:

ExportTemplateUtils. ()

® Open Dependency_lib (in the project tree, under process > libraries) and add an empty entry for
"CarDriver_entity" in function Dependency. mappi ng:

cy.mapping =

® Deploy
® |n the client, navigate to Context "Export Template" (in menu group "Administration").

® Click the "Plus" button in order to add a new template. Give it a suitable name and description
and select "Car driver" as "Place of use". Change the other options according to your

requirements.
® Choose "Save and open entry"

® Choose tab "Export Template Fields". Click the "Plus" button, choose "Car driver" as "Place of

use" and then choose the first export field.
® Continue with the second, third, etc. export field.
e |f required, change the order via the "arrow up/down" buttons.
Now you can test the added export functionality by proceeding as described above for Context Person.

Furthermore, you can test your skills by adding the same export functionality to the Contexts Car and

CarReservation.

A

10.21.1. Export of a subordinated Entity

If you want to export a subordinated Entity in an export template, you need to modify the
configuration of the subordinated Entity in library Dependency_lib, method Dependency. nappi ng.

Example: Activity _entity, with its subordinated Entity Organization_entity. In this case, the nodes
i sExportabl eandfi el dsToLoad need to be added as follows:

Figure 31. Dependency_lib.Dependency.mapping

A

11. Controlling the design

In order to achieve a professional appearance and an ergonomic handling of every ADITO application,
the possibilities to control its design (colors, order of elements, etc.) are basically reduced to three

complementary options: Themes, ViewTemplates, and layouts:

® A so-called Theme contains configurations affecting all Views and Contexts, particularly

regarding colors.

® A ViewTemplate defines what and how data is presented, e.g., specific fields of one dataset

ordered in single lines, or multiple datasets in table form, with or without Action buttons, etc.

® A layout determines the way multiple associated ViewTemplates are presented together in a

View (horizontally or vertically ordered, selectable via a button, etc.)

We recommend you to respect the ADITO Design Guideline for all aspects of your
o customizing work. Find more information in the ADITO Information Document (AID)
"AID003 Design Guideline", which is available in the customer area of the ADITO

web site.

Now let’s have a closer look at each of these options and their variations.

https://www.adito.de/login
https://www.adito.de/login

A

11.1. Themes

A Theme contains design configurations at a very fundamental level. The settings included in a Theme
affect all display components of an ADITO application, particularly Views and Contexts. Currently, a

Theme is limited to the definition of colors of various visual elements in the ADITO client.

As color design is quite complex and has to consider critical aspects like contrast, Themes can currently
not be created or customized by the user, but exclusively be ordered from ADITO, on the basis of the
customer’s Cl guide. This will ensure that a Theme is in good compliance with the customer’s company

colors.

Once created, a new Theme can easily be integrated into an existing ADITO application: All the ADITO
administrator has to do, is to place a specific configuration file (supplied by ADITO’s development
department) in a specific folder of the server’s file structure and restart the server. Then, the name of
the new Theme can be selected in the Designer: system > default > CONFIGURATION > System > Client
> clientTheme. By default, this property is not set. Then, the ADITO standard Theme will be used, which

is included in every ADITO installation.

You can view the available colors defined by the Theme if, e.g., you open the combo box of any "color"
property (e.g., the color property of an EntityField).

v Color
color

priority-low-color
v Activity
priority-normal-color

priority-medium-color

v Required field priority-high-color
mandatory

user-color-1
v single selection user-color-2
user-color-3

user-color-4

It is strictly against the intention of ADITO that users modify the Theme by
themselves. It is exclusively ADITO’s development department that is authorized to
modify a Theme or create a new Theme. In appendix Requirements for customized

A Theme you can find information about the information required by the ADITO
development department in order to supply you with a customized Theme.
Furthermore, you can find extensive background information on the topic "Themes"
in the ADITO Information Document AID121 "Themes".

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf

A

11.2. Layouts

A layout is a property of a View. It determines the way multiple ViewTemplates (or referenced Views)
are presented together in a View, e.g., whether they are horizontally or vertically ordered, selectable
via a button, etc. The ADITO standard installation includes a set of predefined layouts, which fit for

most use cases.

In order to assure a consistent and ergonomic design, layouts cannot be created or customized by the
user. In special cases, if none of the predefined layouts fits, a customized layout can be ordered from
ADITO.

To set a layout, open a View in the "Projects" windows or Navigator window, click on it and edit
property "layout" in the "Properties" window. Here, you can select a layout from a list of layouts, in a
combo box. Depending on what layout you select, different layout-specific properties are shown below

the "layout" property.
Below, the function and configuration of selected layouts is explained.

11.2.1. Nonelayout

The Nonelayout is the simplest layout. It shows all ViewTemplates assigned to the View in a vertical

arrangement. The order of the ViewTemplates is the same as shown in the Navigator window.
This layout is often used, whenever only one single ViewTemplate or one single View is to be displayed.

Example:
KeywordAttributeEdit_view (Context "KeywordAttribute"). Visible in the client, whenever you create or
edit a keyword attribute (Administration > Keyword Attribute).

11.2.2. DrawerLayout

The Drawerlayout is almost as simple as the Nonelayout, with the following differences:

® A horizontal bar is shown on top. Optionally, this bar can include a caption (property
"layoutCaption").
® Via a button at the right end of the bar (icon "2A") the user can hide all Views and ViewTemplates

assigned to the View having the DrawerlLayout.

® Property "fixedDrawer": If checked, the above "hide" function is disabled. Then, the horizontal

header bar and its optional caption is the only difference to the NonelLayout.

Example:
AppointmentFilter_view (Context "Person", assigned to PersonTaskAppointment_view, which in turn is

assigned to PersonMain_view). Visible in the client under Contact Management > Contact: Select any

A

person and press the "open" button, to open the MainView. Here, click on tab "Tasks": In the lower
part of this tab, you can see a table, above which there is a horizontal bar, including the caption "Linked

Appointments". Via a button at the right end of the bar (icon "A") you can hide the table.

11.2.3. BoxLayout

The BoxLayout is also a quite basic layout, but it has some more properties than the NonelLayout:

® direction: Select, whether the ViewTemplates are to be shown in vertical or in horizontal order.

® maxDirectionElements: Specify the maximum of ViewTemplates to be shown in the order
specified in property "direction". If, e.g., direction is VERTICAL, and maxDirectionElements is 3,
then the first 3 ViewTemplates are shown one under the other, while the 4th ViewTemplate is

shown on top again, to the right of the first ViewTemplate.

® autoHeight: Check, if the layout should determine its height automatically. The automatic layout

height is calculated from the height of its components.

Example:
OrganisationEdit_view (Context "Organisation"). Visible in the client under Contact Management >
Company, whenever you create or edit a company dataset. You see that, as configured, the Views

showing address data, communication data, and attribute data, are shown in vertical order.

For every layout, you can change the order of the ViewTemplates simply by dragging

and dropping them in the Navigator window up or down.

11.2.4. GrouplLayout

The Grouplayout enables you to change the visualization between multiple assigned Views or
ViewTemplates via a button shown in the upper right corner. If you click on this button, a list of all
Views is shown, which are assigned to the View having the GroupLayout. As soon as you have selected

a View, this View is shown, and all other Views are hidden.

Example:

ActivityFilter_view (Context "Organisation", assigned to OrganisationMain_view). Visible in the client
under Contact Management > Company: Select any company and press the "open" button, to open the
MainView. Here, click on tab "Activities" to show all activities of the person. Via the button on the right,
you can change the visualization of the activities: You can switch between 3 ViewTemplates: Timeline

View, Table View, and Treetable View.

To customize the naming of a list item shown via the View selection button, you can
set an arbitrary text in the "title" property of the respective ViewTemplate. Unless

you set the "title" property, a (non-configurable) default name is shown.

A

11.2.5. HeaderFooterLayout

The HeaderFooterLayout divides the View into 3 parts:

® header area: Upper part, which can consist of a View or a ViewTemplate.
e footer area: Lower part, which can consist of a View or a ViewTemplate.
® middle area: All other Views or ViewTemplates assigned to the View having the
HeaderFooterLayout.
In many cases, the HeaderFooterLayout is used for the PreviewView.

To configure this layout, proceed as follows:

1. Create and select the View that should get the HeaderFooterLayout.

2. Select "HeaderFooterLayout" from the combo box of property "layout".

3. Open the View in the Navigator window.

4. Create all ViewTemplates to be displayed in the View (context menu: "New ViewTemplate...").

5. Assign all other Views to be displayed in the View (context menu: "Add reference to existing

View...").
6. Select the View having the HeaderFooterLayout and edit its properties:

a. Property "header": Select the View or ViewTemplate that is to be shown in the header
area.
== .. Property "footer": Select the View or ViewTemplate that is to be shown in the footer

area.
7. Open the View having the HeaderFooterLayout in the Navigator window.

8. Configure the order in which the Views and ViewTemplates are to be displayed: Move all Views
and ViewTemplates up or down, until they are in the required order, simply by dragging and
dropping them. This is only necessary for the Views and ViewTemplates to be shown in the

middle area. (The ViewTemplates assigned as "Header" or "Footer" have fixed positions.)

Example:
OrganisationPreview_view (Context "Organisation"). Visible in the client under Contact Management >

Company: Click on any company and watch its data displayed in the preview on the right.

11.2.6. GridLayout

The GridLayout enables you to place ViewTemplates (or View references, respectively) in a grid. The
placement of the ViewTemplates is determined by their order as given in the Designer’s Navigator

window. They get filled into the grid line by line, from top to bottom.

A

The grid is defined by the number of its columns (property "columnCount") and its rows (property
"rowCount"). Optionally, property "rowHeight" can be set. In most cases, only columnCount needs to
be set, while rowCount and rowHeight are left in default state. Then, the number of rows is calculated

automatically, and rowHeight is automatically optimized.

In some ADITO versions, property "rowHeight" will not appear until you have

changed the value of property "columnCount" at least once. Furthermore, the
o automatic calculation of the properties "rowCount" and "rowHeight" might fail. In

these cases, set "columnCount" and "rowCount" (and, if required, "rowHeight")

explicitely.

11.2.6.1. Properties

® columnCount

Determines how many columns the grid should have.

o This value is only used for desktop devices. Mobile devices will always only

use 1 column.

e rowCount
Determines the number of rows which should be displayed in the grid. If left in default state
(recommended), this property gets adapted automatically when you add/remove

ViewTemplates to/from the View.

o If you explicitly set this property, you should also consider to set property

rowHeight (see below).

® rowHeight

The height of one row in pixels.

o This property should only be used in combination with an explicitly set

rowCount.

11.2.7. MasterDetailLayout

See chapter "MasterDetailLayout", subchapter of chapter "Complex dependencies".

o Note that DashletConfigs cannot be added to Views having a MasterDetailLayout.

A

11.3. ViewTemplates

A ViewTemplate defines what and how data is presented, e.g., specific fields of one dataset ordered in
single lines, or multiple datasets in table form, with or without Action buttons, etc. The ADITO standard

installation includes a set of predefined ViewTemplates, which fit for most use cases.

In order to assure a consistent and ergonomic design, ViewTemplates cannot be created or customized
by the user. In special cases, if none of the predefined ViewTemplate types fits, and a workaround is not

possible, then a customized ViewTemplate can be ordered from ADITO.

To add a ViewTemplate to a View, open the View in the Navigator window and choose "Add
ViewTemplate" from its context menu. Consequently, a dialog will open, in which you select one of the
ViewTemplate types included in the list on the left. Furthermore, enter a name for the new
ViewTemplate. The field "Assign to" is only required for configuring a MasterDetailLayout and a

HeaderFooterLayout (see chapter on layouts); in other cases, it can be ignored.

After creating a new ViewTemplate, it appears in the Navigator window as sub-node of the View it
refers to. If you click on the ViewTemplate, you can edit its properties in the "Properties" window.

The following properties are common to multiple or all ViewTemplates:

e title: The text of the list item shown via the View selection button, if the ViewTemplate is
intergrated into a Grouplayout. (Unless you set the "title" property, a (non-configurable) default

name is shown.)

® maxDBRow: Allows you to set a limit for the number of datasets to be displayed in the
ViewTemplate. CAUTION: Depending on your ADITO version, all datasets exceeding this number
will be ignored without notification (e.g., when using the filter bar above a ViewTemplate of type
TreeTable).

® entityField: The name of the EntityField that should be available for loading. Setting this
property to "#ENTITY" means that all fields of the Entity can be loaded and are therefore
available in the EntityField-related properties, e.g., "columns" or "fields". If you actually need
only one single EntityField (e.g., in ViewTemplate "WebContent"), you should select it in
property "entityField" accordingly, because this will restrict the loading process and therefore

result in a better performance.

Below, the function and configuration of all available ViewTemplate types is
o explained (in alphabetical order), with the prerequisite that property entityField is
set to "HENTITY".

11.3.1. ActionlList

A ViewTemplate of type "ActionList" is used to show a vertical list of 2 fields (icon, title) of multiple

A

datasets, with the title having a hyperlink to execute an Action.

Example:
"Actions", a ViewTemplate of DocumentList_view, being referenced in

DocumentTemplatePreview_view (Context "DocumentTemplate").

Appearance in the client:
In the client, you can, e.g., find it under Marketing > Document Template > Click on any document
template, then you see the ActionlList in the PreviewView, under "MAINDOCUMENTS". The lists consists

of the documents' names. If you click on a document, it is downloaded.
Configuration:

"Actions" has the following fields of Document_entity specified: NAME (titleField), DESCRIPTION
(descriptionField; visible via a click on the little "eye" icon), ICON (iconField). The specified Action is

"downloadSingleFileAction".

11.3.2. Actions

Displays an area with buttons, each related to an Action of a specific Entity. The property "fields" is

deprecated and should not be used anymore.

11.3.3. Card

A ViewTemplate of type "Card" displays up to 5 EntityFields of one single dataset, styled like a business
card. All fields have fixed positions: On the left, an image (property "iconField"), on the right, in vertical
order, 4 further, fields (properties "titleField", "subtitleField", "descriptionField", and
"informationField"), of which only the latter one has a label. The Action buttons are shown between

descriptionField and informationField.

Optionally, you can add up to 2 Action buttons by selecting an Action in field "favoriteAction1" or

"favoriteAction2".
This ViewTemplate is commonly used as "Header" of a HeaderFooterLayout (see chapter Layouts).

Example:

"Head", a ViewTemplate of SalesprojectPreview_view (Context "Salesproject").

Appearance in the client:

In the client, you can find it under Sales > Salesproject. Make sure that the "Preview" button (eye icon)
is active (= framed blue). If you click on a project in the table of the Filter View, you see the "Card"
ViewTemplate as "Head" (on top) of the PreviewView: It shows an image (or its placeholder) on the

left, as well as project title, company name, and project code on the right, followed by Action buttons,

A

including "New Activity".

In this case, the informationField has been left empty. If set, it appears below the Action buttons,

preceded by a label.

Configuration:

"Head" has 4 fields of Salesproject_entity specified: IMAGE (iconField), PROJECTTITLE (titleField),
CONTACT_ID (subtitleField), and PROJECTCODE (descriptionField). You may, for testing purposes, set
property informationField to STATE, in order to see the effect in the client. Furthermore, property

favoriteAction1 is set to newActivity.

11.3.4. CardTable

Displays multiple datasets, each styled like a business card, in a vertical list. Layout and configuration of

every card is similar to that of template type "Card".

11.3.5. DragAndDrop

A ViewTemplate of type "DragAndDrop" displays an area including a file selection component and the
ability to process files dropped here. As soon as a file is selected or dropped, an Action (property
"dropAction") is executed. Additionally, a description can be displayed in the drop zone
("descriptionField").

Example:
"Dropzone", a ViewTemplate of UniversalFileProcessorDropzone_view (Context

"UniversalFileProcessor").

Appearance in the client:
In the client, you can, e.g., find it under Marketing > Document Template > Click on the blue "plus"

button to create a new document template. You can find on the top of the create form.

Configuration:
"Dropzone" has only one field of UniversalFileProcessor_entity set, namely INFO (descriptionField). As

drop Action, the Action "drop_action" is specified.

11.3.6. DynamicForm

A ViewTemplate of type "DynamicFormViewTemplate" enables you to create dynamic forms. The fields
of the form do not require EntityFields, but they are generated dynamically, based on a JSON field

definition.

Example:

"DynamicForm", a ViewTemplate of WorflowTaskForm_view.

A

Appearance in the client:

In the client, you can find it in all Contexts that enable the user to create a WorkflowTask: There is a
Dashlet for WorkflowTasks. In the WorkflowTaskPreview_view, you can show the form (for an active
task), enter data, and finalize the task.

Configuration:
e "formDefinition": Here, you specify an EntityField supplying the JSON string that holds the field

definition (see below). The data source of this EntityField is often a JDitoRecordContainer.

e "formResult": When the form is saved, the results will be set to a second EntityField, to be
specified in property "formResult" (also in JSON format). The data source of this EntityField is
often a JDitoRecordContainer.

® This ViewTemplate can use the following content types:
o TEXT
© NUMBER
© DATE
© BOOLEAN

The JSON field definition consists of a list of form objects. All form objects have the same data

structure:

Configuration pattern for form object of JSON field definition

{
"type": "object",
"properties": {
"id": { "type": "string" },
"name": { "type": "string" },
"cont ent Type": { "type": "string" },
"i sReadabl e": { "type": "bool ean" },
"isWitable": { "type": "bool ean" },
"i sRequired": { "type": "bool ean" },
"val ue": { "type": "string" },
"possi bl eltens": { "type": "object" } (key(string) : value(string))
}

Example code for form object of JSON field definition

(...)

"id": "propld",
"name": "propNanme",
"content Type": "TEXT",
"i sReadabl e": true,

A

"isWitable": true,
"isRequired": false,
"possibleltens": {
"val uel": "Value 1",
"val ue2": "Val ue 2"

}
(...)

11.3.7. DynamicMultiDataChart

A ViewTemplate of type "DynamicMultiDataChart" is visually similar to the ViewTemplate
"MultiDataChart". It displays a multi-dimensional chart with simplified configuration. Only the
EntityField and the corresponding AggregateField need to be defined. Client users can create their own

chart by grouping and selecting the y-axis.

Example:
"DynamicMultiDataChartProb", a ViewTemplate of OfferFilter_view.

Appearance in the client:
In the client, you can find it under Sales > Offer > Probability Chart (select it in the dropdown menu of
the button related to this FilterView’s GroupLayout). Probability Chart shows several labeled columns,

e.g., "Checked", "Open", and "Sent".

Configuration:

% ADITO Designer - 20201007
File Edit View Navigate Source Refactor Team Tools Window Help

=B « =| 71 web client (Neon) - default v P ¥ A

Projects X 4 ActivityAnalyses_view Navigator

Notification OfferFilter view X v [offerFilter_view

Object = > [l DashletConfigs

ObjectProxy Offer_ent... X Offers

ObjectRelationType . Source History TreeTable

ObjectTree DynamicMultiDataChartCount

Offer DynamicMultiDataChartSum

D Offer_entity DynamicMultiDataChartProb
OfferCoverLetter_view i
OfferDrawer_view
OfferEdit_view
OfferFilt v
OfferMain_view
OfferPreview_view

DynamicMultiDataChartProb - Properties .
v

title Probability Chart

MOBILE | TABLET | DESKTOP
type dynamicMultiDataChartViewTemplate
v Entity AR

entityField HENTITY v

columns PROBABILITY .| ~Scan Services
v Fields Server: default X Database X

: |
defaultGroupFields
v Others X
chartType COLUMN ﬁ
yAxisLabel Total in euros
shareParent

400

11.3.8. DynamicSingleDataChart

A ViewTemplate of type "DynamicSingleDataChart" is visually similar to the ViewTemplate
"SingleDataChart". It displays a single-dimensional chart with simplified configuration. Only the
EntityField and the corresponding AggregateField need to be defined. Client users can create their own

chart by grouping and selecting the y-axis.

Examples:
"PhaseFunnelChart", "PhasePieChart", and "PhasePyramidChart" - all of them are ViewTemplates of

SalesprojectAnalysesPhases_view.

Appearance in the client:
In the client, you can find it under Sales > Sales Dashboard > Dashlet "Opportunity phase" (by default,
this Dashlet is in the lower middle part of the Sales Dashboard.

Via the button in the upper right corner of the Dashlet, you can select between the 3 chart variants:
"Funnel", "Pie chart", and "Pyramid". All of them are structured by the names of the common sales

project phases, e.g. "contact", "qualification", or "offer".

Configuration:

% ADITO Designer - 20201007

File Edit View Navigate Source Refactor Team Tools Window Help

5B « =| 71 web Client (Neon) - default v | P ¥ A = M

Projects X 4 SalesprojectAnalysesPhas: Navigator

> D, RoleChildren E_ Source History v [0 salesprojectAnalysesPhases_view

> J__'I RoleParent B PhaseFunnelChart

v ﬂ Salesproject B8 PhasePieChart
Salesproject_entity I PhasePyramidChart
SalesprojectAnalyses_view PhaseFunnelChart
SalesprojectAnal Phases
SalesprojectEdit_view
SalesprojectFilter_view

PhaseFunnelChart - Properties
v

MOBILE | TABLET | DESKTOP v
type dynamicSingleDataChartViewTemplate
v Entity
entityField HENTITY
columns COUNT
v Fields

v
defaultGroupFields #EXTENSION.Phase_filterExtention....
v Others
chartType FUNNEL

v

400

11.3.9. Favorite

This ViewTemplate enables you to attach "tags" to a selected dataset. This dataset will then appear in
Context "Favorite", which can be accessed via the "star" button in the sidebar of the client. (Exception:

Datasets exclusively tagged by Hashtags do not appear in Context "Favorite".)

Example:

"Favorites", a ViewTemplate of PersonPreview_view.

Appearance in the client:
Provides an area that enables you to attach "tags" to the selected dataset. The "star" toggle button
adds/removes a tag titled "STANDARD". Besides, a text box is available for adding further tags with

arbitrary titles (titles of existing tags appear in a dropdown menu).
Technical background:

ViewTemplate "Favorite" is exclusively to be used in PreviewViews.
Mind the wording:

® "Tag" in the broader sense means a kind of "stamp shape" that can be assigned ("stamped") to

multiple records (datasets). In ADITO, this object cannot exist without at least one assignment

A

("stamp"). Internally, this "stamp shape" is called "record group".

® In the narrower sense, "tag" means a single "stamp" created by the "stamp shape" - i.e., a single

assignment of a record group.

Technically, setting a new tag means to insert a new dataset in 2 system tables:

® ASYS_RECORDGROUP:

(e]

Contains datasets representing "tags" in the broader sense ("stamp shapes”, see

disambiguation above).

A "record group" can also be seen as "tag class", identified by the tag title. Whenever the
client user adds a tag that has a new title, first a new "record group" is created (only once
per title), before the tag (record group) itself is assigned (= inserted in table
ASYS_RECORD, see below).

ID: The unique technical identificator of the record group (although the TITLE is also

unique)

USER_ID: ID of the ADITO user who has created the record group.
TITLE: title of the tag

GROUP_TYPE: There are only 2 group types, namely

m FAVORITE_GROUP: corresponds to a titled tag, which will make the dataset appear

in Context "Favorite" under a group node having the same title

m DEFAULT_FAVORITE_GROUP: corresponds to a "default" tag that the client user can
add by clicking the "star" button of the favoriteViewTemplate. The tagged dataset
will appear in Context "Favorite" under a group node having the title "STANDARD".

m HASHTAG: corresponds to a tag whose title starts with "#". Datasets having these
kind of tags will not appear in Context "Favorite", but they can be used as search

criteria when performing an indexsearch.

® ASYS_RECORD:

(¢]

(0]

(0]

(¢]

Contains datasets representing "tags" in the narrower sense ("stamps", see

disambiguation above).

Whenever, in the client, you add a tag to a record (dataset), a new dataset in
ASYS_RECORD is created. In other words, a row in this table represents an assignment of

a "record group" (see above) to a record.
ID: The technical identificator of the tag assignment.

OBJECT_TYPE: The text that will appear in Context "Favorite" in column OBJECT TYPE.
Usually, this will be the name of the Context that holds the dataset that is tagged (e.g.

A

"Person") - see paragraph "Configuration" below.

o ROW_ID: The primary key of the dataset that is tagged, e.g., the OFFERID of a dataset of
Context "Offer".

© RECORDGROUP_ID: The ID of the record group (i.e., of a dataset of table
ASYS_RECORDGROUP, see above) that is used for the tagging. In other words, this is the

ID corresponding to the "stamp shape" that has been used to produce the "stamp".

As you can see, this data structure allows the client user to use one tag title (record group) for tagging
datasets of various Contexts. For example, you could tag an Activity with the title "urgent" and then use
the same title for tagging datasets of Context "Knowledge". In Context "Favorite", both datasets will

appear under the same grouping node
Configuration:

Make sure that the corresponding Entity’s property "useFavorites" is checked (in order to enable
"private" tags). As for the ViewTemplate itself, you normally have nothing to configure. Simply name
the favoriteViewTemplate "Favorites" and place it at the preferred position in your Context’s
PreviewView. According to AID0O03 Design Guideline, it should be generally be placed directly under the

PreviewView’s topmost ViewTemplate "Card".

That’s all - because the central properties "objectType" and "rowld" have default values that are fitting

for most use cases (see below).

Exceptionally, you can configure the ViewTemplate’s properties manually, as it was done in some

Contexts of earlier ADITO versions:

Navigator

@ Favorites - Properties

v [C] PersonPreview_view
[header] Header
Favorites
CommunicationList

v

title favorites

devices MOBILE | TABLET | DESKTOP
type favoriteViewTemplate) AddressList_view
objectType PERSON_OBJECTTYPE v () AddressList_view
rowld #UID 2 Info

v Entity [footer] Scores
entityField H#ENTITY 2)

® title: can be left empty, as this property is not used by the logic (NOTE: The title is NOT the
drawer caption "TAGS", which appears in the client. Currently, this drawer caption is preset by
the ADITO core and cannot be changed. It is planned to introduce an additional property

"drawerCaption", with which you can optionally overwrite this default value.)

A

® objectType: Name of the EntityField holding the "object type" - i.e., the text that will appear in
Context "Favorite" in column OBJECT TYPE. Usually, this will be the name of the Entity’s Context,

e.g. "Person" (in the above example).

Simply name the EntityField "<name of Context>_OBJECTTYPE" (e.g., PERSON_OBJECTTYPE) and

configure it with a tiny valueProcess:
Person_entity.PERSON_OBJECTTYPE.valueProcess

result.string("Person");

In most cases, you can simply leave the default value "#CONTEXTNAME" instead of selecting an
EntityField holding the Context’s name. Internally, "#CONTEXTNAME" will automatically be
replaced by the name of the Context, e.g. "Activity".

® rowld: The identificator of the record (dataset) to be tagged - e.g. "ACTIVITYID" for records of
Context "Activity", or "CONTACTID" for records of the Contexts "Organisation" or "Person".
In most cases, you can simply leave the default value "#UID" instead of the actual primary key
column. Internally, "#UID" will automatically be replaced by the primary key of the table marked

as "UID Table" in the DBRecordContainer’s property "linkiInformation".

Some use cases require tags to be set not by the user via the favoritesViewTemplate,
but via an Action or via an automatism. How this can be customized, is explained in

chapter Tags.

11.3.10. Gantt

Displays an editable Gantt chart, with the data source being specific fields of a specific Entity. The
Gantt chart represents a project, which consists of multiple steps. Each step has a start date and an end
date and optionally a predecessor. Steps without predecessor are located at the top level of the chart,

and, depending on property stepColorField, they can be shown in another color than their successors.

In the left part of the Gantt chart you see various steps, which can be in a hierarchy, shown as a tree. To
the right of each step there is a bar representing the duration of the step, shown in a calendar, which is
the headline of the chart.

The hierarchy of the Gantt chart depends on the settings of the properties

® predecessorldField: This property defines the EntityField that holds the id of the parent step

® isSubstep: This boolean property defines the EntityField that holds the information ("TRUE" or
"FALSE"), whether or not the step is a substep of the step defined as predecessor. If it is a

substep, the corresponding bar is shown integrated inside the bar of the parent step. If it is no

https://en.wikipedia.org/wiki/Gantt_chart

A

substep, it is shown below the bar of the parent step.

When the Gantt is in edit mode, the client user can move the bars back and forth, in order to change

the start and end date of the corresponding steps.

In principle, the Gantt ViewTemplate can get its data from various RecordContainers, but in practice,

often a JDitoRecordContainer is used.

Example:

"AllCampaignsOverviewGantt", a ViewTemplate of CampaignPlanning_view.

Appearance in the client:

In the client, you can find it under Marketing > Campaign Planning
Configuration:
This is a relative simple example of a Gantt ViewTemplate. It has the following properties set:
® columns: Here you can specify arbitrary EntityFields to be shown in the left part of the Gantt

chart.

e uidField: the identificator of an activity, which also is used for the parent/child mapping of the

tree
e titleField: the title to be displayed in the bar
e descriptionField: the tooltip of an activity
® beginDateField: the start date of the step
® entDateField: the end date of the step
® predecessorldField: see above
Note that this Gantt ViewTemplate has no settings for property isSubstep. Therefore, each step is

located one level below its parent step (defined by predecessorField), in a tree structure. Furthermore,

this Gantt ViewTemplate is not editable, i.e., you cannot move its bars.

The various EntityFields of CampaignPlanning_entity are controlled by a JDitoRecordContainer. If you
study its contentProcess and its other processes, you can learn how the values of the EntityFields are

calculated.

11.3.11. Generic

A ViewTemplate of type "Generic" displays one or multiple EntityFields of one single dataset, in a
vertical list. You can select arbitrary EntityFields in property "fields": Open this property’s editor and

add fields using the plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To

A

) button. You can change the order of the

remove a field, select it (checkbox) and press the minus (

fields by selecting them and moving them up or down with the arrow up/down buttons.
Optionally, further properties can be set:
e title: title of the ViewTemplate, as specified in the "Add" dialog. Currently, this property has no
effect.

e editMode: check, if the fields should be editable

® showDrawer: check, if the fields should appear on a drawer (= caption bar on the top of the
fields, with the possibility to hide/show the fields by "folding" them in/out).

® drawerCaption: caption shown in the bar on the top of the drawer
e fixedDrawer: check to prevent the fields to be hidden ("folded in")
® hidelabels: check to hide the labels to the left of each field

® informationField: optional EntityField, which will be shown in edit mode, on the top of the other
fields

® hideEmptyFields: controls whether or not a line with the label (title) of an EntityField is still to
be displayed, even if the EntityField has no value (= if it is "empty").

This ViewTemplate is suitable for being used as "Footer" of a HeaderFooterlLayout (see chapter

Layouts).

Example:

"Info", a ViewTemplate of OrganisationPreview_view.

Appearance in the client:

In the client, you can find it under Contact Management > Company. Make sure that the "Preview"
button (eye icon) is active (= framed blue). If you click on a company in the table of the Filter View, you
see the Generic template "Info" in the lower part of the Preview View: It shows 4 labeled fields:

Language, status, type, and information.

Configuration:
"Info" has 4 fields of Organisation_entity specified in property "fields": LANGUAGE, STATUS, TYPE, and

INFO. Furthermore, the "showDrawer" property flag is checked.

11.3.12. GenericMultiple

The ViewTemplate "GenericMultiple" is used to show and enter data of the "n" partin a 1:n data
relation: It displays one or multiple EntityFields of n datasets, ordered horizontally (like "columns"). Via

a "Plus" button, further datasets can be created, in which the values of the specified fields can be set.

A

It is recommended to assign GenericMultiple ViewTemplates only to Edit Views.

Example:
"MultipleEdit", a ViewTemplate of CommunicationMultiEdit_view (Context "Communication"). This

ViewTemplate is referenced by OrganisationEdit_view in Context Organisation.

Appearance in the client:

In the client, you can find it under Contact Management > Company, if you add a new company dataset
(via the blue "Plus" button). "MultipleEdit" is shown in the line labeled "Communication" and offers the
possibility to select a medium (e.g., email) and enter this medium’s value (e.g., "info@adito.de"). By
clicking on the "plus" button to the right of the label, you can add further media data - hence the name

"Generic Multiple".

Configuration:
"MultipleEdit" has 2 fields of Communication_entity specified in property "columns": MEDIUM_ID and
ADDR. That’s all.

The label of a GenericMultiple ViewTemplate can be specified in its property "title". If not set, property
"title" of the Entity is used.

Step-by-step Example:

Here is another example how a GenericMultiple ViewTemplate can be used for Actions that enable to

add multiple datasets.

The example task: There should be an Action that enables us to add multiple persons (Person datasets)
to a Campaign. If the Action is executed, a GenericMultiple ViewTemplate is opened, in which the

persons can be selected.

For solving the task, you need 2 further Contexts and Entities: One Entity for processing the data
(person are added as participants) and the second for presenting the GenericMultiple ViewTemplate

for the persons.
The Entity controlling the GenericMultiple ViewTemplate is configured as follows:

® EntityFields; UID, CONTACT_ID
® Consumer: Persons - Entity Person, Provider: Contacts
® RecordContainer: jDito

o recordFieldMappings: Add the field UID

o jDitoRecordAlias: Data_alias

mailto:info@adito.de

A

o contentProcess (to avoid errors when saving):

i f(vars.exists("$local.idvalues") && vars.get("$l ocal.idvalues"))

{
}

resul t.object([vars.get("$local.idvalues")]);

o onlnsert: Write any string in the result set. (This process must not be empty, otherwise an

error will occur.)
e EntityField CONTACT _ID:
o Consumer: Persons

o displayValueProcess

result.string(ContactUtils.getTitleByPersonld(vars.get(,$field. CONTACT_ID")));

® View for GenericMultiple:

o Create a View and assign a GenericMultiple ViewTemplate to it. Select EntityField
CONTACT_ID for property "columns".

The Entity responsible for saving is configured as follows:

® Consumer: Participants
O state: EDITABLE

® Parameter: Campaignld_param (includes the ID of the Campaign, from which the Action was

executed)
® RecordContainer: datalessRecordContainer
o alias: Data_alias
® Action: addToCampaign

o onActionProcess:

var participants = vars.get("$field. Participants.insertedRows");
var canpaignld = vars. get ("$param Canpai gnl d_parani');
var inserts = [];
var table = " CAMPAI GNPARTI Cl PANT";
var cols = [

" CAMPAI GNPARTI CI PANTI D",

"CONTACT_I D",

" CAMPAI GN_I D",

" USER_NEW ,

" DATE_NEW

1

participants. forEach(function(oneParticipant)

{
let contactld = oneParticipant["CONTACT_ID'];

A

inserts.push([table, cols, null, [util.getNewdU (), contactld, canpaignld, vars.get("$sys.user"), vars.get(
"$sys.date")]]);
1

db.inserts(inserts);

® View for showing GenericMultiple:
Add the GenericMultiple View, which is referenced by the Consumer "Participants", to the View

via "Add reference to existing View".
Example with one single Entity:

Unlike in the above example, it is also possible to implement a GenericMultiple ViewTemplate with one
single Entity. In the xRM project, you find an example in Context
VisitRecommendationNewVisitplanEntry. Here, the Entity has 2 RecordContainers and a Consumer

VisitRecWithNoTimes connected to Provider VisitTimes of the same entity.

11.3.13. IndexSearch

A ViewTemplate of type "IndexSearch" displays a field for entering search terms to be executed by the
ADITO index search.

Example:
"IndexSearchTemplate", a ViewTemplate of IndexSearch_view (Context "IndexSearchContext").

Appearance in the client:

In the client, you can reach it by clicking on the search button in the Global Bar.

Configuration:
"IndexSearchTemplate" has its property "entityField" set to INDEXSEARCHFIELD.

11.3.14. Lookup

Enables you to integrate lookup functionality into a View, meaning the option to select a specific
dataset of another Entity via its LookupView (= the View selected in property "lookupView" in the

corresponding Context).

The UID of the selected dataset will then be assigned as value of the EntityField specified in property
"consumerField". This EntityField must have a Consumer that is connected with a Provider of the other

Entity that holds the datasets from which the user wants to select.
Example:

Salesproject > SalesprojectPhase_view > Phases

Here, a LookupView is used to show a StepperViewTemplate in the "Detail" area of the MainView.

A

Appearance in the client:

The appearance is defined by the LookupView of the Provider Entity. in the above example, it’s the

SalesprojectPhaseStep_view, which includes a ViewTemplate of type "Stepper".
Configuration:

e "consumerField": The EntityField to be used for storing the value of the selected dataset.

® "consumerPresentationMode": Mode to be used for presenting the LookupView provided via

the Consumer.
o POPUP (default): The LookupView appears as separate (popup) window.

o EMBEDDED: The LookupView appears embedded, i.e., it is integrated into the actual View

(no need for clicking to open it).

11.3.15. Map

Displays a map, with zoom controls.

The map is provided by a datasource, usually called "map server" (or "tile server"). On this map, the

following elements can be added (and, if required, be displayed):

® Markers: These are points (positions) on the map, given by geodetic coordinates (latitude und
longitude, short form: "LON/LAT"). Example: Positions of companies, identified by their

addresses.

® Radius around point. Example: Action "Radius Search" in PreviewView of Context "Company"
(Organisation_entity). In this example, according to the entered radius, a circle around the
company’s standard address is added to the map, in order to calculate the locations of all
companies inside this range. By clicking the button you can show these companies in the

FilterView - but the circle itself remains invisible, unless you switch to ViewTemplate "Map".

® Polylines and polygons: These are colored drawings in form of one or multiple connected lines,
in order to, e.g., mark/display the boarders of a distribution area - optionally augmented by

interactive functionality.

Example:

"OrganisationMap", a ViewTemplate of OrganisationFilter_view.
Appearance in the client:

In the client, you can find it under Contact Management > Company > FilterView > view selection
button > "Map". It shows the locations of all companies, or of the actual filter result (if a filter is set),

respectively. The maximum of locations to be shown can be configured (see below). Usually, you first

A

define the companies you want to see in the map, by filtering them in ViewTemplate "Table", and then

switch to ViewTemplate "Map".
Configuration:

Prerequisite:

The geo coordinates of the companies' standard address must be provided via Organisation_entity’s
EntityFields STANDARD_LON (longitude) and STANDARD_LAT (latitude). As these reference the
corresponding EntityFields "LON" and "LAT" of Address_entity, those must be given in the
corresponding database table ADDRESS' columns "LON" and "LAT". Whenever you create a new
ADDRESS dataset in the client, the xRM logic automatically calculates and inserts the values of the
"LON" and "LAT" fields - see property "onDBInsert" of Address_entity’s RecordContainer "db". In
particular, consider the code

new Locati onFi nder (). get GeoLocati on(addr ess)

which makes use of functionality provided by the library Location_lib (in project folder process >
libraries), on the basis of the Nominatim API.

Note that this automatism is only active, if property "nominatim.enabled" is set to true and the
nominatim server is configured (see "Projects" window: preferences > PREFERENCES_PROJECT >
Custom > PREFERENCES_PROJECT > nominatim.xxx). Otherwise the LON/LAT values will not be
calculated automatically, and the corresponding address cannot be shown on a map.

If an address dataset has not been created via the client (but, e.g., imported from another system
without automatic setting of LON/LAT values), you can subsequently insert all missing geo coordinates
by executing the server process "Set missing address locations" in the ADITO Manager (internal name:
setMissingAddressLocations_serverProcess, see project folder process > executables).

If you want to set/update the geo coordinates of all datasets (including overwriting all possibly existing
LON/LAT values), execute the server process "Set all address locations" (internal name:

updateAllAddressLocations_serverProcess).

The configuration of the map server is set via several properties, defining the source of the geo
coordinates of the companies' addresses, as well as further features. All properties are well-
documented via the property descriptions (at the bottom of the "Properties" window), so you can learn

the functionality by studying this example.
In particular,

® property "configField" holds the EntityField providing the configuration of the map data source
(named "map server" or "tile server"). In this case, this is Organisation_entity’s EntityField
MAP_CONFIG, whose value is generated by its valueProcess, using functions of xRM’s library
MapViewTemplate_lib (see process > libraries). You may inspect the configuration’s (JSON)

format and content by simply including a logging (e.g., | oggi ng. | og("MAP_CONFIG " +

A

res) ; above the last (result) code line of the valueProcess and then watching the server
output, when you zoom in and out in the map (in the client). Find more information in the

following sub-chapters.

properties "autoGeneratedMarkerLatitudeField" and "autoGeneratedMarkerLongitudeField"
provide the geo coordinates of the markers (in this case: of the companies' locations) to be
displayed in the map. By default, the markers are displayed by a default icon, hard-coded in the
ADITO platform’s logic.

property "maxDBRow" allows you to set a limit for the number of datasets (here: company

addresses) to be displayed in the map.

If you want to customize the "pin"-type marker icon or define separate icons for every marker,

you can specify an EntityField providing the icon’s image data, which can have 2 formats:

o Usually, you choose a "NEON" or a "VAADIN" icon from the list of available icons, as
included in the combo box of every property named "icon". The image data is then
defined by simply providing the name of this icon, as a String - e.g., "VAADIN:FACTORY".

The icon will still be displayed inside a "pin".

o Alternatively, you can provide the image data in base64 String format. This allows you to
use arbitrary icon images (not only a "pin") - but note that, in this case, property

autoGeneratedMarkerColorField will have no effect.

property "autoGeneratedMarkerColorField" allows you to specify an EntityField providing the
color for the marker icon (if you want another color than the default color). The color must be
provided as String including an ADITO color code - simply refer to the list items, as included in
the combo box of every property named "color", e.g., "priority-high-color". If this value is
provided by the EntityField’s valueProcess instead, you may use the corresponding JDito color
constants, such as neon. PRI ORI TY_HI GH_COLOR

property "geoJsonFeatureCollectionField" optionally holds an EntityField to provide an array of
GeoJSON FeatureCollections, in order to add additional elements to the map. Find more
information in the property description (bottom of property sheet) and on https://geojson.org/.
Web sites like https://geojson.io/ support you to design the GeoJSON FeatureCollection
according to your requirements. Furthermore, web sites like https://github.com/isellsoap/
deutschlandGeoJSON offer prepared GeoJSON FeatureCollections for, e.g., displaying borders of
specific countries, states, regions, or districts.

In our example (ViewTemplate "OrganisationMap"), this property
"geolsonFeatureCollectionField" holds Organisation_entity’s EntityField
MAP_FEATURE_COLLECTION, whose valueProcess reads the value from Parameter
MapViewAdditionalFeatures_param. This Parameter is set, e.g., when you execute Action
"Radius Search" in the PreviewView of Context "Company" (Organisation_entity). Internally, this

Action is named openAroundLocation, and its valueProcess opens the View

https://geojson.org/
https://geojson.io/
https://github.com/isellsoap/deutschlandGeoJSON
https://github.com/isellsoap/deutschlandGeoJSON

A

AroundOrganisationLocation_view, belonging to Context "AroundLocation". If you select
AroundLocation_entity’s Action "Open" in the Designer, you will find an example of how
Parameter MapViewAdditionalFeatures_param is set - and thus, how a FeatureCollection can be
created, as a GeoJSON String:

Example of creating a GeoJSON FeatureCollection (excerpt of process

AroundLocation_entity.Open.onActionProcess)

var homeFeat ureCol | ection = {
"type": "FeatureCollection",
"features": [

{

"type": "Feature",
"properties": {
"ADI TO-radius": vars.get("$field. SearchRadi us") * 1000,
"ADI TO-col or": neon. PRI ORI TY_H GH_COLCR,
"ADI TO-i con": "VAADI N: MAP_NMARKER',
"ADlI TO-t arget Context": "Organi sation”,
"ADI TO-targetld": vars.get("$param OriginUi d_parant),
"ADI TO- | abel ": ContextUtils.loadContentTitle("O ganisation_entity", vars.get("$param Origi nUi d_parant'))
Ie
"geonetry": {
“type": "Point",
“coordinates": [
par seFl oat (vars. get (" $param Locati onLon_parani'), 10),
par seFl oat (vars. get ("$param Locati onLat _parani'), 10)

This ViewTemplate requires a map server to be referenced. As the "Map"

ViewTemplate is based on the "Leaflet" library, ADITO supports, in principle, any
o map servers that use Leaflet’s "Tile Layers" as base. In particular, ADITO xRM’s

Organisation_entity (see above) provides a simplified support for MapTiler. Find

more details in the following chapter.

11.3.15.1. MapfTiler
The easiest way to configure a map data source is to use MapTiler:

® Obtain a license key for MapTiler (e.g., via https://www.maptiler.com/cloud/plans)

® Enter the license key (i.e., a String like "rf1XkCljY4iUR4sACNjT") in the system configuration’s
property geo.maptiler.apikey:
system > default > CONFIGURATION > Custom >CONFIGURATION > geo.maptiler.apikey

® Save
® Re-start the ADITO server.

® Test it by opening the Company Context’s ViewTemplate "Map" (internal name:

https://www.maptiler.com/cloud/plans

A

"OrganisationMap", included in OrganisationFilter_view, see description above).

e |f you want to use these functionality in other Context’s, simply study the properties of
ViewTemplate "OrganisationMap" and the corresponding EntityFields - and then transfer the

configuration and the included logic accordingly.

11.3.15.2. General information on the required structure of map data sources

The ADITO ViewTemplate "Map" needs a data source (server) that provides basic map data to display
parts of the world. The world map is structured into several parts, called "tiles". These tiles are to be

provided by the server.
Find more information about tiles on https://wiki.openstreetmap.org/wiki/Tiles

The "Map" ViewTemplate is based on the "Leaflet" library (find further information and documentation
on https://leafletjs.com/). Thus, this ViewTemplate is not restricted to using MapTiler (see previous

chapter), but, in principle, it supports any map data source that uses Leaflet’s "Tile Layers" as base.

11.3.15.2.1. Requirements

The server that provides the map layer (i.e., the map elements, such as land masses, sea, rivers, streets,
etc.) must fulfill the following requirements:

® Providing raster tiles (as images) (vector tiles are not supported by Leaflet)

® Using the EPSG3857 coordinate system

® Access via an URL in "xyz"-type format (xy-coordinates of the position, plus zoom level).

® Using either no authentication at all, or authentication via the URL, by providing a license

reference such as an appid, apikey, appcode, etc.

11.3.15.2.2. Property "configField"

The "Map" ViewTemplate’s core property for referencing the map server is property "configField".
Here, you reference an EntityField providing all information required for the ADITO web server to load
map data from an (mostly: external) map server (such as MapTiler). The value of this EntityField must
have JSON format. The JSON String has several parts, which are explained in the property description
(in the "Properties" window, click on "configField" and read the description at the bottom of the

property sheet).
Here is an example:

Example of map server configuration, as provided via property "configField"

https://wiki.openstreetmap.org/wiki/Tiles
https://leafletjs.com/

A

“startingCenterPosition":{"lat":50.989791, "l on": 4.772377, "aut oLocate": true, "zoonLevel ": 5},
"boundari es":{"m nZooni: 1, " naxZoont': 20},
"tiles":[{"title":"Streetnap",
“url":"https://api.nmaptiler.conl maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCl | Y4i URASACN T",
“"attribution":"© MapTiler
© OpenStreetMap contributors"
}

11.3.15.2.3. URL

The core element of this JSON String is "url", e.g.,

https://api.maptil er.com maps/streets/ 256/ {z}/{x}/{y}. png?key=rf1XkC
j Y4i URASACN T

As you can see, the URL given in the JSON String can have multiple parts. The main parts are

a reference of the map server, i.e., a "web page" - e.g.,
https://api.maptil er.conml maps/ streets/ 256/

placeholders for the geo coordinates ({ X} and {y}) and for the zoom factor ({ z})

® an extension specyfing the image format, e.g. . png

a suffix, attached by ?, specifying the license key, e.g., ?key=r f 1XkCl j Y4i URASACN T
Placeholders

You can find detailed information in the "Leaflet" documentation, available on https://leafletjs.com/

Here is an extract covering the placeholder topic:

{s} nmeans one of the avail abl e subdonai ns (used sequentially to help
wi th browser parallel requests per domain |imtation; subdonain

val ues are specified in options; a, b or ¢ by default, can be
omtted), {z} —zoomlevel, {x} and {y} —tile coordinates. {r} can
be used to add "@x" to the URL to |load retina tiles.

("retina tiles" are high-resolution tiles)

This means, you are not limited to the placeholders given in the above example, but the following

placeholders can be used:

Table 4. URL placeholders

https://api.maptiler.com/maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCIjY4iUR4sACNjT
https://api.maptiler.com/maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCIjY4iUR4sACNjT
https://api.maptiler.com/maps/streets/256/
https://leafletjs.com/

A

Placeholder Meaning

{s} one of the available subdomains (used
sequentially to help with browser parallel
requests per domain limitation, one of the

following values: a, b or ¢

{z} z-axis, which is the zoom level

{x} x-axis of the coordinate system for specifying the
tile

{v} y-axis of the coordinate system for specifying the
tile

{r} adds an option for high-DPI-tiles

Authentication

Most tile server vendors require you to authenticate via an apikey (or similar) and to customize the tiles
by passing further options via the URL.

Authentication cannot be done with oAuth since the images are pure <i ng>-HTML-tags. Instead, URL

parameters must be used to specify, e.g., an appid, apikey, appcode, or something similiar.

o As the URL can be viewed within the browser, any logged-in user can view the map
source URL, including the key.

Example
Here is a more generic example of a possible URL specification:

https://ww. {s}nmymapsupplier.org/{x}/{y}/{z}. png?api key=MYAPI KEY& ang
=DE&st yl e=f | at

11.3.15.2.4. Server flexibility

It is possible to change the configuration during run-time. The next time the ViewTemplate is opened or

reloaded, the new configuration will be applied.

The configuration of the map sever can be changed by modifying the JSON String provided by the

https://www.{s}mymapsupplier.org/{x}/{y}/{z}.png?apikey=MYAPIKEY&lang=DE&style=flat
https://www.{s}mymapsupplier.org/{x}/{y}/{z}.png?apikey=MYAPIKEY&lang=DE&style=flat

A

EntityField that is specified in the "Map" ViewTemplate’s property "configField" (URL, title, copyright

attribution, optional elements like min and max zoom - see paragraph "URL" above).

Thus, in principle, it is possible to enable the client user to use multiple map servers in order to switch

between the different types of tiles, e.g., a satellite map and a street map.

o Note that the place and way of configuring the tile server may change in future
ADITO versions.

11.3.16. SingleDataChart

11.3.16.1. Overview

Displays single-dimensional data in a chart, with the data source being specific fields of a specific Entity.

In property “chartType”, you can select from a list of various chart types, e.g., “DONUT”.

Example:

"SingleDataChart", a ViewTemplate of CampaignCostChart_view.

Appearance in the client:
In the client, you can find it under Marketing > Campaign, in the CampaignMain_view, Tab "Overview"
(CampaignOverview_view), right below the Gantt chart. It shows, as a donut, the fix costs and the

variable costs.

Configuration:

"SingleDataChart" has several fields of CampaignCostChart_entity specified in different properties

® "xAxis": X
® "yAxis":Y

® "parentField": PARENT

Besides, property "entityField" is set to #ENTITY, and property "chartType" is set to DONUT.

11.3.16.2. Advanced explanations

SingleDataChart and MultiDataChart work on the same principles, but differ in the way that they offer
different chart types and that the MultiDataChart has one more property than the SingleDataChart.

Both are typically loading their data by a JDitoRecordContainer (see chapter "JDitoRecordContainer").

SingleDataChart - Properties X B Navigator

MOBILE | TABLET | DE

H#ENTITY

PARENT

DONUT

Figure 32. SingleDataChart ViewTemplate

The SingleDataChart is used to display one dimensional data. This means there may only be one y axis
value for any given x axis value. Typical examples are pie or funnel charts, where each segment

represents one specific value.

11.3.16.2.1. Properties

o title
The title

® devices

Select on which device types this ViewTemplate should be available.

® type
Predetermined by the Designer. Shows the type of the ViewTemplate.

® entityField
The EntityField that should be used to gather the data for the chart. Usually, #Entity is used.

® informationField
The EntityField that contains the label of the chart data

® xAxis
The EntityField holding the value that determines the segment of the chart. For example, a slice

of the pie chart. Thus, e.g., a value of 1 would determine the first slice, 2 the second slice, etc.
® yAXxis
The EntityField that holds the actual value of a segment, e.g., the number of customers of a

certain type.

® parentField
This is an EntityField that may hold an ID that is used to enable drill downs. With this you can

© 2025 ADITO Software GmbH 270/ 472

A

nest different data within a segment of the chart.
For example, if you have a pie chart showing the number of customers of a certain type, you
could nest another pie chart within the segments, showing how many persons within a type

have opted out of your newsletter emails.

colorField

Here you choose an EntityField that holds color information. The color must be one of the preset
colors available through the color constants of the neon. JDito module. Typically, the color-
holding EntityField is filled by a valueProcess. The color actually visible in the client depends on

the Theme (see chapter Themes).
Example of a valueProcess of a color-holding EntityField

result.string(neon. USER COLOR 1);

chartType
Here you select the type of chart. The SingleDataChart offers the following:

© Donut
© Funnel
o Pie

o Pyramid

11.3.16.2.2. Example

As an example, we create a pie chart of the distribution of contacts by type with drill down to gender

distribution within the person contacts.

For this example we create a test Context and add one View. To the View we add a ViewTemplate of

type SingleDataChart. Set its property "chartType" to "PIE". Then we create a test Entity and add to it a
JDitoRecordContainer and five EntityFields. These five fields are named UID, X, Y, INFORMATION and
PARENTID. Now we configure the JDitoRecordContainer, set the jDitoRecordAlias property to your data

alias, and configure the recordFieldMappings property to be in the following order:

UID.value

X.value

Y.value
INFORMATION.value

PARENTID.value

A

Then we set the contentProcess property as follows:
contentProcess

/[l First step: Gathering all required data

var countOrg = new Sql Bui |l der (). sel ect Count ()
.from(" CONTACT")
.wher e(" CONTACT. PERSON_ID is null")
.cell();

var countPrivate = new Sql Buil der (). sel ect Count ()
.from(" CONTACT")
. wher e(" CONTACT. PERSON_ID is not null and
CONTACT. ORGANI SATION . ID = "0' ")
.cell();

var count Function = new Sql Bui |l der (). sel ect Count ()
.from(" CONTACT")
.where(" CONTACT. PERSON_ ID is not null and
CONTACT. ORGANI SATION_ ID is not null™")
.cell();

/1 gathering the data for the drill downs
var genderDi stPrivate = newSel ect ("GENDER, count(*)")
. from(" PERSON")
.j oi n(" CONTACT", "PERSON. PERSONI D =
CONTACT. PERSON_| D)
.wher e(" CONTACT. ORGANI SATION_ID = '0' ")
. groupBy(" GENDER")
.table();

var gender Di st Functi on = newSel ect (" GENDER, count(*)")

. from(" PERSON")

.j oi n(" CONTACT", "PERSON. PERSONI D =
CONTACT. PERSON_| D")

. wher e(" CONTACT. ORGANI SATION_ID i s not
nul | and CONTACT. PERSON_ID is not null™)

. groupBy(" GENDER")

.table();

/1 Second step: Building our graph data

[l Oder is: UD, X Y, |INFORVATI ON, PARENTI D

/[l First we create the array that will contain all datasets
var ret =1[];

/1 Then we add our nmin graph data

ret.push([util.getNewldU D(), "ORG', countOrg, "Organisations",
null]);

ret.push([util.getNewdUl D(), "PRIVATE", countPrivate, "

© 2025 ADITO Software GmbH 272 /472

A

Organi sations", null]);
ret.push([util.get NewldU D(), "FUNCTION', countFunction,
"Organi sations", null]);

/1 Now we create two drill downs
for(let i = 0; i < genderDistPrivate.length; i++)
ret.push(]

util.get NewlU IX)

, genderDi stPrivate[i][0]

, genderDistPrivate[i][1]

, KeywordUtils. get Vi ewval ue($Keywor dRegi stry. per sonGender (),
genderDi stPrivate[i][0])

, ret[1][0] //getting the parent id for the private slice

1);
for(let i = 0; i < genderDi stFunction.|ength; i++)
ret.push(]

util.get NewUU)

, gender Di st Function[i]][0]

, gender Di st Function[i][1]

, KeywordUtils. get Vi ewval ue($Keywor dRegi stry. per sonGender (),
gender Di st Function[i][0])

, ret[2][0] //getting the parent id for the function slice

1);

/1 Finally, we return our data
result.object(ret);

You will notice in the code that the entries for the main graph have nul | as their parent id. That is
because those do not have a parent and are the data that is presented first. When creating the datasets

for our drill downs, we use the ID of the respective slice to group the drill down data below them.

o Make sure that potential parents are added to the result before any of their
children.

After that, we are done with the Entity. Now we head back to our Context and set our new Entity to be
used for this Context, and we set our only View for all the standard Views. After that’s done, we open
our View again and configure the properties of the ViewTemplate. Finally, we add the new Context in
application > SYSTEM_APPLICATION_NEON, so we can open it in the client.

If we open this Context, we should get the following chart:

FUNCTION —

PRIVATE

Figure 33. Main graph

After a click on the "FUNCTION" slice, we should get the gender distribution:

ORG

A

© 2025 ADITO Software GmbH

274/ 472

A

Figure 34. Drill down

You'll notice that we have drill downs for "FUNCTION" and "PRIVATE", but not for "ORG". Now, try to do
this by yourself: Add a drilldown to "ORG" that breaks down the organisation by their legal form.

11.3.17. MultiDataChart

11.3.17.1. Overview

Displays multi-dimensional data in a chart, with the data source being specific fields of a specific Entity.

In property “chartType”, you can select from a list of various chart types, e.g., “COLUMN”".

Example:

"MultiDataChart", a ViewTemplate of CampaignParticipantChart_view.

Appearance in the client:
In the client, you can find it under Marketing > Campaign, in the CampaignMain_view, Tab "Overview"

© 2025 ADITO Software GmbH 275 /472

A

(CampaignOverview_view), left below the Gantt chart. It shows, as bars, the number of current
participants and maximal participants (1st dimension), separately for added participants and

participants that have been contacted by telephone (2nd dimension).

Configuration:
"MultiDataChart" has several fields of CampaignParticipantChart_entity specified in different

properties

® "xAxis": X
® "yAxis":Y

® "categoryField": CATEGORY

Besides, property "entityField" is set to #ENTITY, and property "chartType" is set to BAR.

11.3.17.2. Advanced explanations

SingleDataChart and MultiDataChart work on the same principles, but differ in the way that they offer
different chart types and that the MultiDataChart has one more property than the SingleDataChart.

Both are typically loading their data via a JDitoRecordContainer (see chapter "JDitoRecordContainer").

MDC - Properties X I Navigator

FENTITY

Figure 35. ViewTemplate within a View

The MultiDataCharts are used to present data on a XY graph. It is possible to display more than one Y
value fo each x value, hence the name of MultiDataChart. Additionally you are able to implement drill

downs.

11.3.17.2.1. Properties

o title

© 2025 ADITO Software GmbH 276 /472

A

The title

devices

Select on which device types this ViewTemplate should be available.

type
Predetermined by the Designer. Shows the type of the ViewTemplate.

entityField
The EntityField which should be used to gather the data for the chart. Usually, #ENTITY is used.

informationField
The EntityField that contains the label of the chart data

xAXis
The EntityField holding the value used for the x axis. For example, the number of days it took to

complete a task.

yAXis

The EntityField that holds the corresponding value for a value on the X axis.

parentField

This is an EntityField that may hold an id, which is used to created drilldowns. With this you can
nest different data within a segment of the chart.

For example, if you use a line chart to implement a burndown chart, you might implement a

drilldown to present the burn down of each day.

categoryField

A EntityField that has to hold a category value. This allows you to define more than one value on
the y axis for any given value on the x axis. E.g. if you have the number of days on the x axis, you
could display multiple y values if they have a different category. This could be used to create a
burndown chart, where one category would be used for the planned value and the other

category would be used for the real value.

colorField

Here you choose an EntityField that holds color information. The color must be one of the preset
colors available through the color constants of the neon. JDito module. Typically, the color-
holding EntityField is filled by a valueProcess. The color actually visible in the client depends on

the Theme (see chapter Themes).
Example of a valueProcess of a color-holding EntityField

result.string(neon. USER COLOR 1);

chartType

Here you select the type of chart. The single data chart offers the following:

A

o Area

O Bar

o Column
o Spline

o Line

11.3.17.2.2. Example

As an example, we want to create a column chart showing all campaign steps and their costs (fixed

costs and the costs of each step).

We start similarly to the SingleDataChart (see separate chapter further below in this manual). We build
a new test Context and Entity, give it a JDitoRecordContainer, add the necessary EntityFields UID, X, Y,
CATEGORY, and INFORMATION, and map them in this order within the RecordContainer. Then we create
a new View for our Context containing a ViewTemplate of type MultiDataChart. Set its property
"chartType" to "COLUMN". After that, we insert the contentProcess of the RecordContainer. (Other
than the example of the SingleDataChart, PARENTID will not be used, because we don’t implement a
drill down. Implementing a drill down works the same way as in the SingleDataChart example. For a
more detailed description of the steps, please look at the SingleDataChart chapter further below in this

manual.)
contentProcess

/1 We use an I D of a canpaign of the xRM project's denp dat a.

/1l Instead, you could read a Paraneter that is passed by a Consuner.
/1 But for sinplicity's sake, we use a fixed id for now.

[l 1f this ID does is no |onger present, just use another ID

/1 of a canpaign of the denp dat a.

var canpaignld = "680de39f-7f 1c-4dca-8c67-9¢c16c3395c3f";

/1 initialize required variabl es

var costData = [];

var ret =1];

var cat Keyword = $Keywor dRegi stry. canpai gnSt epCost Cat egory();

[l gathering data from CAMPAI GNCOST and CAMPAI GNSTEP
costData = newSel ect ("NAVE, CATEGORY, NET, SORTING')

. fron(" CAMPAI GNCOST")

.l eftJoi n(" CAMPAI GNSTEP on CAMPAI GNSTEP. CAMPAI GNSTEPI D =
CAMPAI GNCOST. CAMPAI GNSTEP_I D")

. wher e(" CAMPAI GNCOST. CAMPAI G_I D', canpai gnl d)

.order By(" CAMPAI GNSTEP_I D desc, SORTI NG')

.table();

© 2025 ADITO Software GmbH 278 /472

A

/1 cal cul ate/ get display values for our data and
/1 adding it to our result set
cost Dat a. f or Each(function([pStepld, pCategory, pNet, pSort])
{
[l 1f there's no step id, the costs are the
/'l fixed costs of the canpaign
i f(!pStepld)
{
/1 Set "FixedCosts" as pseudo step id
pStepld = "Fi xedCosts";
}
el se
/1 build the step id fromthe SORTI NG and NAME col unms
ot herwi se
pStepld = pSort + ". " + pStepld;

/1 getting the display value for the cost categories
/1 fromthe keyword
pCat egory = KeywordUtil s. get Vi ewVal ue(cat Keyword, pCategory);

/1 Add the data to the final result in this order:
/1 UD, X Y, CATEGORY, | NFORVATI ON
ret.push(Jutil.getNewldU D(), pStepld, parseFloat(pNet),
pCat egory, pCategory]);
1)

/1 returning the data
result.object(ret);

This should be the result, after adding the Context to your client’s Global Menu (application >
_SYSTEM_APPLICATION_NEON):

© 2025 ADITO Software GmbH 279 /472

A

Fixkosten 1 Hinzugefiigt 2 Telefonische Kontaktaufnahme

M Layoutcosts Ml Printing costs Il Shipping costs

Figure 36. Resulting chart

11.3.18. MultiEditTable

A ViewTemplate of MultiEditTable type displays one or multiple datasets as editable table. Rows are
datasets, columns are EntityFields. You can select arbitrary EntityFields in property "columns". Only

those EntityFields defined in property "editableColumns" are displayed as editable components.

The Properties viewRendererMapping and editRendererMapping enable you to set one or multiple
Renderers, in order to control the way an EntityField is displayed or edited. Please refer to chapter

"Renderers" for further explanations.
Additional Information:

® Paging is not possible for this type of ViewTemplate.

® |f you have changed an EntityField’s value but not saved it yet, the field is displayed with an

orange frame.
® Currently, the table edit functionality is supported for EntityFields of the following contentTypes:
© UNKNOWN
© NONE

o TEXT

o

NUMBER

o

TELEPHONE

(¢]

EMAIL

O LINK

© 2025 ADITO Software GmbH 280/ 472

A

o

PASSWORD

o DATE

(¢]

FILESIZE

o

BOOLEAN

o

FILTER_TREE
® EntityFields of the following contentTypes are not supported yet:
© SIGNATURE

o LONG_TEXT

(¢]

HTML

o

IMAGE

O FILE
Example:
"MultiEditTable", a ViewTemplate of ProductpriceFilter_view in Context "Productprice".
Appearance in the client and configuration:

In the Global Menu of the client, you can access the above example under Sales > Prices. As this
Context’s FilterView shows a table as default, you first need to switch to the MultiEditTable, using the
view selection button (upper right corner of the FilterView). This ViewTemplate displays datasets

representing

® products: Selectable via a combo box, because the corresponding EntityField PRODUCT _ID has a

Consumer (no Renderer required).

® prices: The corresponding EntityField PRICES can be edited via 4 additional buttons (see above),
because the ViewTemplate’s property editRendererMapping specifies a Renderer of type
NUMBERFIELD for EntityField PRICES.

e validity (from/to): Selectable via a date picker, because the corresponding EntityFields
VALID_FROM and VALID_TO are of contentType DATE (no Renderer required).

® price list: Displayed with a background color, because the ViewTemplate’s property
viewRendererMapping specifies a Renderer of type BADGE for EntityField PRICELIST. In this case,
the background color is dynamically determined via the code included in the EntityField
PRICELIST’s property "colorProcess". For testing purposes, you could also define a fixed color
value by selecting a value for property "color" and deleting the value of property "colorProcess"

(choosing "Restore Default Value" from the context menu).

A

11.3.19. Picture

Displays a picture, whose source data is loaded from an EntityField (property “pictureField”). Property

pictureClickAction enables you to select an Action to be executed when the user clicks on the picture.

11.3.20. Report

A ViewTemplate of type "Report" displays a JasperReport. You define one EntityField as your report

data source. The appearance can only be edited in your report design application.
Example:

"Report", a ViewTemplate of OfferReport_view in Context "Offer". This ViewTemplate displays the data

of a selected offer.
Appearance in the client:

In the Global Menu of the client, you can access the above example under Sales > Offer. After selecting
a dataset in OfferFilter_view, click on the three-dotted button in OfferPreview_view and select the
Action showOffer, labeled "Show offer". This will display the report for the selected data in a separate

window, using the following code (via the Action’s onActionProcess):
OferUils.openOferReport(vars.get("$field. OFFERID"));

This method, in turn, will execute method neon. openCont ext Wt hReci pe:

var recipe = neonFilter.createEntityRecordsReci peBuilder().uidslncludelist([pOferlD]).toString();

neon. openCont ext Wt hReci pe("Cffer", "OfferReport_view', recipe, neon. OPERATI NGSTATE_ VIEW null, true);

Furthermore, in this example, you can optionally click on the button representing the Action
dispatchOfferReport, labeled "@ Dispatch as email".

Configuration:

® "entityField": Select "#ENTITY" (or another value, according to your requirements).

e "reportData": Select the EntityField that supplies the report data (often via a valueProcess). In
the above example, this is the Field "OFFER_REPORT_DATA" of Offer_entity.

® QOptionally, you can specify up to 3 ActionGroups via properties "favoriteActionGroup1-3". In the
above example, ActionGroup "offerReportDispatch" has been specified (which in turn includes
Action "dispatchOfferReport").

o Find more information on JasperReports in the ADITO document "Reporting

Manual".

11.3.21. ResourceTimeline

Displays a calendar component that shows a tree of existing resources on the left side and visualizes
scheduled operations for them on the right side. The resource timeline can be used to schedule
operations. An operation in general terms is something a resource can do on a schedule like sales visits,
maintenance appointments, etc.

Example:
A more advanced implementation of this ViewTemplate was done in the basic customizing model of
version 2022.2.0 and above. In the Designer, it can be found in the View

"ResourcePlanningFilter_view".

ResourcePlanningFiter_view X Navigator

Editor Source History 0 Reswceplanymgmey,v.ew,v
B8 resourceTimeline

resourceTimeline

#CONTENTTITLE

[#CONTENTTITLE #CONTENTTITLE

#CONTENTTITLE

[#CONTENTTITLE #CONTENTTITLE

Appearance in the client:
It’s located under External Work = Resource planning, which is used to plan operations for existing
human resources.

) e 2312022 o« > H Mot v = Fiter | B
Q imhalt fite Ressourcen: 6

November 2022
Ressourcen

Zusammenfassung /. ¥
Frau Anke Herrmann @
Herr Erik Pfeiffer @
Herr Bernd Seiler @

Herr Markus Altinger @

A

The ViewTemplate uses two entities to load its data. One Entity is responsible for loading the resources,
the second Entity is used to load entries based on the resources and has to be connected via a
Provider-Consumer pair to the Resource_entity. More detailed informations can be found in the next

sections below.

11.3.21.1. Advanced explanations

The ResourceTimeline ViewTemplate is different from the other ViewTemplates in the sense that it
requires two entities to get its data. Typically you’ll also need at least a third one, which is used for the
operations. Operations are only referenced by an UID and can be whatever you customize them to be.
It can be a simple construct only using one Entity or somethig more complex like in the ADITO xRM

project, where an operation can also have multiple operation tasks.
The resource planning is generally divided into three parts, which interact with each other:

® Resource: the Entity for which something is planned
® Entry: the planning of an operation for one particular resource

® QOperation: the action, which is planned to be carried out
As for the relations between the three parts:

® Aresource has multiple entries associated with it
® One entry is connected to one operation

e Different entries can refer to same operation

11.3.21.1.1. Important properties

The configuration offers a number of properties in order to define where to get the data. They’re split

up into three sections. Only the more complex ones will be mentioned below.

® Entity

o entityField: This property is similar to other ViewTemplates and refers to the main entity
of the ViewTemplate. Typically #ENTI TY is used to refer to the Context’s Entity. In this
case this entity has to load the resources and is configured further in the Resources

section.
® Resources

o initalDateField: This field is used to set the shown day on opening and has to contain the
date as text and has to use the ISO-8601 "yyyy.MM.dd" format. The date is parsed
internally by the vietemplate. If no field is set or the set field returns NULL, the current

day is used.

(0]

(¢]

(0]

A

parentField: As the ressource can be a tree structure, this field is used to associate child
nodes to their respective parent node. If no EntityField is set or the set field is set to a
NULL value, the resource is treated as a root node. This behavior is similar to the

TreeTable or Tree ViewTemplates.

businessHoursFromField: An EntityField which holds the start of the resource’s business
hours as text. E.g. "08:00".

businessHoursToField: An EntityField which holds the end of the resource’s business hours
as text. E.g. "17:30".

The values of businessHoursFromField and businessHoursToField define the
timespan within which the resource is available. The timespan is shown as a white
area on the timeline when using the View in day mode. Everything outside this

timespan will be displayed in grey.

29 Nov 2022 E=

Resources: 6

v
29 November 2022

® Entries

(0]

entryEntityField: This property has to hold the Consumer which should be used to load
the entries. The Consumer has to be part of the Entity refered to intheent i t yFi el d
property.

entryResourceldField: This property is mandatory! It has to hold the UID of the resource
to which the entry is linked.

entryDatetimeStartField: This property is mandatory! This EntityField has to hold the start
date and time of the entry as a timestamp. It is mandatory to configure this field to be of
content type DATE and it has to be filterable.

entryDatetimeEndField: This property is mandatory! This EntityField has to hold the end
date and time of the entry as a timestamp. It is mandatory to configure this field to be of
content type DATE and it has to be filterable.

entrySelectedResourcesField: This field holds the resources which are selected in the
component. It is provided as a JSON Array. To use it in your code the value of the field has

to be processed by JSON.parse() before using it. If no resources were selected, the array

A

contains the id into whoses row an entry was dragged.

o entryResourceOperationldField: This property is mandatory! This field has to hold the UID
of the operation to which the entry refers and is used to find the same resource operation

from other resources.

11.3.21.1.2. Outlining the Entities
This section will detail the Entities needed. It will cover

® resource Entity (in the xRM project, e.g., "Resource_entity"),
® entry Entity (in the xRM project, e.g., "ResourcePlanning_entity"),

® and operation Entity (in the xRM project, e.g., "ResourceOperation_entity").
Apart from the fields required, the Entities can be customized to your needs.
Resource Entity:

This is the main Entity of the ViewTemplate and has to provide the resources. All resource are loaded at
once, so it is important to pay attention to the performance of this Entity. It also has to have a
Consumer which is connected to the entry Entity. This Consumer will be used to load corresponding

entries of a resource.

The RecordContainer of this Entity has to have paging disabled, as all resources have
to be loaded at once. It is also recommended to use caching to prevent loss of

performance.

db - Properties

" db - Properties

fype dbRecordC

v Database

inkinformation

eable
supportsFilterExtensionGrouping

¥ Cache
;acheType
:acheKeyProcess import { CachedRecordContainerUtils } from "Cac...

Besides the fields necessary to fill the ViewTemplates properties the Entity is freely customizable and
can be built to your specifications. Most of the information will be presented via the PreviewView of
the Context of which this Entity is a part of and can be opened by clicking on the eye symbol besides

the resource.

Creating new and editing resources have to be implemented seperately as the ViewTemplate only can
show already existing records and only offers creating and editing of entries. One way is to create two
separate conexts which are based on the same Entity. The first Context will have a regular
Table/Treetable as FilterView where you create, edit and delete resources and the second Context has
the resource timeline as FilterView within which the entries are managed. Existing resources can still be
edited or deleted by using their PreviewView. This is the way this ViewTemplate is implemented in the

resource planning of the basic project.
Entry Entity:

This Entity represents the planning entries which link a resource and a resource operation and has a
specified start and end date. To load the correct entries this Entity has to have a Provider to which the
resource Entity connects. If you don’t need more specified Providers, the #PROVI DER Provider can be
used. The resource Entity will set a filter when requesting data. The filter is determined and set
automatically and is mechanically similar to what a lookup field, i.e. an EntityField which has a

Consumer chosen for providing a dropdown list, does.

A

If resources are selected by using the checkboxes to the left of the resource title, the IDs of these
resources are set to the field specified in the entrySelectedResourcesField property. It will then contain
a JSON Array of these IDs. If, for example, a new entry is created and several resources are checked,
you’ll have to make sure to also create an entry for every selected resource. But how this field is used
and what the resulting behaviour should be, depends on your specifications. For example, if an entry
should not only be created for the resource in whiches row it was created, but for all selected
resources, you’ll have to implement the creation of entries linked to the other resources in the

afterSave process of the entry Entity or the onCreate, onUpdate and onDelete of your RecordContainer.

If no resource was selected, then the array will contain the id of the resource to whiches row an entry
was dragged. You have to update the resource id of this entry, if the id you get from the array is

different from the one you get from the resource id field.

In general this is the Entity where the bulk of your logic has to be implemented. E.g. creating of
additional entries, updating other entries based on changes on the current entry and so on. All of these

things have to be done within this Entity.

If you want to show information of the operation within the entry, the database tables of your
oparation construct may be joined to the tables of the entry and set to read only mode. The read only
mode is necesarry because when inserting an entry linked to an existing operation, you'd get an error
because the ID of the operation already exists. If you want to include View references from your
operation Context or want to select them via a lookup dropdown, the entry Entity and operation Entity

should be connected via a Provider-Consumer pair.
Operation Entity:

An operation can be understood as "something a resource can do". E.g. sales visits, maintenance visits,
etc. This Entity is mostly independent from the first two. Its records / data is only linked by the field set
in the entryResourceOperationldField property. Typically this Entity would have a Provider to which the

entry Entity can connect for a lookup dropdown.

Apart from that, the customzing of what an operation should be, depends on your usecase and
specifications. It could range from being a simple descriptor to a construct of singular plannable
actions, which might have tasks or checklists associated with it and also would require more logic

within the entry Entity.

11.3.21.1.3. Example: Implementing the basic functions

In the following example we will build a very basic implementation of the ViewTemplate. It will just
allow to create, edit and delete resources, to create, edit and delete operations and to plan operation

for a resource and move them via drag and drop.

A

The resources, operations and plannings will be stripped down to their bare minimum.
The resource will consist of:

® 3 contact, which represents the human resource for which we will plan operations

® the business hours of the resource
The operation will consist of:

® atitle

® an info text field to describe the operation
The plannings will consist of:

® an operation
® the starting date

® the ending date

Creating the database tables:

o Liquibase scripts and code snippets can be found in the Appendix ResourceTimeline
example: Liquibase and code

We’'ll start by building the database tables for our three parts. Those will be called EXAMPLERESOURCE,
EXAMPLEPLANNINGENTRY and EXAMPLEOPERATION.

Create a folder named resourceTimelineExample in the top level of Data_alias so the

paths match with the provided scripts found in the appendix.

o Within this folder create a changeset called resTimeline_creates and a changelog
called changelog.
Add the changelog of this folder to the main changelog found in the top level of
Data_alias.

After these liquibase scripts are in their place, rightclick on Data_alias and choose Liquibase - Update
to execute the scripts. After the tables were created update the aliasdefinition, so the new tables can

be used in the project.
Creating the Entities

Now we need to set up our Entities. To do that, we’ll use the Blueprint Generate Entity from

A

Al i asdefi ni t on found in the context menu of the "entity" node of the project tree. Rightclick the
node, then choose "New with Blueprint" - "Generate Entity from Aliasdefiniton". This will set up the
Entity with a database RecordContainer and all the fields, and already connects the fields to the
RecordContainer. Do that for every of our three tables. The Entities should be named

ExampleResource_entity, ExamplePlanningEntry _entity and ExampleOperation_entity.

After that’s done, we can go into our Entities and start by filling the valueProcesses of the fields which
should automatically be filled. These fields are DATE_NEW, DATE_EDIT, USER_NEW, USER_EDIT and our
ID fields EXAMPLERESOURCEID, EXAMPLEPLANNINGENTRYID and EXAMPLEOPERATIONID. The code
snippets for these processes can be found in the appendix or can be taken from the according fields of
other Entities. Also remove the checkmark of the mandatory property of the DATE_EDIT and
USER_EDIT fields.

Necessary changes to the Entities

The Entities now need some tweaking to be complete. We'll start with the Entity, which needs the most

changes: ExamplePlanningEntry_entity.

Let’s start at the database RecordContainer. For the ViewTemplate to be able to select the entries
based on the time window, the fields DATE_START and DATE_END have to have thei sFi | t erabl e
property checked. The same has to be done for EXAMPLERESOURCE_ID and EXAMPLEOPERATION _ID,
which are also used to select the necessary planning entries. Also add the table EXAMPLEOPERATION
to the linkiInformation of the RecordContainer. Make sure the table is set to read only, so creating an
entry won't try to also create a new opertion. As we choose our operation from a list of already created
operation, the read only mode prevents errors due to already existing ids. Now that the table is linked,
we can go to EXAMPLEOPERATION_ID.displayValue and select the database column "TITLE" as value of
the "recordfield" property.

After that’s done, we’re moving on to adding a new EntityField called "SelectedResources". The ADITO
core will provide a JSON array within this field, which either contains the selected resource or if no
resource was selected, it contains the id of the resource this particular entry was dragged to. It will can
be used to create additional entries if multiple resources were selected and is always used to
implement the drag & drop functionality. This example will only implement the drag & drop
functionality for simplicities sake. Creation of multiple entries can be found within the resource
planning implementation of the basic project of version 2022.2.1 and above. To complete the setup of
darg & drop, we have to add a valueProcess to the EXAMPLERESOURCE_ID field.

valueProcess of EXAMPLERESOURCE _ID

import { result, vars } from"@ditosoftware/jdito-types";

//to respond to drag and drop of the entry
i f(vars.get("$field. Sel ectedResources")

&& JSON. parse(vars. get ("S$fiel d. Sel ect edResources"))
&& JSON. parse(vars. get ("$fiel d. Sel ect edResources")).length > 0)

result.string(JSON. parse(vars. get ("$field. Sel ectedResources"))[0]);

This valueProcess will update the foreign key every time the entry is dragged to another resource.

Now we also have to change the fields DATE_START and DATE_END as thsoe have to be filled by the
user. So we have to set the properties of the "Formatting" group. We'll set "resolution" to MINUTE and

both format properties to the "dd.MM.yyyy HH:mm" pattern.

As the last changes we’ll add the possibility to choose our operations. So we add a new Consumer to
the Entity and call it ExampleOperations. The Consumer has to point to ExampleOperation_entity and
use its #PROVIDER Provider. After the Consumer is configured, we go to the EntityField
EXAMPLEOPERATION_ID and set this Consumer as value of its "consumer" property.

The next Entity, we're going to expand will be ExampleResource_entity. Here we’ll start at the Entity

itself and set its contentTitleProcess:

import {vars, result} from"@ditosoftware/jdito-types"”

result.string(vars.get("$field. CONTACT_ID. di spl ayVal ue"))

This will take the displayValue of the selected contact as its title.

After this change, we’ll move on to the database RecordContainer. As all resources have to be loaded at
once, we have to disable the "isPageable" property. For this simple example we ignore grouping and
caching. The last thing to do within the RecordContatiner, is to configure CONTACT _ID.displayValue, so
it shows the name of the persons we select. To achieve this, we need to add a process to the
"expression" property:

import { result } from"@ditosoftware/jdito-types";
i nport {newSel ect, Sql MaskingUtils} from "Sqgl Builder_lib";

result.string(
newSel ect ([new Sql Maski ngUti |l s().concat WthSeparator(["FI RSTNAVE", "LASTNAVE']," ",true)])
. fron(" PERSON")
.joi n("CONTACT", "PERSON. PERSONI D = CONTACT. PERSON_| D)
. wher e(" CONTACT. CONTACTI D = EXAMPLERESOURCE. CONTACT_| D")
.toString()

To make the resources filterable by their names, we also check the "isFilterable" property of
CONTACT _ID.displayValue.

A

Following these changes, we’ll add two Consumers to the Entity. The first Consumer will be called
ExampleEntries and has to point to ExamplePlanningEntry_entity and use its #PROVIDER Provider. This
Consumer will be used by the ResourceTimeline ViewTemplate to load the entries for each resource
based on the resource id and the selected time window. The second Consumer will be named
"Persons" and has to point to Person_entity and use the "Contacts" Provider. This will allow us to select
the contact of the resource via a lookup table. After the Consumers being set up, go to the

CONTACT _ID EntityField and set the "Persons" Consumer as value of its "consumer" property.

Finally, we need to change ExampleOperation_entity. Here we’ll also start at the contentTitleProcess of

the Entity and add the following code:

inmport { result, vars } from"@ditosoftware/jdito-types";

result.string(vars.get("$field. TITLE"));

This uses the TITLE of the Operation, so we can see its name when using the lookup within the entry. As
this is done, we move on to the RecordContainer. Here we go to TITLE.value and check its "isFilterable"

and "isLookupFilter" properties.
Creating Contexts and Views

Our logic and therefore Entities are now complete, and we can move on to create the frontend for
them. We will need four Contexts for that. Two of those Contexts will reference
ExampleResource_enity and be different frontends with different purposes. As we need to create, edit,
and delete resources, we will do that within its own context, so it’s separated from the

ResourceTimeline, which will handle the creation, editing and deletion of our entries.

We’ll add our Contexts by using the "Create Contexts with Default Views" Blueprint. It’s found in the
context menu of the "context" node of the project tree. Right-click on the node and choose "New with

Blueprint" - "Create Contexts with Default Views".
Our four Contexts and their Views will be:

® ExampleResource
Set ExampleResource_entity as the used Entity.

Check the following Views:
o Edit_view
o Filter_view
O Preview_view

® ExamplePlanning

A

Set ExampleResource_entity as the used Entity.

Check the following Views:
o Filter_view
O Preview_view

® ExampleEntry
Set ExamplePlanningEntry_entity as used Entity.
Check the following Views:
o Edit_view
O Preview_view
® ExampleOperation
Set Exampleoperation_entity as used Entity.
Check the following Views:
o Edit_view
o Filter_view

O Preview_view

This is the minimum of Views that you need to implement. If your specific project includes more
complex constructs, the resources, entries, and operations might also require a Main_view or a
Lookup_view.

After the groundwork is done, we can now fill each View. Choose suitable names for the ViewTemplates
at your own will.

® ExampleResource

o Edit_view
Add a Generic ViewTemplate and add the CONTACT _ID, BUSINESSHOURFROM, and
BUSINESSHOURTO fields. Make sure the "editMode" property of the ViewTemplate is
checked. As this is all we need for this example, you can also set the "size" property of the

View to "SMALL", so it’s opened besides the table we’ll use in the Filter_view.

o Filter_view
Add a Table ViewTemplate and add CONTACT _ID, BUSINESSHOURFROM,
BUSINESSHOURTO to its column property.

O Preview_view

Repeat the steps from creating the Edit_view, but do not check the "editMode" property.

® ExamplePlanning

A

o Filter_view
Here we add the ResourceTimeline ViewTemplate. To configure it, we need to fill the

groups "Resources" and "Entries" as shown in the screenshot below:

{

{

businessHoursFromField

vl € € € (w)

L 4

v Entries

entryEntityField

ITENTTITLE

PLERESOURCE_ID
DATE_START
DATE_END

PLECPERATION_ID

Within "Resources" we just need the mandatory fields "titleField",
"businessHoursFromField" and "businessHoursToField", as those are necessary for

displaying the resources.

Within the Entries group we need to set the Consumer "ExampleEntries" as value of
"entryEntityField". This is the connection between our resources and our entries. The
follwing fields are taken from ExamplePlanningEntry_entity to fill the remaining

proeprties.

O Preview_view
Create it the same way the Preview_view of ExampleResources was created as they’re

basically the same.
® ExampleEntry

o Edit_view
Add a Generic ViewTemplate and add the EXAMPLEOPERATION_ID, DATE_START and
DATE_END fields to it. Check the "editMode" property of the ViewTemplate.

O Preview_view
Add a Generic ViewTemplate and add the EXAMPLEOPERATION_ID, DATE_START and
DATE_END fields to it. Do not check the "editMode" property with this one.

® ExampleOperation

A

o Edit_view
Add a Generic ViewTemplate and add the TITLE and INFO fields. Check the "editMode"
property of the ViewTemplate.

o Filter_view
Add a Table ViewTemplate and add the TITLE and INFO fields to its columns property.

O Preview_view
Add a Generic ViewTemplate and add the TITLE and INFO fields. Do not check the
"editMode" property of this ViewTemplate.

Testing the example implementation

Now we’re done implementing our example, we have to add the ExampleResource, ExamplePlanning,
and ExampleOperation Contexts to the menu by adding them to a new group within the "
_SYSTEM_APPLICATION_NEON" datamodel found in the "application" node of the project tree. For
simplicity’s sake also add the "INTERNAL_EVERYONE" role to your new menu group. ExampleEntry
doesn’t have to be in the menu unless you want to also implement a Filter_view for it, so you can have

a list of existing entries. But this is optional in this example.

After that’s done, we deploy everything and check it out within the ADITO webclient. Create some
resources within ExampleResource, then create some operations within ExampleOperation, and at last

create entries within ExamplePlanning and test the drag & drop of entries between different resources.

For a more comprehensive implementation of the ResourceTimeline ViewTemplate, you can take a look

at the source code of the resource planning included in the ADITO xRM project.

11.3.21.2. Specific color constants

There are specific color constants to color the entries of the ResourceTimeline. These colors are set by

the ADITO core, but can be overridden when using a custom Theme (see chapter Themes).
Active entry colors:

® neon.RESOURCETIMELINE_ACTIVE_COLOR_1
® neon.RESOURCETIMELINE_ACTIVE_COLOR_2
® neon.RESOURCETIMELINE_ACTIVE_COLOR_3
® neon.RESOURCETIMELINE_ACTIVE_COLOR_4
® neon.RESOURCETIMELINE_ACTIVE_COLOR_5
® neon.RESOURCETIMELINE_ACTIVE_COLOR_6

® neon.RESOURCETIMELINE_ACTIVE_COLOR_7

A

neon.RESOURCETIMELINE_ACTIVE_COLOR_8
neon.RESOURCETIMELINE_ACTIVE_COLOR_9
neon.RESOURCETIMELINE_ACTIVE_COLOR_10

neon.RESOURCETIMELINE_ACTIVE_COLOR_11

Passive entry colors:

neon.RESOURCETIMELINE_PASSIVE_COLOR_1
neon.RESOURCETIMELINE_PASSIVE_COLOR_2
neon.RESOURCETIMELINE_PASSIVE_COLOR_3
neon.RESOURCETIMELINE_PASSIVE_COLOR_4
neon.RESOURCETIMELINE_PASSIVE_COLOR_5
neon.RESOURCETIMELINE_PASSIVE_COLOR_6
neon.RESOURCETIMELINE_PASSIVE_COLOR_7
neon.RESOURCETIMELINE_PASSIVE_COLOR_8
neon.RESOURCETIMELINE_PASSIVE_COLOR_9
neon.RESOURCETIMELINE_PASSIVE_COLOR_10

neon.RESOURCETIMELINE_PASSIVE_COLOR_11

11.3.22. ScoreCard

Displays arbitrary fields of an Entity, each on a labelled card. The label is specified in the

“title” /"titleProcess” property of the corresponding EntityField.

Example:

"OrganisationIinformation", a ViewTemplate of OrganisationPreview_view in Context "Organisation".

This ViewTemplate displays additional information about a company.

Appearance in the client:

In the client, you can find this ViewTemplate, if you open the Global Menu and then select "Company"

in menu group "Contact Management". Then select any company: The PreviewView will open, and you

see the ScoreCardViewTemplate as footer.

Configuration:

e fields: 3 EntityFields of Organisation_entity are referenced: 2 calculated EntityFields

A

("TurnoverPercentDiff" and "LastActivity") and 1 database-related EntityField
("CLASSIFICATIONVALUE")

e fieldActions: In this example empty. Here, you can enter Actions that will be executed, if you
click on an EntityField of the ScoreCardViewTemplate: The first Action is mapped to the first
EntityField, the second Action to the second EntityField etc.

You can find a further implementation of a ScoreCardViewTemplate, regarding the

carpool example, in chapter Example: Availability.

11.3.23. Signature

Enables the client user to write a signature with a pointing device (e.g., a mouse) and assign it to an

EntityField (property “imageField”).

11.3.24. Stepper

Displays steps of a process, represented by titled circles, ordered in a horizonal line. Each step has an
icon (property “iconField”), a title (“titleField”), and a state (“stateField”). The corresponding
EntityFields ICON, STATE, and TITLE as well as an identifier (UID) are controlled by a

jDitoRecordContainer.
Example:
"Phases", a StepperViewTemplate assigned to SalesprojectPhaseStep_view.

Appearance in the client:
In the client, you will find this ViewTemplate in the MainView of Context "Opportunity" (Menu Group

"Sales"):

Opportunity II(](JS | Kronen Pilotprojekt | Open Occurrences

£ '
= v
; . < P v e = o
. Contact Qualification Prospect Offer Negotiation Deal
< Previous phase > MNext phase
Kronen Pilotprojekt 2

Kronen AG @

v’ Set completed
1005

Jun7, 2022, 1:22:07 PM Checklist entries: 5
TAGS - FULLFILLED PHASE MAMDATORY & AUTOMATICALLY & CHECKLIST ENTRY % =
vr Entertag L .
- Mo Mo Es ist ein Workshop zur Projektumsetzung geplan
DETAILS i - No No Wahrscheinlichkeit Gberprifen und ggf. nachjusti
Shars Open No Yes Offer sent

Mey N Fin Tarmin 7ur Ah<timmiinn dec Anneshnts hat <fa

A

Configuration:

Check the contentProcess of SalesprojectPhase_entity’s RecordContainer "jdito" in order to learn how
the EntityFields' values are provided. Via Provider "Phases" and Parameters CurrentPhase_param,
DisabledPhases_param, and SalesprojectUid_param dependencies are established from
Salesproject_entity (Consumer SalesprojectPhaseStepper) and SalesprojectMilestone_entity
(Consumer SalesProjectPhases). SalesprojectPhaseStep_view with its StepperViewTemplate is used as
LookupView of context SalesprojectPhase. To make the StepperViewTemplate appear in the
SalesprojectMain_view, a LookupViewTemplate also named "Phases" is used (see

SalesprojectMain_view > SalesprojectOverview_view > SalesprojectPhase_view > Phases).
Step-by-step example:

As the above example in the Opportunity (Salesproject) Context is quite complex; another, plainer
example should be explained step-by-step: Our example task is to show a contact person’s work
experience in an additional tab of PersonMain_view. The steps should simply be
"Beginner"/"Advanced"/"Pro". This task should be implemented by using a StepperViewTemplate

without further buttons etc.
The following step-by-step example

® uses a Keyword for the steps;
® the icon will be loaded dynamically via a Keyword Attribute.

e Editing is done directly via the pencil icon. (There are no Actions to step forth/back, as there are

for the Salesproject Phases, see previous example.)

® |ntegrating the StepperViewTemplate in the "Detail" area of a MainView requires the usage of a

LookupViewTemplate (see chapter Lookup).

® Whether or not the Stepper is editable, depends on the Consumer’s state and the EntityField
EXPERIENCELEVEL's state (if its state was "AUTO", no pencil would appear).

Now, let’s solve our task step-by-step (the naming of the various new models has no technical meaning,

but should be consistent, of course):

At first, we enter a new KeywordCategory (Experiencelevel), 3 KeywordEntries (BEGINNER/Beginner,
ADVANCED/Advanced, PRO/Pro), 1 KeywordAttribute (icon/ExperienceLevel), as well as 3
corresponding KeywordAttributeRelations, which will be used for assigning icons VAADIN:MINUS,
VAADIN:PLUS_MINUS, and VAADIN_PLUS to the KeywordEntries. Instead of doing this manually, you

better simply include the following Liquibase changelog and execute it by a Liquibase update:

<?xml version="1.1" encodi ng="UTF-8" standal one="no"?>
<dat abaseChangeLog xni ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og" xni ns: ext="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og- ext"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xsi:schemalLocati on="http://wmv. |i qui base. org/ xnl / ns/ dbchangel og- ext

http://ww | i qui base. org/ xnl / ns/ dbchangel og/ dbchangel og- ext. xsd http://wwu. | i qui base. or g/ xnl / ns/ dbchangel og
http://ww. | i qui base. or g/ xnl / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.snith" id="5368c690-e7ce-4a0c-bb5d-bccae3aedb68">

<! - - Keywor dCat egory- - >

<insert tabl eName="AB_KEYWORD_CATEGORY" >
<col utm nane=" AB_KEYWORD_CATEGORYI D" val ue="b1462948- f 552- 44f 8- 8408- 21b7592f 0902"/ >
<col utm nane="NAME" val ue="ExperiencelLevel "/>
<col utm nane=" SORTI NGBY" val ueNuneric="0"/>
<col urm nane="SORTI NGDI RECTI ON" val ue="ASC"/ >

</insert>

<!--KeywordEntry-->

<insert tabl eName="AB_KEYWORD_ENTRY" >
<col um nane="AB_KEYWORD_ENTRYI D" val ue="7762f 1f f - 4e40- 4022- abbe- 8b73ca2abc01"/ >
<col utm nane="KEYI D' val ue="BEG NNER'/ >
<col utm nane="TI TLE" val ue="Begi nner"/>
<col urm nane=" CONTAI NER' val ue="ExperiencelLevel "/>
<col um na AB_KEYWORD_CATEGORY_| D' val ue="b1462948- f 552- 44f 8- 8408- 21b7592f 0902"/ >
<col urm nane="SORTI NG' val ueNumeric="1"/>
<col utm nane="1SACTI VE" val ueNuneric="1"/>
<col utm nane="| SESSENTI AL" val ueNuneric="1"/>

</insert>

<insert tabl eName="AB_KEYWORD_ENTRY" >
<col utm nane="AB_KEYWORD_ENTRYI D" val ue="459f 06bf - 9623- 4e85- b290- 205290d6af 8f "/ >
<col utm nal KEYI D' val ue=" ADVANCED'/ >
<col utm nane="TI TLE" val ue="Advanced"/>
<col utm nane="CONTAI NER' val ue="Experi encelLevel "/>
<col urm nane=" AB_KEYWORD_CATEGORY_I| D' val ue="b1462948-f 552- 44f 8- 8408- 21b7592f 0902" / >
<col urm nane="SORTI NG' val ueNumeric="2"/>
<col utm nal I SACTI VE" val ueNuneric="1"/>
<col urm nane="1| SESSENTI AL" val ueNuneric="1"/>

</insert>

<insert tabl eName="AB_KEYWORD_ENTRY">
<col um nane="AB_KEYWORD_ENTRY!I D" val ue="4balf 2a5- 3cec- 435f - 9ac5- cOc8al3f 1842"/ >
<col urm nane="KEYI D' val ue="PRO'/>
<col utm nane="TI TLE" val ue="Pro"/>
<col um nal CONTAI NER" val ue="Experi enceLevel "/>
<col um nane="AB_KEYWORD_CATEGORY_| D" val ue="b1462948-f 552- 44f 8- 8408- 21b7592f 0902" / >
<col urm nane="SORTI NG' val ueNuneric="3"/>
<col utm nane="| SACTI VE" val ueNuneric="1"/>
<col urm nane="1| SESSENTI AL" val ueNuneric="1"/>

</insert>

<!--KeywordAttribute and KeywordAttributeRel ations-->
<I--icons-->
<insert tabl eName="AB_KEYWORD_ATTRI BUTE" >
<col utm nane=" AB_KEYWORD_ATTRI BUTEI D" val ue="fbb95471- 0cd8- 434c- b640- 9f c919697f b8"/ >
<col utm nane="AB_KEYWORD_CATEGORY_| D" val ue="b1462948- f 552- 44f 8- 8408- 21b7592f 0902" / >
<col utm nane="NAME" val ue="icon"/>
<col urm nane=" CONTAI NER"' val ue="Experi encelLevel "/>
<col utm nane="KI ND" val ue="CHAR_VALUE"/ >
</insert>

<insert tabl eName="AB_KEYWORD _ATTRI BUTERELATI ON'>
<col utm nane="AB_KEYWORD_ATTRI BUTERELATI ONI D" val ue="88bb3905- 2013- 472b- 9af a- Obf d1f 452951"/ >
<col utm nane="AB_KEYWORD_ENTRY_I D' val ue="7762f 1f f - 4e40- 4022- abbe- 8b73ca2abc01"/ >
<col utm nane=" AB_KEYWORD_ATTRI BUTE_I D" val ue="f bb95471- 0cd8- 434c- b640- 9f c919697f b8"/ >
<col um nane="CHAR VALUE" val ue="VAADI N: M NUS"/ >
</insert>

<insert tabl eName="AB_KEYWORD ATTRI BUTERELATI ON'>
<col utm name="AB_KEYWORD_ATTRI BUTERELATI ONI D' val ue="d487ac11- b85b- 4489- 89el- 1€93353ad9e9"/ >
<col um nane="AB_KEYWORD ENTRY_| D" val ue="459f 06bf - 9623- 4e85- b290- 205290d6af 8f "/ >
<col utm nane="AB_KEYWORD_ATTRI BUTE_I D" val ue="f bb95471- 0cd8- 434c- b640- 9f c919697f b8"/ >
<col um nane="CHAR_VALUE" val ue="VAADI N: PLUS_M NUS"/ >
</insert>

<insert tabl eName="AB_KEYWORD _ATTRI BUTERELATI ON'>
<col utm nane=" AB_KEYWORD_ATTRI BUTERELATI ONI D" val ue="d109b169- f 14a- 4383- af 43- f 30c6d357971"/ >
<col um nane="AB_KEYWORD ENTRY_| D" val ue="4balf 2a5- 3cec- 435f - 9ac5- cOc8al3f 1842"/ >
<col um nane="AB_KEYWORD_ATTRI BUTE_I D" val ue="f bb95471- 0cd8- 434c- b640- 9f c919697f b8"/ >
<col utm nane=" CHAR_VALUE" val ue="VAADI N: PLUS"/ >

</insert>

</ changeSet >
</ dat abaseChangelLog>

As usual in the xRM project, we will refer to the KeywordCategory and the KeywordEntries via

functions. To enable this, we add the following code lines in library KeywordRegistry basic:

© 2025 ADITO Software GmbH 299 / 472

A

$Keywor dRegi stry. Experi enceLevel = function(){return "ExperienceLevel ";};
$Keywor dRegi st ry. Experi encelLevel $begi nner = function(){return "BEG NNER"; };
$Keywor dRegi st ry. Experi encelLevel $advanced = function(){return "ADVANCED'; };
$Keywor dRegi stry. Experi enceLevel $pro = function(){return "PRO"; };

The next steps are:

® |n the database Data_alias, create a new column named EXPERIENCELEVEL for table PERSON and
set the value of EXPERIENCELEVEL for all existing PERSON datasets to "BEGINNER". Instead of
doing this manually, you better simply include the following Liquibase changelog and execute it

by a Liquibase update:

<?xml version="1.1" encodi ng="UTF-8" standal one="no"?>
<dat abaseChangeLog xni ns="http://wwu. | i qui base. or g/ xnl / ns/ dbchangel og"
xm ns:ext="http://ww.|iquibase. org/xm /ns/dbchangel og-ext" xnins: xsi ="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemalLocation="http://www. | iqui base. org/ xm /ns/ dbchangel og-ext http://wwmv.|iqui base. org/xm /ns/ dbchangel og/ dbchangel og-
ext.xsd http://www|iquibase. org/xn/ns/dbchangel og http://ww.|iquibase. org/xn /ns/dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.smith" id="dcf5f410-c528-4e82-977e-91337cd4c806" >
<addCol unm t abl eName="PERSON' >
<col utm nane="EXPERI ENCELEVEL" type="VARCHAR(36)"/>
</ addCol urm>

<updat e t abl eName="PERSON" >
<col utmm nane=" EXPERI ENCELEVEL" val ue="BEG NNER'/ >
</ updat e>

</ changeSet >
</ dat abaseChangelLog>

® Update the Alias Definition, so we can refer to the new column in our project.

® Navigate to Person_entity and add an EntityField named EXPERIENCELEVEL (title = Experience
level; state = EDITABLE; mandatory = true; contentType = TEXT)

® Open Person_entity’s RecordContainer (db) and connect the new EntityField with the
corresponding database column: Navigate to RecordFieldMapping EXPERIENCELEVEL.value and
set its property "recordfield" to PERSON.EXPERIENCELEVEL.

e EXPERIENCELEVEL.displayValue: Set the following code for property "expression" (then, the
KeywordEntry’s TITLE, e.g. "Beginner", is shown instead of its KEYID, e.g. "BEGINNER")

var sql = KeywordUtils. get Resol vedTit| eSqgl Part ($Keywor dRegi stry. Experi enceLevel (), "PERSON. EXPERI ENCELEVEL");
result.string(sql);

® Enter the following code in the valueProcess of EntityField EXPERIENCELEVEL, in order to preset

it with BEGINNER, whenever a new Person dataset is entered:

if(vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_NEW && vars. get ("$this.value") == null)

{
result.string($Keywor dRegi stry. Experi enceLevel $begi nner());

}

A

Enter the following code in the displayValueProcess of EntityField EXPERIENCELEVEL (then, when
entering a new Person dataset, the KeywordEntry’s TITLE, e.g. "Beginner", is shown instead of its
KEYID, e.g. "BEGINNER"):

var res = KeywordUtils. get Vi ewVal ue($Keywor dRegi stry. Experi enceLevel (), vars.get("$field. EXPERI ENCELEVEL"));
result.string(res);

In Context Person, create a new View named PersonExperiencelLevel_view (title: Experience

level; layout: BoxLayout)

Assign a LookupViewTemplate to the new View, name it simply "Lookup", and set its properties

as follows
o consumerField: EXPERIENCELEVEL
o consumerPresentationMode: EMBEDDED
Open PersonMain_view and set a View reference to PersonExperiencelevel_view

Create a new Context named PersonExperiencelLevel and a new Entity named
PersonExperiencelevel_entity. This new Entity will control the Stepper. Configure the Entity as

follows:
o title: Person experience level

o contentTitleProcess:

result.string(vars.get("$field. TITLE"));

(¢]

EntityFields: ICON, STATE, TITLE, and UID (leave all properties in default state).

o Parameters: CurrentLevel _param and DisabledLevels_param (set property "expose" to
true for both of them).

(¢]

RecordContainer: jDitoRecordContainer, name it jDito and set its properties as follows:
m jDitoRecordAlias: Data_alias

m recordFieldMappings: UID.value, STATE.value, TITLE.value, ICON.value (the order is

important, as it must be consistent to the contentProcess)

m contentProcess: Enter the following code:

var res = [];

var ids = vars.get("$local.idvalues");

var disabl edLevel s = JSON. parse(vars. get ("$param Di sabl edLevel s_parant)) || [];

var steps = KeywordUtils. get EntryArray($Keywor dRegi stry. ExperienceLevel (), null, true);
var selected = vars.get("$param CurrentLevel _parani);

/1 filter only for steps reqistered by the system
if (ids)
{

steps = steps.filter(function(pStep)
{
for (let i =0; i <ids.length; i++)
{
if (ids[i] == pStep[0])
{

return true;

}
}

return false;
1))
}

steps. forEach(function([stepld, title])

{
var stepState = "Dl SABLED';

if (stepld === sel ected)

{
stepState = "ACTI VE";

}

else if (!disabledLevels.includes(stepld))

{
stepState = "ED TABLE";

}

var resStep = [stepld, stepState, title, _getlcon(stepld)];
res. push(resStep);

1
resul t.object(res);

function _getlcon(pLevel)

{
var iconAttr = new Keywor dAttri but e($Keywor dRegi stry. ExperienceLevel (), "icon", "VAADI N: Cl RCLE-THI N');

return i conAttr.getVal ue(pLevel);

® |n Context PersonExperiencelevel, create a new View named

PersonExperiencelevelStepper_view (layout: BoxLayout).
® Assign a StepperViewTemplate to the new View and name it ExperiencelevelStepper.
® The StepperViewTemplates properties are:
o stateField: STATE
o titleField: TITLE
© iconField: ICON
® Set PersonExperiencelevelStepper_view for property lookupView of Context

PersonExperiencelevel.

Now, go back to Person_entity and create a new Consumer named PersonExperiencelevelStepper. Its
properties are:

® entityName: PersonExperiencelevel_entity

e fieldName: #PROVIDER

® state: EDITABLE

If you unfold this new Consumer, you will see its Parameters. Set the valueProcess of

CurrentLevel_param as follows:

A

resul t.string(vars.get("$fiel d. EXPERI ENCELEVEL"));

Select Consumer PersonExperiencelLevelStepper for property "consumer" of EntityField
EXPERIENCELEVEL.

Finally, just for testing purposes, add EntityField EXPERIENCELEVEL

® to ViewTemplate "Edit" of PersonEdit_view and

® to ViewTemplate "Info" of PersonPreview_view

Now, deploy your changes, navigate to Context "Contact", and open any contact person in its
MainView. Open tab "Experience Level", which includes the StepperViewTemplate. Test it by clicking on

the pencil icon and then on a step other than the current one. Press "Save" to save the chosen step.

In the above example, Parameter DisabledLevels_param has not been used so far. Its
purpose is to disable specific steps (here: experience levels), so they cannot be
selected (which will be indicated by a darker icon color). The logic for this is done on
Consumer side (Person_entity > Consumers > PersonExperiencelLevelStepper >
o DisabledLevels_param), in the Parameter’s valueProcess. The result of this
valueProcess must be a stringified array of the KEYIDs of all steps that should be
disabled. Here is an example code that disables the steps BEGINNER and PRO:

result.string(JSON. stringify([$KeywordRegistry. ExperiencelLevel $heginner (), $KeywordRegistry.
ExperiencelLevel $pro()]));

Please be aware that the above implementation is only a plain example. Actually, it is possible to realize
use cases that are far more complex. E.g., you are not forced to use keywords, and the handling of the

states can be done more dynamically instead of using only one Parameter for disabling, etc.

11.3.25. Table

A ViewTemplate of type "Table" is used to show multiple fields of multiple datasets in a table. You can
select arbitrary EntityFields in property "columns": Open this property’s editor and add fields using the
plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To remove a field,

select it (checkbox) and press the minus ("-") button. You can change the order of the fields by selecting

them and moving them up or down with the arrow up/down buttons.
This ViewTemplate is commonly used for Filter Views.

Example:

"Organisations", a ViewTemplate of OrganisationFilter_view.

A

Appearance in the client:
In the client, you can find it under Contact Management > Company. It shows an image columns,

followed by several titled columns: name, customer code, language, status, email, phone, and address.

Configuration:

"Organisations" has several fields of Organisation_entity specified in property "columns": #IMAGE,
NAME, CUSTOMERCODE, LANGUAGE, STATUS, STANDARD_EMAIL_COMMUNICATION,
STANDARD_PHONE_COMMUNICATION, and ADDRESS _ID.

This ViewTemplate’s property flag "hideContentSearch" controls whether or not the

content search bar (Context filter) of the table is hidden (true; default) or displayed
o (false). The content search bar will only work, if paging is disabled, i.e., the

corresponding RecordContainer’s property flag "isPageable" must be set to false in

this case.

11.3.26. Timeline

A ViewTemplate of type "Timeline" displays up to 7 EntityFields of multiple datasets, ordered in a
vertical timeline. All fields have fixed positions: On the left, a date (property "dateField") is shown,
followed by an icon ("iconField"). In the middle, in vertical order, 3 further fields ("titleField",
"descriptionField", and "subdescriptionField") are shown in different colors. On the right, another field
is shown ("additionallnfoField"). On the top of the timeline, an "informationField" is displayed, which

appears if you mark a timeline dataset.

Optionally, further properties can be set, e.g., for displaying/hiding the time, and for controlling the

order and the maximum number of the datasets.

Example:
"ActivitiesTimeline", a ViewTemplate of ActivityFilter_view (Context "Activity").

Appearance in the client:
In the client, you can find it under Contact Management > Activity. Make sure that "Timeline View" is

selected via the button in the View’s upper right corner.
In this case, the informationField, the subdescriptionField, and the additionallnfoField do not exist.

Configuration:

"ActivitiesTimeline" has 4 fields of Activity_entity specified: entryDateDateFormat (dateField),
SUBJECT_DETAILS (titleField), INFO (descriptionField), #lMAGE (iconldField). informationField,
subdescriptionField, and additionallnfoField are not yet configured. You may set them arbitrarily to

watch the effect in the client.

A

11.3.27. Tiles

Displays multiple datasets as "tiles". Each tile is styled like a business card (similar to template type
"Card"), allowing to show up to 6 EntityField at fixed positions: On the left, an image (property
"iconField"); on the right, 5 further fields (properties "titleField", "infoTopField", "subtitleField",

"descriptionField", and "infoBottomField").

Property "tilePresentation” controls if the tiles are to be ordered as LANDSCAPE (default; 3 tiles in a
row, dynamic width), or PORTRAIT (dynamic number of tiles per row, fixed width).

Example:

"Tiles", a ViewTemplate of ProductFilter_view (Context "Product")

11.3.28. TitledList

A ViewTemplate of type "TitledList" is used to show multiple fields of multiple datasets in a list. You can
select arbitrary EntityFields in property "columns": Open this property’s editor and add fields using the
plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To remove a field,

select it (checkbox) and press the minus ("-") button. You can change the order of the fields by selecting

them and moving them up or down with the arrow up/down buttons.

Furthermore, in property "titleField" you can select one EntityField to be displayed as "title", to the left

of the "columns" fields.

To improve performance the TitledList ViewTemplate by default only displays the first six rows and then
shows a "+ X additional rows" label, which on clicking it loads the rest of the rows. The amount of rows
shown can be configured using the property r owLi ni t of this ViewTemplate.

Example:
"Addresses", a ViewTemplate of AddressList_view.

Appearance in the client:
The "Addresses" ViewTemplate is shown, e.g., in the PreviewViews of Contexts Person and

Organisation.
Configuration:
® |n property "columns", the different parts of an address are specified, e.g., country, zip code, or
city.
® Property "titleField" includes the EntityField ADDR_TYPE, which holds the title information.

® Property "highlightingField" is set to the EntityField IS_STANDARD, which makes standard
addresses being highlighted (title is shown in bold font).

A

11.3.29. Tree

A ViewTemplate of type "Tree" is used to show, at fixed positions, specific fields of multiple datasets,
grouped to a tree. To configure the tree structure shown by default, you can select arbitrary
EntityFields as grouping criteria in property "defaultGroupFields": Open this property’s editor and add
fields using the plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To

remove a field, select it (checkbox) and press the minus ("-") button. You can change the order of the

grouping by selecting fields and moving them up or down with the arrow up/down buttons.

The "leafs" of the tree can be configured with the following fields: An icon on the left (property

"iconField"), on the right a title ("titleField"), and below a description ("descriptionField").

Optionally, you can add up to 3 ActionGroup buttons by selecting an ActionGroup in field

"favoriteActionGroupl", "favoriteActionGroup2", or "favoriteActionGroup3".

Each grouping node’s name can optionally be displayed extended by the number of sub-nodes, or leafs,
respectively (property flag "showChildrenCount"). In the client, the configured default grouping can be

modified via the filter window (click on "Filter" button).

Example:
"Treetable" (should better be named "Tree"), a ViewTemplate of 360DegreefFilter_view (included in the

MainView of various Contexts, e.g., Context "Company").

Appearance in the client:

In the client, you can, e.g., find it under Contact Management > Company > Open the MainView of any
company > 360 Degree. (If the tree is not shown, select "Tree View" via the button in the upper right
corner.) The tree is grouped by the Contexts' names (e.g., "CONTRACT"). These grouping nodes can be
expanded, in order to display their objects (e.g., all contracts of the company), each consisting of an

icon, a title, and a date.
You can change the grouping by clicking on the "Filter" button and adding/removing grouping fields.

Configuration:

"Treetable" has the following fields of 360Degree_entity specified: CONTEXT _NAME
(defaultGroupFields), ICON (iconField), TITLE (titleField), and DATE (descriptionField). Furthermore, the
ActionGroup "newModule" is selected in property "favoriteActionGroup2". Property

"showChildrenCount" is set to "true".
Find further details in chapter Tree and TreeTable: Advanced explanations below.

11.3.30. TreeTable

A ViewTemplate of type "TreeTable" is used to show multiple fields of multiple datasets in a table,

A

which can be grouped to a tree. Rows are datasets, columns are EntityFields. You can select arbitrary
EntityFields in property "columns": Open this property’s editor and add fields using the plus ("+")
button. Afterwards, you can change them via the fields' combo boxes. To remove a field, select it

(checkbox) and press the minus ("-") button. You can change the order of the fields by selecting them

and moving them up or down with the arrow up/down buttons.

To configure the tree structure shown by default, you can select arbitrary EntityFields as grouping

criteria in property "defaultGroupFields".
This ViewTemplate is commonly used for Filter Views.

Example:

"ActivitiesTreeTable", a ViewTemplate of ActivityFilter_view.

Appearance in the client:

In the client, you can find it under Contact Management > Activity. It shows a date column, followed by
an image and several titled columns: responsible, subject, and description. In section "Grouping" of the
filter component shown to the right of the table (if not visible, click button "Filter" first), you can group

the activities by a specific criteria, e.g., by category.

Configuration:
"ActivitiesTreeTable" has several fields of Activity entity specified in property "columns":
entryDateDateFormat, #IMAGE, RESPONSIBLE, SUBJECT, INFO. That’s all.

Other than in a Tree, a TreeTable can optionally feature "drag and drop". To enable
o this, you need to set property "enableDragAndDrop" to "true" (checkbox checked).
In this case, you should integrate LexoRank as ordering algorithm (rather than a

numeric ordering) - find detailed information in appendix LexoRank.

Find further details in chapter Tree and TreeTable: Advanced explanations below.

11.3.31. Tree and TreeTable: Advanced explanations

The ViewTemplates of type Tree and TreeTable are used to display connected data within a tree
structure. Both ViewTemplates behave similar and only differ in their properties. The TreeTable is an
advanced version of the Tree. As a datasource, a JDitoRecordContainer is used in most cases (see
chapter JDitoRecordContainer). If the data is already stored correctly and does not need further

manipulation, a DatabaseRecordContainer can be used instead.

A

11.3.31.1. Important properties - Tree

Tree - Properties

v Entity

entityField

v Fields

parentFielid

® entityField: Here we commonly set #ENTITY, because the data is taken from various EntityFields.

® |linkedColumns: With this property, you can set EntityFields to be used to immediately open the
dataset in the MainView.

® parentField: This is the central field to construct the tree structure. In this field, the ID of a

parent node has to be hold, if the entry is a child node. More details follow below.
® informationField: This field contains information that is displayed on the top of the entry.

® nodeExpandedField: This field has to be of the type BOOLEAN and determines if the node is
opened or closed at first. For example, if you want to have the tree completely expanded, then
you just assign the value t r ue to it, by either using its valueProcess (which is not
recommended, as the valueProcess gets executed for each entry and thus can lead to a low

performance) or by assigning the value in your RecordContainer.

® titleField: This is the first row of information you can use to display your data. It is called
titleField, because here you would typically put the name of an entry, like the name of an

organisation.

® descriptionField: This is the second row of information and can be used to display further

information.

® iconField: With this field you can add an icon to the entry. Use either #lMAGE or #ICON, if you
want to use the imageProcess or iconProcess of the Entity or you can use one of your

EntityFields, which has to contain one of the following:

A

o Atextin the format "TEXT:" + your desired values. This text gets evaluated and turned

into two initials and an automatically selected background color.
o The name of one of our predefined icons, like "NEON:LOGO".

o Animage encoded in Base64. If you use an image of your own, always use a scalable
vector graphic (.svg), so the image can automatically be scaled properly to meet different

screen resolutions.

® defaultGroupFields: If your Entity has group fields, you can determine which ones are used by
default.

o fixedFilterFields: With this property you can set the filter fields for the tree, so only those can be
used.

® expandRootltems: Select if the root nodes are expanded by default or not. Set to true to expand

all roots by default.
If your Entity doesn’t use a paging RecordContainer and the property is set to

A t rue, all items are loaded at once, which can lead to a loss in performance.
Use this property carefully!

11.3.31.2. Important properties - TreeTable

Before reading this chapter, we recommend to read chapter "Important properties -

Tree" first.

TreeTable - Properties

MOBILE | TABLET
treeTableViewTemp

v Entity

® entityField: Here we commonly set #ENTITY, because the data is taken from the different
EntityFields.

A

® columns: This is the property that distinguishes the TreeTable from the Tree. In this property, you

can add multiple EntityFields as columns for each entry, which then are displayed in a table style.
® |inkedColumns: This property has the same function as it has in the Tree ViewTemplate.

® parentField: This field holds the ID of the parent node, if the entry is a child node, otherwise it

has to be null to mark this entry as a node of the first layer.
® informationField: A field for information to be displayed at the top of the entry.

® defaultGroupFields: If your Entity has group fields, you can determine which ones are used by
default.

o fixedFilterFields: With this property you can set the filter fields for the tree, so only those can be
used.

e expandRootltems: Select if the root nodes are expanded by default or not. Set to true to expand

all roots by default.

If your Entity doesn’t use a paging RecordContainer and the property is set to
A t rue, all items are loaded at once, which can lead to a loss in performance.
Use this property carefully!

11.3.31.3. Building a Tree/TreeTable

If you are using a Database RecordContainer, set it up like you are used to and make sure to link your
EntityFields correctly. But please note: If property isPageable is set to true, then the tree does not work

with the parent-child principle that is explained below.

When using a JDitoRecordContainer, the approach gets a bit more complex as you have to do your data
selection manually. The general rules for the JDitoRecordContainer apply (see chapter

"JDitoRecordContainer"). Additionally, consider the following rule:

You have to ensure the correct order of the datasets. Parent nodes have to be added
to the result array before any of their child nodes.
For example, if the tree structure looks like this:
A
-Al
o A2
B
-B1
- B2

Then A has to be added before A1 and A2, as well as B has to be added before B1

A

and B2

o This rule also applies when using a Database RecordContainer and can lead to

exceptions if you don’t order your datasets correctly.

There are two strategies that can be used to build your data:

1. Layer by layer
This strategy aims to add one layer at a time. This can be done if you have different, but related
sets of data. Example: The first layer contains organisations, the second layer contains persons
with functions at those organisations, and the third layer contains all Activities linked to those

persons.

2. Recursive
The recursive strategy is used if your data can be infinitely deep and could branch out infinitely.

To add your data to your result, you have to do two steps:
a. Find all your nodes of the first layer and add them to your result.

b. Iterate over all top nodes and use a recursive function to retrieve the children of the next
level. The recursive function has to end, if no further children are found.

By the way, this strategy is used in the 360° View, for example.

11.3.31.4. Examples

In the following text, we will go over multiple examples. As Tree and TreeTable behave in the same way,

we will focus on only one of them in each example.

11.3.31.4.1. Simple Tree of organizations and their persons

This example will build a Tree that lists all organizations and the persons connected with them. It will
not cover displaying their PreviewViews or doing anything with the data. The focus is just on building

the tree.

First we build an Entity named "OrgTree_entity" and three EntityFields (UID, PARENT, TITLE). Then we
add a JDitoRecordContainer and create a Context called "OrgTree". Furthermore, we add a View
"OrgTree_view", assign "OrgTree_entity" to the Context and set the Context’s property filterView to
"OrgTree_view". Then we open "OrgTree_view" in the Navigator window. Within the View, we add a
Tree ViewTemplate and make sure that "#ENTITY" is assigned in the ent i t yFi el d property. Then we
fill the par ent Fi el d with our PARENT EntityField and ti t | eFi el d with the EntityField TITLE. Now
add the Context to the Global Menu under application > __ SYSTEM_APPLICATION_NEON. This

completes the basics for this example.

A

Now we go back to our Entity and open the cont ent Pr ocess of the RecordContainer. Here we build
the data to be displayed in the tree. First, we will gather our data, then we put it in the right format,

and finally we return it. This example will use the "layer by layer" strategy (see above).

import { result } from"@ditosoftware/jdito-types";
import { newSelect } from"Sql Builder _|ib";

/1l First we get our two | ayers of data.
[/ 1t could be done with one SQL statement,
/1 but that would nake the exanple nore conpl ex.
[l W go for sinplicity in this one.
/1l Getting person data, using the Sql Buil der
var personbData = newSel ect (" CONTACTI D, FI RSTNAVE, LASTNANME,
ORGANI SATI ON_I D")
.from " PERSON")
.j oi n(" CONTACT", "PERSONI D = PERSON | D")
.where("ORGANI SATION ID is not null™)
.and("PERSON_ID is not null™)
.table();

/1l Getting organisation data, using the Sql Buil der

var orgData = newSel ect (" CONTACTI D, ORGANI SATI ONI D, NAME")
. fron(" ORGANI SATI ON")
.joi n(" CONTACT", "ORGANI SATI ONI D = ORGANI SATI ON_I D")
.where("ORGANI SATION_ ID is not null™)
.and("PERSON_ID is null™)
.table();

/1 Now we prepare our result array
var res = [];

/1 For our UDTfield, we want to use the CONTACTI D.
/'l As we have selected the ORGANI SATIONID with both our |ayers,
/1 we need to replace the ORGANI SATIONID i n our person data
/1 by the organisation's CONTACTID.
for(let i = 0; i < orgData.length; i++)
{ for(let j = 0; j < personbData.length; j++)
{ i f(personbData[j][3] == orgData[i][1])

{
personData[j][3] = orgDatal[i][O0];
}
}

}
/1l As the organisations are the first |ayer,
[l we will add their data to the array
/1 The order of our fields will be: U D, PARENT, TITLE
for(let i = 0; i < orgData.length; i++)
{

© 2025 ADITO Software GmbH 312 /472

A

res.push([orgbata[i][0], null, orgDatali][2]]);

}

/1 Now we add our second | ayer

for(let i = 0; i < personbData.length; i++)
{

res. push([personData[i][0], personDatal[i][3], personDatal[i][1] +
" " + personData[i][2]]);

}

/1 Last step: Returning the data to the system
[l using result.object(), because we need

[/ to return an array, not a String.
result.object(res);

After that is done, we open the dialog of the r ecor dFi el dMappi ngs property of the
RecordContainer and add UlID.value, PARENT.value, and TITLE.value.

Now we can deploy our changes and test it in the web client.

e This chapter will be extended in a future version of this manual.

11.3.32. WebContent (IFrame)

Displays a web page, with the URL or HTML content being defined in an EntityField (specified in the
ViewTemplate’s property "entityField"). The dimensions of the component’s appearance in the client

can be defined using properties width, height, and unit.

Example:

ViewTemplate "Timeline" of View "FacebookTimeline_view" (of Context "Social"). This ViewTemplate’s
property "entityField" references the EntityField FACEBOOK_TIMELINE (of Social_entity), which has a
valueProcess, whose result is HTML code defining the web content to be displayed. The web content is
visible in the client, when you add the Dashlet "ADITO Facebook Feed" (in the DashletStore’s Dashlet
group "Social Media") to your Dashboard.

11.3.32.1. Advanced explanations
The ViewTemplate "WebContent" is controlled by the properties of

® the ViewTemplate itself

® the EntityField that is referenced in the ViewTemplate’s property "entityField"

The settings differ depending on the content to be displayed:

A

® Content source

The source of the content is always the valueProcess of the EntityField. Example:

valueProcess of EntityField TWITTER_TIMELINE of Social_entity

import { vars } from " @ditosoftware/jdito-types”;
import { result } from"@ditosoftware/jdito-types";

var account = vars. get("$param Account _parani');

result.string("<htnl onnouseover=this.className="scroll' onnouseout=this.className='noscroll"’

cl ass="noscrol | ' ><head><styl e>. scroll { overflow auto; }.noscroll { overflow hidden; }</style></head><body><a cl ass=
\"twitter-tinmeline\" href=\"https://twitter.com "+account+"?ref_src=twsrcY%Etfw ">Tweets by "+account+" <script async
src=\"https://platformtw tter.confwidgets.js\" charset=\"utf-8\"></script></body></htm >")

® | oading URLs
If the EntityField’s property contentType is set to LINK, the URL will be used that is given in the

valueProcess, and the web page will be loaded in the IFrame.

® |Loading HTML
If the EntityField’s property contentType is set to HTML, the HTML will be used that is given in

property valueProcess, and it will be rendered in the IFrame.
® Heigth and width

o If the ViewTemplate’s property height is set to a specific value, then the height of the

IFrame will be set to this value.

o If the ViewTemplate’s property width is set to a specific value, then the width of the
IFrame will be set to this value.
® Unit
Via the ViewTemplates property UNIT, the unit of height and width can be specified. You can

choose between pixel and percent. If the unit is not set explicitely, pixel will be used as default.

® States

Via the Entity’s property "state"/"stateProcess", the state of the component can be controlled:

© The IFrame does not change when READONLY or EDITABLE is set, because this component

is always readonly.

o The IFrame cannot be disabled (state DISABLED), because this component is always

enabled.

o If the state is set to AUTO, the IFrame is VISIBLE by default. If the IFrame should be
invisible, the state must be set to INVISIBLE.

11.3.32.2. Common mistakes

Here are some common mistakes when using the WebContent ViewTemplate. We use the ADITO

homepage as example: https://www.adito.de/

https://www.adito.de/

A

If you want to embed a hyperlink, then the content type must be set to LINK, and the valueProcess
must provide the URL of the web page to be shown. A common mistake is to set the contentType to
TEXT or HTML, and the valueProcess provides an IFrame, something like

<ht m ><body><i frame src="https://ww. adi t o. de/ "/ ></ body></htm >

As the WebContent ViewTemplate itself is an IFrame, this code leads to nested IFrames, which results

in suboptimal usage of space and to possible errors in display.

A further bad example refers to links in a custom HTML page. In this case, the right contentType is TEXT
or HTML, both work. However, if you add a link like this to the page

AD TO Honmepage</ a>

then the page will open in the IFrame. If you want to avoid this, you need to add further keywords,
such as

<a href="https://ww. adi to.de/" target="_bl ank" rel ="noopener

nor ef errer">ADI TO Honepage</ a>

Then, the web page will open separately.

A

11.3.33. Further ViewTemplate types

ViewTemplates of further types may be available in future ADITO versions. If you can find no

ViewTemplate suitable for your purpose, please issue a request to ADITO via the Service Client.

A

11.4. Renderers

A Renderer is an ADITO model that can be assigned to an EntityField in a ViewTemplate (e.g.,

MultiEditTable), in order to change its appearance or its functionality (e.g., edit options).
Currently, there are 2 categories of Renderers available

® ViewRenderer: Renderer for changing the appearance.

e EditRenderer: Renderer for adding edit functionality (visible, e.g., as additional buttons).
To create a Renderer, navigate to "renderer" in the "Projects" window. Then, right-click on "renderer"
and choose option "New" from the context menu. A model create dialog will appear, in which you

enter the name of the renderer and leave the model type preset to "renderer". After confirming with

"OK", a second dialog appears, requesting the Renderer’s type.
Currently, the following Renderer types are available:

o NUMBERFIELD
® BADGE

® MULTISELECTCOMBOBOX

o If a Renderer suitable for your use case already exists, you can re-use it, without
having to create a new one. Each Renderer can be used for multiple use cases.

11.4.1. NUMBERFIELD

If you choose Renderer type NUMBERFIELD, an EditRenderer will be created. If assigned to an
EntityField in property editRendererMapping of a ViewTemplate (only available in ViewTemplates of
some types, e.g., MultiEditTable), the following additional buttons will appear in the client:

® Reset button (circular arrow): If you have changed an EntityField’s value, but not saved yet, this
button allows you to reload its value from the RecordContainer.

® "Set maximum" button: This button overwrites the currently displayed value with the maximum
value as defined in the corresponding EntityField’s properties "maxValue" or "maxValueProcess".

If these properties are not set, the "Set maximum" button is not displayed.
® Incrementer and decrementer buttons:

o By default, a "Plus" and a "Minus" button are displayed, allowing the client user to

increase or decrease the currently displayed value in steps of 1.

© You can customize the step by setting one of the following properties

A

® numberfieldStep: Enter a positive decimal value to define the step size. This will
effect both the button for increasing and for decreasing the value. This property is

ignored, if property numberfieldStepsProcess (see below) is set.

m numberfieldStepsProcess: Create arbitrary incrementer/decrementer buttons by
defining their corresponding step size, which can be positive and negative decimal
values, specified as an array. The following example results in four
incrementer/decrementer buttons, corresponding to steps of size -100, -0.5, 0.5,
and 100 (make sure touser esul t . obj ect andnotresul t. stri ng,in this

case):
Example code for property numberfieldStepsProcess

result.object([-100, -0.5, 0.5, 100]);

Example in xRM:

You can study an example of the usage of a Renderer of type NUMBERFIELD in ViewTemplate
"MultiEditTable", included in ProductpriceFilter_view. Here, the Productprice_entity’s EntityField PRICE
has the Renderer "numberlnput" assigned, see property "editRendererMapping". The Renderer
"numberlnput"” itself can be found in the "Projects" window, under "renderer". For testing purposes,
you may change its properties numberfieldStep or numberfieldStepsProcess, or set the EntityField
PRICE’s properties maxValue or maxValueProcess, in order to get familiar with the effects of this
Renderer in the client. (Note that if there is code set for property maxValueProcess, then the value of

property maxValue will be ignored.)

11.4.2. BADGE

If you choose Renderer type BADGE, a ViewRenderer will be created. If assigned to an EntityField in a
ViewTemplate (e.g., of type MultiEditTable), the EntityField’s value will be displayed on a background
that shows the color that is defined in the EntityField’s properties color or colorProcess. (The font color
will automatically be shown in the complementary color.) Renderer type BADGE has no specific
renderer properties to set, it is simply created and assigned to an EntityField using the ViewTemplate’s

property viewRendererMapping (only available in ViewTemplates of some types, e.g., MultiEditTable).

Example in xRM:

You can study an example of the usage of a Renderer of type BADGE in ViewTemplate "MultiEditTable",
included in ProductpriceFilter_view. Here, the Productprice_entity’s EntityField PRICELIST has the
Renderer "badge" assigned, see property "viewRendererMapping". The Renderer "badge" itself can be
found in the "Projects" window, under "renderer". For testing purposes, you may edit the EntityField
PRICELIST’s properties color or colorProcess, in order to get familiar with the effects of this Renderer in
the client. (Note that if there is code set for property colorProcess, then the value of property color will

be ignored.)

A

11.4.3. MULTISELECTCOMBOBOX

Using a Renderer of type MULTISELECTCOMBOBOX is an alternative to using a list of checkbox items

that are all visible permanently.

11.4.3.1. Basics

Given an EntityField that holds multiple items (via dropdownProcess or via Consumer), with the option
to select one or multiple of them (selectionMode = MULTI). By default, this will result in a list of all

selectable checkbox items. Now, for a small number of items, this is fine:

My test field Cat
Dog

Bird

Horse

Fish

However, a larger number of selectable items might spoil the respective ViewTemplate’s appearance. In
these cases, the Renderer MULTISELECTCOMBOBOX should be preferred. It is an EditRenderer and
packs all checkbox items in a combo box. Only if you open the combo box, the selectable items are

visible (if required, in a scrollable way).

My test field Cat x Bird x A~
« Cat
Dog
" Bird
Horse
Fish

Independent from if the combo box is opened or closed, the selected items (or a part of them) are
shown above the combo box, along with the option to deselect them (via a cross icon to the right),

without having to open the combo box.

My test field Dog x Cat x Bird x Horse x Fish x v

How many of the selected items are shown above the combo box depends on the available space. If

there is not enough space to display all selected items, then a number is shown on the left. Example: If,

A

e.g., 5 items have been selected in total, with the last 2 of them shown above the combo box, then this
number is 3. If you hover over this number with the mouse pointer, the further selected items are

shown in a tooltip.

3 Bird x Fish x ~
Ly

My test field ﬂ
-

v C2

v Dog

" Bird
~ Horse

w Fish

Furthermore, the MULTISELECTCOMBOBOX includes a filter: Simply type in a filter value on the right of

the selected items, then the combobox will be filtered accordingly:

:':-'J':-,.-' test field Cat w Bird bld ~

v Bird

e

11.4.3.2. Configuration
The configuration of a MULTISELECTCOMBOBOX takes 2 steps:

1. Create a new Renderer of type MULTISELECTCOMBOBOX
In the "Projects" window, right-click on folder "renderer" and choose "New" from the context
menu. In the following dialog, give the new Renderer a suitable name and make sure that
"renderer" is selected as type. After clicking "OK", select MULTISELECTCOMBOBOX in the
subsequent dialog. Once confirmed with "OK", the new Renderer is added to the list of existing

Renderers.

Projects

BN entity

>

W

B d:

renderer

M badge

M discount

[multiselectcomboboxRenderer
M numberinput

[numberPlus1000

> M process

>

LY

test

canina

multiselectcomboboxRenderer - Properties

W

rendererDefinition

v Renderer
rendererType MULTISELECT!

2. Now, the new Renderer can be assigned to the respective multiselection EntityField, via property

editRendererMapping of a ViewTemplate (only available in ViewTemplates of some types, e.g.,

Generic):

GenericMultiple - Properties

columns

v Renderer Mapping

editRendererMapping
v Fields

v Others

lILE | TABLET | DES
MultipleViewTemplate

HENTITY
AB_ATTRIBUTE ID, VALUE,

11.4.3.3. Value format

B editRendererMapping x

EntityField name REINEEMENE +
VALUE v multiselectcomboboxRenderer v

(0134 Cancel

When working with an EntityField that has a Renderer of type MULTISELECTCOMBOBOX, the value
format is the same as it is without the Renderer.

Example:

A

Given an EntityField MYTESTFIELD, with selectionMode = MULTI and a dropDownProcess as follows:

result.object([
["1dl", translate.text("Cat")],
["id2", translate.text("Dog")],
["1d3", translate.text("Bird")],
["id4", translate.text("Horse")],
["1d5", translate.text("Fish")]

1);

If you select and save, e.g., "Cat", "Bird", and "Fish", then

e vars. get ("$fi el d. \WWTESTFI ELD") as well as

e vars. get ("$this.value")
will return a multistring - in thiscase"; id1; 1d3; id5;".

Therefore, if you want to further process the value (e.g., in an onDBInsert process), you will have to

decode it first, in order to get it as an array:

var nyFiel dval ue = vars. get("$field. WTESTFI ELD") ; // ";idl, 1d3; id5;"
var nyFi el dval ueArray = text.decodeNMs(nyFieldvalue); // ["idl", "id3", "id5"];

Vice versa, if you want to preset the selection of specific items of the combo box, in a valueProcess,

then you need to encode the value first:

if (vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_NEW && vars. get ("$thi s.value") == null) {
var initialVvalue = ["idl", "id2"];
var encodedVal ue = text.encodeMs(initialVvalue);// "; idl; id2; "

result.string(encodedVal ue);

11.5. Device-specific designs

ADITO includes an automatic optimization of its design, depending of the type of device on which it is
used:

® Desktop

® Tablet

® Mobile

Several ADITO models (e.g., Contexts or ViewTemplates) have a property named "devices", which

allows you to control, on which of the 3 device types ADITO will be available.

A

For demonstration or testing purposes, you can also show the tablet-specific and the mobile-specific

designs in your (Chromium-based) desktop browser.

Here is an example of showing the mobile-specific design in a Google Chrome or Microsoft Edge

browser:

1. Log out
2. Close the browser tab in which ADITO had run

3. Enter the basic URL of your ADITO system, adding the suffix "/mobile", e.g.,
https://myProject.dev.c2.adito.cloud/mobile

4. Click key "F12"

5. A developer window will appear. Here, click subsequently on
a. the three-dotted button (upper right corner) and choose "Dock side" > "Undock..." button
b. "Toggle Device toolbar" button (left upper corner of the developer window)

6. Click key "F11"

If you want the tablet-specific design to be shown, proceed as described above, but use the suffix

"/table" instead of "/mobile".

If you are done with testing, subsequently click the keys "F11" and "F12" again, in order to return to

your normal browser usage.

Due to browser "cookies", you might have problems to return to the "normal"
(desktop-specific) design, if you only enter the usual URL (e.g.,
https://myProject.dev.c2.adito.cloud/ or https://myProject.dev.c2.adito.cloud/
o client). This possibly still opens ADITO showing the tablet- or mobile-specific design
(= the latest design that you had used). In these cases, repeat the above steps, using

the suffix "/desktop".

11.6. Further design elements

11.6.1. Icons

Well-selected icons help the user to navigate through the client and its menu items. ADITO provides
you with a large number of predefined icons, which you can assign to various components, such as
menu groups, or Contexts. Besides, you can also use any icon from your own resources. If no icon is

selected, a question mark ("?") is displayed instead.

11.6.1.1. Predefined icons

https://myProject.dev.c2.adito.cloud/mobile
https://myProject.dev.c2.adito.cloud/
https://myProject.dev.c2.adito.cloud/client
https://myProject.dev.c2.adito.cloud/client

A

Whenever an ADITO component shows a property named "icon" or "iconld", you can use the combo
box to select from a long list of predefined icons. Then deploy. Whenever an icon is included in a menu,

you need to log out and log into the web client first, in order to see the icon.

Example:

As you will have noticed, menu group "Car Pool" is currently displayed with a question mark to the left
of it. To replace it by an icon double-click on application > _SYSTEM_APPLICATION_NEON, and then, in
the visual representation of the Global Menu (menu editor in the Editor window), click on "Car Pool".

Then, in the properties window, select a suitable icon, e.g., "VAADIN:CAR".

You can now repeat these steps in order to assign icons also to the car pool-related Entities (not to the
Contexts, whose icons are only shown in the Designer). These icons will then, e.g., appear on the top of
a Context (in blue font color) and in the vertical navigation bar to the very left of the client (to be

opened via the "burger button" in the upper left corner of the client).

Entities have multiple icon-related properties. Please ignore the outdated properties
o "icon" and "iconProcess", and use (further below in the property sheet, in section

"Icon") the properties "iconld" and "iconldProcess" instead.

You can quickly find a suitable icon, if you filter the "icon" combo box using the
starlet ("*") as preceding wildcard.
Example: You are looking for an icon that has something to do with a "circle". To find

all possibly suiting icons, proceed as follows:

1. Open the "icon" combo box by clicking on the small "arrow" to the left of the
3-points button: A long list of all icon names, along with a preview of all icons,

will appear.

2. Type the following string: *circle
- The focus will jump to the first icon with its name containing the word

"circle"

3. Use the arrow keys (down/up) to navigate to all other icons having names
containing "circle". (This is better than scanning the whole list using the scroll
bar.)

4. Press the "Enter" key to select the icon of your choice.

11.6.1.2. Icons from user’s resources

You can use icons from your own resources also via property "icon" - but now, do not open the combo
box, but click on the three-dotted edit button ("..."). This will open a file selection dialog; here, you can

navigate to the folder, in which you have stored the icon, and select ("Open") it there. Then, instead of

A

the file’s name, only the placeholder "[BINDATA]" is shown as property value. Note that the icon will
not be stored as a file in the ADITO project, but it will be inserted as binary value in the system
database table ASYS_BINARIES.

All parts of the ADITO xRM project are already equipped with well-suited icons. This

ensures a consistent layout of the ADITO client. Therefore, it is strictly against the
A intention of ADITO that these icons are replaced by user-defined icons. Exceptions

are possible, if an icon represents a specific system (e.g., a connected ERP system), a

product, or a company.

Generally, ADITO recommends to use exclusively vector graphics, included in SVG files. This allows an

arbitrary scaling/zooming, and the programmer does not have to consider the resolution of the image.

If you nevertheless want to use absolute icons (like those of format BMP, PNG, or JPG), you need to
design them according to purpose, display resolution, and zoom level (an icon appearing great on a 24"
HD display may look bad on a 4K display). Therefore, ADITO recommends to use only vector graphics as

icons.

As the client’s elements can be zoomed in the browser, there is no absolute size of
icons. Currently, icons appear smallest in the Global Menu, and largest in Views

including "tiles".

11.6.1.3. Variable icons

If you want to use various, logic-dependent icons, enter the required code in property "iconProcess".
All icons must at first be stored in the system database table ASYS BINARIES. The result of the
iconProcess (resul t. string(..)) must be the value of field ASYS_BINARIES.ID of the dataset

representing an icon.

A

11.6.1.4. Avatars

In ADITO, so-called Avatars are tiny visual components that are auto-generated by the ADITO platform’s

logic for all EntityFields of contentType IMAGE.

Example:

In PersonFilter_view, column PICTURE shows icon-typed images of the persons. However, if a Person
dataset does not include an image (EntityField PICTURE), the first letters of first name and last name
are displayed on a square, colored background. (The configuration of this behavior is done in PICTURE’s
displayValueProcess, see below.)

Both variants - image and letter-based substitution - are named "Avatars" in ADITO.

For a better understanding of the following, you need to know that the ADITO
platform automatically converts binary images (after being loaded from the

o database) into base64 strings, before perfoming subsequent logic. Thus, the value of
an EntityField of contentType IMAGE is always a string, not a binary object.

The ADITO platform’s Avatar auto-generation logic for EntityFields of contentType IMAGE works as

follows:

e |f the EntityField is to be displayed in a ViewTemplate of type "Picture", the value is interpreted
as base64 image, which is then shown without additions (no background etc.). The following

steps are skipped.

® The logic checks if the value includes character ":" (colon). If not, the value is interpreted as
base64 image, which is then shown it without additions (no background etc.). The following
steps are skipped.

® The subsequent steps of the logic depend on the prefix (= the string part preceeding the ":

character):

o prefix "TEXT": 0-2 characters are shown on a colored, square background, according to

the following logic:

First, the part of the string that follows the ":" character is split into substrings, using " "
(space) as delimiter.

Empty substrings are sorted out. The remaining substrings are the actual basis for

generating Avatar character(s):

m |f there is only one substring, its first 2 characters are used. If the substring

contains only 1 character, the Avatar will show only this single character.

m [f there are multiple substrings, the first characters of the first 2 substrings are
used. There is one exception: If the first character of a substring is a non-letter

character, then this substring is skipped, and instead the first letter of the next

A

substring is used. This logic is helpful when, e.g., a company name like "Energystar -

Oil Company" is given; in this example, the letters "EOQ" would be extracted, not "E-

m Example from the xRM project’s Context "Contact": If there is no image of the
person available, the displayValue of EntityField PICTURE starts with "TEXT:",
followed by the values of first name, last name, and company name (separated by
a "space"). Thus, the auto-generated Avatar characters are usually the first letter of
the first name and the first letter of the last name. If, however, a first name is not
available (= this substring is empty), then the Avatar’s characters will be the first

letter of the last name and the first letter of the company name.

m The color of the Avatar’s square background depends on the color-related
properties of the respective EntityField ("color" or "colorProcess"). If none of these
properties is set, the background color is generated on the basis of a hash value of
the original string.

Note: The auto-generation logic is, of course, limited to the colors defined in the
"Theme" (see chapters Themes and Color). Thus, the logic cannot ensure that a

unique color is assigned to each single dataset.

o prefix "NEON" or prefix "VAADIN": The complete string is interpreted as name of one of
the official icons provided by the ADITO platform. You can browse the names of the
available icons, e.g., via scanning the combo box of an "icon" property (see chapter Icons

for further information).

o prefix "URL": The part of the string that follows the ":" character is interpreted as an URL,

pointing to an external image.

Example task:

Given be an EntityField MYIMAGEFIELD, which has the contentType IMAGE. Now, if no image can be
loaded from the database, the value of MYIMAGEFIELD should be a combination of the first characters
of text-typed EntityFields ENTITIYFIELD1 and ENTITIYFIELD2. If ENTITIYFIELD2 is empty or starts with a
non-letter character, the first character of ENTITIYFIELD3 should be used instead.

To achieve this, you need to program a logic for setting a textual value for covering the case that a real
image is not available. Usually, this is done in MYIMAGEFIELD’s valueProcess or displayValueProcess,

including a case like this:

XXX_entity.MYIMAGEFIELD.displayValueProcess

(...)

if (vars.get("$field. MYl MAGEFI ELD"))
result.string(vars.get("$field. MYl MAGEFI ELD"));

el se

A

result.string("TEXT:"

+ vars.getString("$field. ENTITI YFI ELD1") + " "
+ vars.get String("$field. ENTI TI YFI ELD2") + "

+ vars.getString("$field. ENTITI YFI ELD2"));

(...)

The ADITO platform’s logic will then auto-generate an Avatar on the basis of the string as concatinated

in the "else" part of the above code fragment.
Further examples:
For testing purposes, you may

® create an EntityField (e.g., named "PICTURE") for a suitable Entity of the xRM Project (e.g.,
Interest_entity),

® assign it to a suitable View (e.g., to InterestFilter_view), and

® enter the following valueProcess:
Interest_entity.PICTURE.valueProcess

[l Avatar with characters "XA" on col ored background
result.string("TEXT: xyz ABC mo");

11

/1 1con showi ng "plus" synbol

[l result.string("NEON: PLUS");

I

/1 lcon showi ng "factory" synbol

[l result.string("VAAD N. FACTORY");

11

/1 URL pointing to image of Heinz Boesl (Founder of ADI TO

I

result.string("URL: https://ww. adito.de/fil eadm n/upl oads/ unt er nehne
n/ t eam hei nz- boesl . pg");

I

/1 ADITO | ogo as base64

I

resul t.string(" Ukl GRr oFAABXRUIQVI AATKOFAAAVI UAJEE4hyLZZ/ bW MDTEBFT2B
5Hk2r brtj kt eQ p8ysgnWat Y6eoVBURD/ AHGF8s Cwnb SIKEANX7T1/ DZyi AHB/ MFTLCR
JJt K8f cOR2OA6GX8QUX R/ XCDEOKkAAJaRI LVt 277t v\ bt nBbt nBbt n2f UQdul ynSaOv Hd
8t WT4AYyVbYZvsv(BA3TgVf kh9ge YBKQQBAs MBFt VBbt mBbt mBbt nMBN3qvWhzZj O3HgN
pli JceYmVn4@Bol howlJP+2DAt KVhIVRI pe9t 4ysh4(Kt CSCLTNr I r LyuSaSeOv+/ Lk/ Z
MvaUvaUsf 1ONWPSFEzZVWECGULYs X1+Dj f Q@ RPI LQOedQuxRNLhDRkB8dhwr KEi | wkrt 7q
H2KLi ul UVhel6FCs4KI r vzuow4pBgy YPW nl Zf WDhWR+SNOct p6f E4Ah2qgcWilUnxZvgl p
f xr PLUGNq47M+1B61BRGDB7BFGanR24Z+bW-KMKGF6gTi j nTR9j | pi WDf / wR+Qan6r QYq
FgihDzi OnZLakLFFKhTi hUDpo6gS| 9b+S4qCcVS3VDx GDB1hF+eW | mhEnmbuAJ1Tr Fn5
khg8Vj Sk+STO sGKmmUxbBI | nR8kPUks4NdUl xDo8r Cl FZsKI E1/ VB/ Adw7sE5KnoK/

© 2025 ADITO Software GmbH 328 /472

A

W2/ ZQETI kedLnOGDBN9TocGecl g6zhEUt 5bsi HEl x Gh2KobKnX4Rp4bVOO3no DWEr Xv(
XTpwpnX1pXSHD3K3r 881 ¢30mavP3t woVIANNz 77 Aw75QF3X80D464s7e2Jx ze OQTOKX X
Ei NBAj i bUyo+AJ1RXEPI r J3S5¢/ j NeU09nQR77dbShJj PeNt pGFKaLl | 2zUoGgEThLBI
6VGIWZCs VHNXchR6RTsG 1FI 3Ggh4g7shWhOngj 5d1W N Mck SUSVE X52Xgnul dKnW k
gD5gZLEP+YlI \Bho6LOYU § pgRr Nsl S8A] h9kuSFwOJf oj 4Yk2x8j Egi WBU3c8M ThvO
maj gXQq7VAPVAv1pxi or KEb7SPI c1r 2k8QOcAWABr 4CJgWK1ul / kugul CNG3DI Hr HLoJ
Ahgp4hDRuZogt XBnyMy1u8bDnwlgl 8Quxi QCKI sXYycq7Rr LMJ UDg+JUEWLj zgkoCzq
k DM\ Vp SBLLAAVF6VqdBG dSdQki VWQohXACJLYSi Ka8uui Og/ r O QOBdct gL6R4Ax m+x
nmk3ScyDbM.t JLEDt AnD7nmoDVdqVEsdLj j EgAi sl Ar0OadUcJdj HOCzt BEd7dPMcdJLt Nm
MEKcQD8JdO0Sut KQNOLI9SgRG | 6vUPI 924 A] U7v4+9unPanz QNODOZQ 0Dr TxI pXckbL
YnHi Zj | 344X19AQ6p4S7nDni7 7gX3cDPO3wRkkBz 31 PpuLH77RVBSSK1K6ej qYCcRBKI vP
yv/ ZFzKpel ulb/ 9f B/ eGz/ t 04BDFVHW5Qg/ OWERY RN79n+/ 18 PxNNbB9I +2BvAl WHNEY
VeKwUzi KM sl y15EN41 zDnhi 5g2k1 g+hogkhgr gr MpogluAbswXDdQdcBk YRl Zd XUpkkt
nEXsaD/ by NC1UTs5X9Levv/t 1C 1FMkueaqu2MpO9r GOYNuVZONSWL Gy EQaQvTgaOkbT
cgOVUI XKE5sS5CmLMol weel CgpOFt 8pbt 2GQqBqi gnFYFPUcl Qao/ be/ ap3aNgJHM dM
x0ypf ZaXKcpK84ycwP1ini| VI bl r K3f C2RdKnf 08gxbXl yyYj SRxToU4dl BHaE2Meli
WUz muRc LMVSx1ThBJbPJZOQRpAoVJIdxRhCse/ uXo+MEDLLOnGo SRD4b4Hk KXOMSOBPT
Quzc60ONegLsl hsCyb9r 5L+4Zy SUM Ubcx HOOHWBI Dj yvnPhX3SZRxRW 6d/ 45GONXnV
+nUWM9s6RFGZHRRXn/ H5x/ | 1441 eY9cOL+90FYcc9kYd+gL/ 7Bl KKj 3/ Ws4c Ogqc WYRKK
CUKHgMAAA==") ;

If the Avatar logic fails for whatever reason (e.g., the prefix or the base64 is not
o valid) a circled "exclamation mark" icon is shown instead of the Avatar (or, in some
cases, no Avatar at all).

0 As an exercise, try to write a displayValueProcess for Car_entity’s EntityField

— PICTURE, in order to display a green Avatar, if an image of the car is not available.

11.6.1.5. Using gif files

Technically, you can also use an animated gif file instead of a static image, e.g., as picture of a contact
person, or as background of the client’s login page. However, we recommend to use this feature with
great care (if at all), as animations generally tend to distract the user’s attention from the actual
information content shown in the client - and, in most cases, they are of no real additional benefit for
the user.

© 2025 ADITO Software GmbH 329 /472

A

11.6.2. Client navigation helpers

In ADITO, there are several ways to navigate through the various Contexts and Views. In the following
chapters, you can find a description of additional functions, which increase the convenience when

navigating in the client.

11.6.2.1. QuickEntry

The round blue button in the upper right corner of the ADITO client provides "QuickEntry" functionality,
i.e., it enables you to quickly create new datasets of various Contexts. Technically, this means that
specific EditViews are linked here. To add an EditView to the QuickEntry, proceed as follows:

® (Click on the EditView in the "Projects" window.

® Set the View’s property "title". This text will appear in the list behind the quick create button.

® QOpen the editor dialog "Quick Entry" by clicking on the editor button (three-dotted button) in
the View’s property "quickEntry".

® |n this dialog, press the "Plus" button, to add a new line.
® Select the required EditView in the combo box of the new line.
® Move the new View up to the required position.

® Set a suitable icon in the EditView’s icon property. Otherwise, a question mark will be displayed

in the QuickEntry list. You will need to log out and back in to make this take effect.

® Confirm with OK.

g Do not set the "quickEntry" property for Views other than EditViews. This can lead

to errors in the client.

To remove a View from the list behind the Quick Create button, right-click on its property "quickEntry"

and choose "Restore Default Value" from the context menu.

11.6.2.2. linkedContext

Every Entity-Field has got a property named "linkedContext". Here, you can specify any Context of your

application. The effect in the client is, that (not in all Views, but, e.g., in the PreviewView)
® beside the field, a small blue "eye" icon is shown. If you click on it, the PreviewView of the
specified Context is opened.

® the field’s content is shown in blue font color, indicating a hyperlink. If you click on it, the

MainView of the specified Context is opened.

A

11.6.3. Color

Colors help the user to navigate in the ADITO client. For example, a blue button with a white plus sign
means "Here, you can create something new." Therefore, the definition of further colorings should

always be done with caution and integrated into a general color concept.
Several ADITO models have color-related properties:
® color: Here, you can select a fixed value from a list of predefined colors. It is not possible to

choose random colors.

® colorProcess: Here, you can enter code which ends witharesul t. string() command
having a color value as argument. It is not possible to choose random colors, but you have to use
one of the color values available via the constants neon. <..>COLOR (import "system.neon"
first). This will prevent that, by mistake, colors are used that violate the defined "Theme" (see

chapter Themes, subchapter of chapter Controlling the design).

Currently, the color properties of an EntityField have only an effect in a limited

number of cases, e.g., for
® EntityFields that are displayed as colored score card (ViewTemplate type
"Score Card")

® EntityFields of contentType IMAGE (and there it works only if its valueProcess
o delivers one of ADITO’s predefined vector graphic icons, see example below).
Furthermore, the number of available colors is also cautiously limited to
those colors that are available via the constants neon. <..>, e.g.
neon. PRI ORI TY_HI GH_COLOR. And, as you can see, these color

constants do not refer to explicit color names, but they refer to their purpose.

® specific types of Avatars (see chapter Avatars)

For exercise purposes, let’s introduce an additional column showing an icon, whose color depends on

the color of the car:

® Add a new EntityField named COLOR_ICON to Car_entity
® Set the properties of the new field as follows:
o contentType: IMAGE

© valueProcess:
Car_entity.COLOR_ICON.valueProcess

var statusNew = $Keywor dRegi stry.taskSt at us$new;

A

result.string(TaskUtils. getStatuslcon(statusNew));

(We simply "borrow" a circle-type icon from Context "Task".)
o colorProcess:
Car_entity.COLOR_ICON.colorProcess

switch(vars. get("$field. COLOR"))

{
case $Keywor dRegi stryCar Pool . car Col or $green():
result.string(neon. PRIORI TY_LOW COLOR);
br eak;
case $Keywor dRegi st ryCar Pool . car Col or $yel | owm() :
result.string(neon. PRIORI TY_MEDI UM COLOR) ;
br eak;
case $Keywor dRegi stryCar Pool . car Col or $red():
result.string(neon. PRIORI TY_H GH COLCR);
br eak;
}

e |f you have not done it before, extend lib "KeywordRegistry_carPool" by the functions returning

the KEYID of keyword entries corresponding to the colors:
KeywordRegistry _carPool

/'l Keyword entry nanes (KEYI D)

$Keywor dRegi st ryCar Pool . car Col or$red = function(){return "RED';};
$Keywor dRegi st ryCar Pool . car Col or $yel |l ow = function(){return "YELLOW;};
$Keywor dRegi st ryCar Pool . car Col or $green = function(){return "GREEN';};

® Now, you can extend the "Table" ViewTemplate of CarFilter_view by a further column holding
the new EntityField COLOR_ICON. Deploy and see the result in the client.

A

11.6.4. Login web page

The client web page showing the ADITO login mask consists, by default, of

® astandard background, showing a marketing-style photo of ADITO,
® an ADITO logo, placed above the login mask, and

® the description "ADITO <Number>" in the browser tab title, e.g. "ADITO 2019".

If you want to customize these design elements, proceed as follows: In the "Projects" window of the
ADITO Designer, navigate to system > default and, in the Editor window, double-click on
" CONFIGURATION". Then, in the Navigator window, navigate to System > Client. This will open a

property list in the Editor window: Look at section "Client", which includes the following properties:

® clientTitleText: Here, enter the text you want to be displayed as title of the browser tab.

® clientLogo: If you want your own logo to be displayed above the login mask, choose it using the

file browser, available via the three-dotted button.

® clientBackground: If you want your own background image to be displayed, choose it using the

file browser, available via the three-dotted button.

e clientTimeout: Specifies the timeout of a client in milliseconds. If a user does not work within
this time, the connection is disconnected and the client is terminated. The value is freely

selectable as a positive integer.

A

11.7. Automatisms

Besides the design elements that can be controlled manually, ADITO includes various automatisms to

ensure a well-balanced design.

11.7.1. Visibility of tabs

The visibility of a tab in a MainView is calculated automatically, in order to avoid empty tabs, as far as
possible. The visibility of a tab depends on the visibility of the components in it: If there is a View

reference, e.g., to a table and this reference is not visible, then the tab will also be invisible.

Example:

Person_entity: In the detail area of the MainView, there is a View reference to
PersonTaskAppointment_view. This View, in turn, includes a View reference to the tasks
(TaskFilter_view) and to the appointments (AppointmentFilter_view). If both tasks and appointments
are invisible, then the tab is invisible. If at least one of these View references is visible, then the tab is
also visible.

In any case, the reason for the invisiblity does not matter - be it because of permissions, Consumer

state, settings of the "devices" property, or just because the View reference is empty.

The calculation of visibility also works for deeply nested Views - the principle remains the same: The
visibility depends on the visibility of the View reference(s). The same applies to one-to-one Consumers

(property isOneToOneRelationship set to true), as they are also realized as reference.

However, if a ViewTemplate of the original Entity is involved, its invisibility does not contribute to the
(in)visibility of the View it is assigned to.

Example (fictitious):

Person_entity: In the detail area of the MainView, there is PersonAttributes_view (via View reference

on #ENTITY). PersonAttributes_view, in turn, has 2 elements:
1. AttributeRelationFilter_view (via View reference on Attributes)
2. "Generic" ViewTemplate with 3 EntityFields of Person_entity, e.g., ROLE, LETTERSALUTATION,
CONTACTTYPE

Now, if

1. AttributeRelationFilter_view is invisible

2. all 3 EntityFields of the "Generic" ViewTemplate are invisible (e.g., because of property
"hideEmptyFields")
then the tab nevertheless remains visible, but white and "empty".

A

To sum it up: The (in)visibility logic for tabs only works for View references loaded via a Consumer, but

not for the direct usage of ViewTemplates. (This may change in future ADITO versions.)
Furthermore, there is a specific debug level available: NEON_COMPONENT _VISIBILITY

This debug level helps to analyze, why a component is visible or not: When dependencies are involved,
there is a logging of changes of the visibility of View references and of the reason for these changes.
The content of the logging will give you (in technical language) the following information: "Component
PersonTaskAppointment_view is invisible, because TaskFilter_view is invisible and

AppointmentFilter_view is invisible."

12. 360Degree Context

The 360Degree_entity models the relations between specific Entities and enables the user to work with
these dependencies via the 360DegreeFilter_view, which includes the ViewTemplates "Tree" and

"Timeline".

Currently, the 360Degree logic is restricted to relations of Contact_entity (i.e., of companies and
persons). This means that

® the 360Degree View can only be referenced in the MainViews of the Contexts "Organisation"

and "Person" (appearing as tab "360 Degree");

® the 360Degree View can only include datasets (records) of Contexts having a relation to Context
"Contact" (directly or via a "junction Context") - such as the Contexts "Salesproject", "Offer", or
"Order" do.

In the xRM-Project, in property "documentation" of 360Degree_entity, you can find
a comprehensive explanation of the basics and of how to extend the 360Degree

o View: Simply open its source text via the property’s three-dotted button and then, in
the Editor (middle part of the Designer), choose tab "Preview". (It will take some

seconds to open the preview.)

A

13. Internationalization

ADITO is perfectly suitable for being applied in an international context. Every textual element in its
components, e.g., the title of an EntityField, can automatically be translated into the language defined

in the user’s browser.

In addition to the following sub-chapters, we recommend you to read also the
complete chapter "Internationalization" of the Designer Manual, where you will find

additional information.

13.1. Language files

The core element of ADITO’s internationalization are translation files, separate for multiple languages,
which are available in the folder "language" (see "Projects" window). These files contain key-value

pairs, stored in XML format, in the editor window visible as table with 2 columns: "Key" and "Value":

e "Key" refers to the original text used in the designer, e.g., the value of the "title" property of an
Entity. In xRM, all "Key" values are in English. We recommend to use English also for all terms

(titles, placeholders, etc.) that are added or modified by customizing.

® "Value" refers to the text to be displayed in the client instead of the "Key".

You can easily add files for further languages by right-clicking on the "language" folder, choosing "New"
in the context menu, and in the next step selecting "language" as type. Finally, select the required
language from the language table, and press OK. Then, a new language file is created, which

automatically contains all keys included in the existing files of other languages.

The usual approach is to let the keys be auto-generated, using the "Extract Keys" button (see below).
Besides, you can create further keys manually by right-clicking into a language table and then choosing
"Add row" from the context menu. New key-value rows first always appear on the top of the table, but

after entering it, they are shifted according to the alphabetical order.

13.1.1. Refresh

If you click on the "Refresh" button (a button in the Editor window, showing a "refresh" symbol), all
language files are scanned and compared, in order to assimilate their keys (or, in mathematical terms,
build the "union set" of all keys of all language files). Then, all files will hold exactly the same keys, even
if not all of them have translations (values).

13.1.2. Extract keys

If you click on the "Extract Keys" button (a button in the Editor window, showing a white "key" symbol),

the whole ADITO system is scanned for textual elements that can be translated. New texts are added,

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

but removed texts remain as keys.

The file"__ LANGUAGE_EXTRA" is exclusively used for configuration purposes. Its
keys and values are not used. But if you click on it and edit its property "sqlModels"
(via the three-dotted button), a dialog titled "SQL" opens. Here, in the left part,

0 mark "Data alias". Then, several SQL statements appear in the right part of the
dialog. These statements will be executed when clicking on the "Extract Keys" button
(see above), which results in the creation of additional "Keys", e.g., the titles of

keyword entries.

13.1.3. Find unused keys

Click this button ("minus" icon) to scan all (!) language files for keys that are currently not used in the

ADITO project. The respective keys are listed, and then you can decide which of them to delete.

13.1.4. Export/import

You can export and import keys in different char sets, with the option to specify what character to use
as separator, etc.

13.1.5. Translate all

The button "Translate all" ("globe" icon) refers to only the language file you have currently opened. It
enables you to let all keys of this file be translated automatically, i.e., to let ADITO retrieve and fill all
"Values" automatically. This is done via a web service. Currently, ADITO supports 3 web services:
Google, Yandex, and DeepL. To make them work, enter the respective API key under Tools > Settings >
ADITO > Translators. (Find more information on how to obtain an API key on https://cloud.google.com/

translate/, https://tech.yandex.com/translate/, and https://www.deepl.com/pro, respectively.)

After clicking the "Translate all" button, a "Translate" dialog appears (if you have specified an API key,

see above), with the following parameters:

Service: Select the web service to be used for the automatic translation.

® Source language: The language of the keys.

Target language: The language of the values.

Line break: Specify here, how ADITO will handle line breaks included in the keys.

o Line break as single request (default): The text of a key will be cut into multiple parts,
according to the line breaks. Each part will then be sent as separate request. This may
increase the costs, if the maintainer of the translation web service charges you according
to the number of requests.

https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://tech.yandex.com/translate/
https://www.deepl.com/pro

A

o Line break to space: Before the web service request, every line break will be replaced by a

white space, i.e. line breaks will be lost in translation.

o Disabled: No special handling for line breaks. This may result in the web service returning

"strange" results or no result at all.

® Translate only selected: This option will automatically be checked, if you select one or multiple
keys by marking them, then right-clicking on the selection and choosing "Translate...". In other

cases, it has no effect.

® Qverride existing values: Check, if you want the web service result to overwrite the current

content of the "Values".

B Translate x

Service: ‘ YANDEX

Source I:anguage" English

Targetlanguage: | French

Linebreak: ‘ Linebreak As Single Request
[(] Translate only selected

[(] Override existing values

Figure 37. Parameters of the automatic translation

If you want to use Deepl, please note:

® Usually, you do not need a proxy. On the basis of the key, ADITO automatically
detects if the pro API or the free APl must be called.

® Make sure that the web API is accessible, e.g., by executing the following test
URL: https://api-free.deepl.com/v2/translate?auth_key=<API-
o Key>&text=HelloWorld&target_lang=DE (insert your API key accordingly

before executing)

® Some IT environments require you to deactivate the proxy in the Designer

options (Tools > Options > General > "No Proxy"):

B options

General Editor ts s Keymap Team

Web Browser: <Default System Browser>

Test connection

Export... | | Import...

Appearance

Apply

Cancel

A

13.2. User help

In the ADITO client, users can open help texts and illustrations, via the "questionmark" buttons. These
are also subject to internationalization, i.e, they can be customized in order to be displayed according

user’s browser language.

In ADITO document AIDOO5_Userhelp.pdf, you can find more information of how to customize and

maintain the "User help" via the ADITO Designer.

In the xRM project, this functionality is included, e.g., as "Context help":

N o] _j.® Q c: Contact Management o O] @

Contact
Context help «

) . CONTEXT HELP
- & Serial Actions W
Contacts: 91 C t 't
PICTURE SALUTATION TITLE FIRSTNAME LA =
H Herr losef Gn The contact record contains the information of a natural
person with whom you have a business relationship.
m Herr Wolfgang Gn
ﬁ Monsieur Jerome Gri Available views
m Frau Anke He As described in the basics, you can use the Filter View,
Preview, Main View and Edit View views in the Context
m Frau Barabara Ho “Contact™.
m Herr Maximilian Hu . .
Basic functions
m Herr Thomas Hu
The contacts are either assigned to a company or are
n Fran Melania Hii recorded as private individuals. A contact can also be stored

at several companies at the same time. It can therefore have

Figure 38. Example of facilitating the "user help" functionality

13.3. Validation of address and communication data

By default, the xRM project includes a country-specific validation of

® addresses

® communication data, like telephone number, email address, etc.

Example:

In PersonEditView, the ADITO logic will automatically check, if the address’s zip code and the telephone
number comply with country-specific formats. (This functionality requires, of course, that the country
has been set first, in the "standard" address.) If this validation fails, a message is shown beside the save

button. And the save button will be disabled until the entered data has been corrected.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID005_EN_Userhelp.pdf

A

From the customizing point-of-view, there is nothing to do except for making sure that the respective
validation properties are set correctly, under preferences > PREFERENCES _PROJECT > Custom >
__ PREFERENCES_PROJECT:

Projects X 4 PREFERENCES_PROJECT X Navigator
v XRM_2021.2 [ADITO xRM] Editor Source History v R System
> system B ciient

v
v preferences] Security

[l PREFERENCES PROJECT customProperties phoneValidation.enable | dsgvo... v B Modules

v Others B Database
e phoneValidation.enable v B calendar
process dsgvo.active \d B Email
test nominatim.enable = B indexsearch
report nominatim.url https://nom.adito.de/search.php [] InstantMessaging

language nominatim.user aditouser . v W custom

role nominatim.pw B _ PREFERENCES_PROJECT
alias Il __ CONFIGURATION

others

The actual validation methods (provided by the ADITO platform) are called in
Communication_lib (under process > libraries). You may study this library for a

deeper understanding of the topic.

As for the communication data, the following background information might be helpful:

All communication data (telephone number, mobile phone number, email address, website URL, etc.)
are organized via the KeywordCategory "CommunicationMedium", which has the following

KeywordAttributes:

® contentType restricts the type of content that can be entered, and it determines its auto-

formatting. There are the following contentTypes:

o TELEPHONE: for telephone number, mobile phone number, etc. The automatic validation
checks if the entered value complies with the country-specific format, and the country’s

international area code will be automatically added at front.

o EMAIL: for email addresses. The automatic validation checks if the entered value complies
with the structure of a valid email format - e.g., if it includes an "@" and if its domain
extension (".com", ".fr", ".de", etc.) exists. (But it will not check, if the username or the

domain exists, or if the domain’s server is actually operating.)

o LINK: for URLs of web sites, Blogs, Xing, LinkedIn, etc. The automatic validation checks if
the entered value complies with the structure of a valid URL format (similar to the

validation of email addresses, see above).

® category: PHONE, EMAIL, or OTHER. This enables a definition that only one single telephone
number can be set as standard telephone number, and only one single email address can be set
as standard email address. You can register, e.g., multiple telephone numbers (of private phone,
company phone, mobile phone, etc.), but you can set only one of those as standard. (The

consequences of setting this "standard" is explained in the client user-related documentation.)

A

® placeholderTitle: this value of the placeholder property of an EntityField, i.e., the text to be

shown in the client as long as the user has nothing entered into the field.

A

14. Further information

Besides the documentation that is prerequisite for this manual (see above), you
can find further information on ADITO customizing
® in the documents residing in the folder others > guides (see "Projects" window)

® in the ADITO Information Documents (AID), which you can find in the customers' area of the
ADITO website, see https://www.adito.de/login.html

https://www.adito.de/login.html

A

15. Troubleshooting
If you encounter problems, please make sure that you have

® taken part in the basic ADITO training courses, especially in the following ones:
o client user
o Designer
O system operations
O customizing
® read the /atest version of the Customizing Manual completely:

o The first part of this manual is designed like a schoolbook: On the basis of a plain
example, you learn to handle ADITO step-by-step. It is not recommended to skip one of

these chapters, as each chapter implies that you have read the previous ones.

o The second part of this manual is more glossary-like: Additional knowledge is imparted
using various best-practice examples included in the ADITO xRM project. Further helpful
details are available in the appendices. Nevertheless, we recommend you to read also

these glossary chapters completely, in order to have all required skills available.

Furthermore, you can find additional information in topic-oriented documents, e.g., in the Designer
Manual, the Reporting Manual, the workflow documentation, client-user-specific documentation, as
well as in the "ADITO Information Documents" (AIDs). ADITO will be happy to provide you with the
latest version of these documents on request. (Most of them is also available in the customer area of
ADITO’s web site, see https://www.adito.de/login.html .)

Last but not least, we recommend you to make sure that your ADITO contact has registered your email
address for all relevant newsletters. In these, ADITO will inform you about new product features and

new manual versions regularly.

In the following chapters, you will find further hints and tips for troubleshooting.

15.1. Built-in Designer help

The ADITO Designer provides you with the following built-in help functionality:

e Several models (Entities, Libraries, etc.) have explanations integrated in a property named
"documentation" - some more, some less. A good example is the library "SqlBuilder_lib" in
folder process > libraries. In its "documentation" property, you can find an extensive

documentation of the SqlBuilder and its methods.

® |n the property sheet, you can click on the name of a property and read a short text explaining

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Reporting_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf
https://www.adito.de/login/kundenbereich/dokumente-1.html
https://www.adito.de/login.html

A

its purpose, right on the bottom of the "Properties" window.

® Both methods of xRM processes (e.g. Ut i | s. par seJSON(..) of Util_lib and methods of the
ADITO core (e.g.,enti ti es. get Rows(..) of class system.entities) feature an JSDoc
explaining the purpose and usage of the method, partly showing also an example code. You can
access this documentation, if you type the method name in a code window, and then press
CTRL+SPACE.

® Besides, further descriptions are given in specific parts of the Designer, e.g., in the "Add

ViewTemplate" dialog.

Whenever you encounter one of the above documentations to be unclear or not
present where you had expected it, please write a note to your ADITO contact, who

e can then initiate an improvement of the documentation, to be released in a future
version of the ADITO platform or the ADITO xRM project, respectively.

15.2. ScanServices

The ADITO Designer includes so-called ScanServices, which are processes running permanently in the
background and scanning your ADITO project for code defects, inconsistencies, or other possible
sources of errors. All results of the ScanServices are displayed in the window titled "Scan Services" in
the lower middle part of the Designer (if not present, you can open this window by selecting it in the
"Window" menu of the menu bar). A result line is marked with a yellow icon, if it is a warning, and with
ared icon, if it is an error. You can "jump" to the source of the warning/error by double-clicking on the
respective line, or by right-clicking on the line and then choosing "Open in Editor" in the context menu

of the line. Mass-edit is also possible, if you multiselect result lines of the same type.

Via the buttons in the vertical button bar (left part of the "Scan Services" window), you can refresh or

re-organize the structure of the result tree according to your own requirements.

An ADITO Entity including an error (e.g., in one of its properties) is underlined with a red wavy line in

the "Projects" window.

If you open an ADITO project for the first time, a full scan starts automatically, which can take some
minutes (you may notice this by high consumption of CPU resources). All further changes you perform
in your project will then automatically be scanned immediately and individually. If you want to start

another full scan manually, press the button with the "refresh" icon.

Find more information on ScanServices in the Designer Manual.

15.3. Bug tracking

When customizing your ADITO project, it cannot be completely avoided that you sometimes produce a
bug. The central information for analyzing bugs is the so-called stack trace. In many cases, the error’s

stack trace appears in the server log (be it visible in the Web Client or not). It looks like this (example):

Example stack trace of a bug

2022-04-25T08: 44: 36] [R-1-N-735-S] [<!--Entity: MySuperEntity_entity//-->] [<l--RecordContainer: db//-->] [<l--UD null//-->] [<l--
Filter: {filter=null, filterCondition=null, ids=["e4be29ef-18d6-472d-aa27-050393c0f841"], excludedlds=null, perm ssions=null,
condi ti on=MYTABLE. MYl DCOLUM I N (' e4be29ef - 18d6- 472d- aa27- 050393c0f 841") }//-->] [<!--Caused by
de. adi t 0. adi t oweb. cor e. checkpoi nt. excepti on. Adi t oPer m ssi onException: [R-1-N-735-S] [<!--Entity: ProjectticketComment_entity//-->]
[<!'--RecordContainer: db//-->] [<!--UD null//-->] [<I--Filter: {filter=null, filterCondition=null, ids=["e4be29ef-18d6-472d-aa27-
050393c0f 841"], excludedl ds=nul |, perm ssions=null, condition=MYTABLE. MYl DCOLUM I N ('e4be29ef - 18d6-472d- aa27- 050393c0f 841") }//-->]

at de. adi to. adi toweb. server. neon.entity. EntityNbdel .init(EntityMdel.java:430)

at de. adi to. adi t oweb. server. neon. i nages. cont ext. Cont ext Enti t yModel . i ni t (Cont ext EntityNbdel .java: 119)

at de. adi to. adi t oweb. server. neon. i mages. common. Abstract Enti tyl mageNeon. i ni t (Abstract Entityl nageNeon. j ava: 64)

at de. adi to. adi t oweb. server. neon. servi ces. i negecont r ol . conmand. open. Abst ract | nrageOpenConmand. doOpen(Abst r act | nrageOpenConmand. j ava
1 99)

at de. adi to. adi t oweb. server. neon. servi ces. i magecontrol . conmand. open. Abst ract | mageQpenComrand. execut e(Abst r act | mageCpenConmmand.
j ava: 55)

at de. adi to. adi t oweb. server. neon. servi ces. i negecont rol . command. open. Abstract | nrageOpenCommand. execut e(Abst ract | mageCpenCommand.
java: 19)

at de. adi to. adi t oweb. server. neon. servi ces. i negecontrol . | mageHand!l i ngSt r at egy. handl el mageOpened(| mageHand! i ngStr at egy. j ava: 73)

at de. adi to. adi t oweb. server. neon. servi ces. i nagecontrol . | mageControl | npl . open(| mageControl I npl . j ava: 62)

at de. adi to. adi t oweb. server. neon. d i ent Sessi on. open(d i ent Sessi on. j ava: 375)

at de. adi to. adi t oweb. server. neon. entity. BaseEntityFi el d. _createPevi ewW t hUi ds(BaseEntityFiel d.java: 457)

at de. adi to. adi t oweb. server. neon. entity. BaseEntityField. _previ ew(BaseEntityField.java: 400)

... 6 nore//-->]
[C][B-54-N-112-S] [<!--de. adito. aditoweb. core. checkpoint.exception. mechani cs. Adi t oException: [B-54-N 112- 5]

at de. adi to. adi t oweb. server.neon.entity. BaseEntityField. _previ ewBaseEntityField.java: 407)

at de. adi to. adi t oweb. bi ndi ng. Action. cal | (Action.java: 62)

at de. adi to. adi t oweb. neon. base. vaadi n. vclient.clientconponents.inages. frane. conponents. | NeonConponent . | anbda$doAct i on$3
(1 NeonConponent . j ava: 214)

at de. adi t o. adi t oweb. neon. base. nodul e. nconmon. Ul Wor ker . _| oop(Ul Wr ker . j ava: 53)

at java. base/java.util.concurrent. ThreadPool Execut or. runWrker (Thr eadPool Execut or . j ava: 1128)

at java.base/java.util.concurrent. ThreadPool Execut or $Wor ker . r un(Thr eadPool Execut or . j ava: 628)

at java.base/java.l ang. Thread. run(Thread.java: 830)//-->]

As you can see, this stack trace consists of a lot of single log entries, which may
overwhelm you at first sight. But don’t be discouraged! You will know learn how to
analyze it, in order to detect the source of the problem. Consider yourself to be a
"tracking dog", "sniffing" along the (stack) trace until you find the target. If you know
what to sniff for, you reach your goal precisesly and successfully. Rest assured: After
gaining some experience, you will soon be able to detect the source of an exception

quickly.

Now, typically, a stack trace includes...

e _.one log entry naming the method or function in which the actual exception happened. This is
what you have to look ("sniff") for. However, this line is not always easy to find, because it is

surrounded by...

e _.alot of further log entries, which include functions or methods that were called before or after

the actual exception. Hence the name "stack trace".

To find you way through this "woods" of log entries, an approach in the following order has turned out

A

to be pragmatic:

® Make sure you are familiar with all functions of the ADITO Designer’s build-in debugger (see the
ADITO Designer Manual). Trying to track errors without knowing how to use the debugger is like

being a tracking dog without a nose.

e |f you can reproduce the error, first clear the server log: Right-click in the server’s log window
and choose option "Clear" (NOT "Clear cache"!), in order to delete all earlier log entries. If you

then reproduce the error, you will see only the log entries that are really related to the error.

® Stack traces are often logged repeatedly. Therefore, you only need to concentrate on the first set

of log entries, ignoring their repetitions.

® Roughly scan through the stack trace and see if you find somewhere any sentence explaining the
error in human language.
Example: (..) Sqgl Buil der: .where has to be called before follow ng
and/ or. (..) Thenyou know that the problem is and can fix it, ignoring the rest of the stack

trace.

® Scan the stack trace for specific exception names that start with "Adito". If you, like in the above
example, read "AditoPermissionException", then at least you know that your problem is related
to a conflict with permissions (= access rights, configured via the Client’s menu group "User

Administration").

® Concentrate on the log entries that do NOT start with the word "at". These often include
automatically generated information, like shown in the above example: In this example, you see

that the problem
o is related to a specific Entity (here: "MySuperEntity_entity")

o occurs when EntityRecordsRecipe is used (which you can conclude from log elements like
i ds, excl udedl ds,andfilterCondition)

© Now you know that you can restrict your bug tracing to methods that you have newly
added and that use EntityRecordsRecipe (as parameter), e.g., method
neon. openCont ext Wt hReci pe - even if this method is not excplicitely given in the

stack trace.

o In this example, the next step would be to activate the debugger and stop at these very

methods, e.g., in order to analyze their parameter values.

® Concentrate on log entries that start with de. adi t 0...Ignoring all log entries that start with
something else, especially j ava..(These are related to the Java engine and only show the

consquences of the error, not its actual source.)

o Scan these remaining log entries for names of models (Entities, Actions, etc.), processes,

methods, or properties that are part of your project - especially those that you have lately

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

created, used, filled, or changed.

o If this search is successful, check exactly the code line whose number is given at the end
of the log entry. Example: If you read in the log entry
Activity entity.entityFields.testAction.onActionProcess#13)
then you know that the error occurs at line 13 of property "onActionProcess" of Action

"testAction" of Entity "Activity_entity"

o If you inspect this code line, you will possibly detect the source of the error immediately,

because
m the error is obvious and/or

m this code line is marked with a red wavy line, and if you hover over this line with

your mouse pointer, a tooltip will pop up giving hints on the error’s source

m a yellow light bulb is shown to the left of the code line: If you hover over it with the
mouse pointer, a tooltip will pop up giving hints on the error’s source. And if you
click on the light bulb, possible solutions for the problem are offered, which you

can click on, if this solution seems right to you.

o If you still cannot find the error, then activitate the debugger, place a halting point at the
respective code line, and try to reproduce the error. As soon as the halting point is
reached, inspect the variable values / parameter values at this state of excecution. This

will help you to identify the problem.

e |f the stack trace suggests that the source of the problem is not related to a process, function, or
property of your project, but to a method of the ADITO platform (often called "core method"),
then first check, if you have called this method with valid parameters (using the Debugger, see
above). If this is true, then report the problem to ADITO by issuing a bug ticket via the ADITO

Service Client).

® Generally, you should not restrict your inspection to the code line causing the error, but also find
out on which way this line was reached: If, e.g., the error happens in an certain function of an
XRM library, it might be helpful to know what user input (e.g., an executed Action) called this
function. For example, the user might have entered "0", and this input is passed as parameter to
a function, where "0" causes an error - then it is not enough to cat ch "0" in the function, but
you should also validate the user input in the client and prevent that "0" is entered, along with a
suitable validation message. Or, if the user leaves an input field empty, which might cause a
NullPointerException, the solution should include to mark the corresponding EntityField as

mandatory.

® |f you have fixed the problem, check if the logging could be improved in order to find and fix
similar errors easier. Find more information in chapter Logging. If necessary, help ADITO to

improve the product by issuing a ticket via the ADITO Service Client.

https://service.adito.de/
https://service.adito.de/
https://service.adito.de/

A

Further examples:
Enter the following faulty code in the onActionProcess of any test Action
Faulty example code

var nyVariablel = "Test";
myVari abl el = nul|;

/1l here, an exception will occur
var nyVariable2 = nmyVariablel.toString();

questi on. showessage(nyVari abl e2) ;

If you excecute this Action, you might be shocked to see the following long stack trace both in the client

and in the Designer’s server log window:
Stack trace produced by faulty code

Z-00-N-0011-S Oiginal java exception causing the error. TypeError:
Cannot call nethod "toString" of null (Activity_entity.entityFields
.testAction.onActionProcess#8) [|D ee2a0441-2d82-3d55-8adl-
eb47888082e5] [->] Caused by: org.nozilla.javascript.EcnmaError:
TypeError: Cannot call nethod "toString" of null (Activity entity
.entityFields.testAction.onActi onProcess#8)

at org.nozilla.javascript. ScriptRuntine.constructError
(ScriptRuntime.java: 4280)

at org.nozilla.javascript. ScriptRuntine.constructError
(ScriptRuntime.java: 4258)

at org.nozilla.javascript.ScriptRuntine.typeError(ScriptRuntine
.java: 4291)

at org.nozilla.javascript. ScriptRuntine.typeError2(
ScriptRunti nme. j ava: 4310)

at org.nozilla.javascript. ScriptRuntinme.undefCall Error
(ScriptRuntine.java: 4327)

at org.nozilla.javascript. ScriptRuntinme
. get PropFuncti onAndThi sHel per (Scri pt Runti ne. j ava: 2573)

at org.nozilla.javascript. ScriptRuntinme. get PropFuncti onAndThi s
(ScriptRuntine.java: 2566)

at org.nozilla.javascript.Interpreter.interpretLoop(lnterpreter
. java: 1537)

at org.nozilla.javascript.Interpreter.interpret(lnterpreter.
java: 1013)

at org.nozilla.javascript.InterpretedFunction. cal
(I'nterpretedFunction.java: 109)

at org.nozilla.javascript. ContextFactory. doTopCal
(Cont ext Factory. java: 412)

at org.nozilla.javascript. ScriptRuntime.doTopCall (ScriptRuntine

A

. j ava: 3578)
at org.nozilla.javascript.InterpretedFunction. exec
(I'nterpretedFunction.java: 121)
at de.adito.aditoweb.jdito.interpreter.jscript.jsscript
. Scri pt Manager Next . execut eScri pt (Scri pt Manager Next . j ava: 51)
at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptinterpreter. eval uate(AbstractJScriptinterpreter.jav
a: 298)
at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptinterpreter. eval uate(AbstractJScriptinterpreter.jav
a: 240)
13 nore
J-03-D-0756-S JDito-error:
Unable to interpret code. [->] Caused by: de.adito.aditoweb.jdito
. Adi toJDi t oException: [J-3-D 756-S]
at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptlnterpreter._evaluate(AbstractJScriptlnterpreter.jav
a: 263)
at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptinterpreter. interpret(AbstractJScriptlinterpreter.ja
va: 175)
at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptlinterpreter.interpret(AbstractJScriptlnterpreter.jav
a: 119)
11 nore
J-03-D-0040-S JDito-error:
Unable to interpret code. [->] Script: Activity entity.
entityFi el ds.test Acti on. onActi onProcess [->] Caused by: de.adito
.aditoweb.jdito. AditoJD toException: [J-3-D-40-S] [<!--Script:
Activity entity.entityFields.testAction.onActionProcess//-->]
at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptinterpreter.interpret(AbstractJScriptinterpreter.jav
a: 127)
at de.adito.aditoweb.jdito.JDito.interpret(JDito.]java:53)
10 nore
R-03-R-0008-S JDito-error:
Unable to interpret code. [->] ResultType: 5 [->] Caused by: de
.adito.aditoweb.jdito. AditoJDitoException: [R3-R-8-5] [<!--
Resul t Type: 5//-->]
at de.adito.aditoweb.jdito.JDito.interpret(JDito.java:59)
at de. adito. adi toweb. server. neon.entity.cal cul ation
.JDi toFunction.call (JD toFunction.java: 45)
at de. adito. adi toweb. server. neon.entity.BaseAttributeField
.l anmbda$r egi st er Acti onProcess$0(BaseAttri buteFi el d.java: 235)
8 nore
P-54- R-0004-S Error executing action. [->] de.adito
. adi t oweb. core. checkpoi nt. excepti on. nechani cs. Adi t oExcepti on: [P-54-
R-4- §]
at de. adi to. adi t oweb. core. checkpoi nt. CheckPoi nt Handl er

A

. checkPoi nt (CheckPoi nt Handl er. j ava: 114)

at de. adito. adi toweb. server.neon.entity. BaseAttributeField
.| anbda$r egi st er Acti onProcess$0(BaseAttri buteFi el d.java: 242)

at de. adi to. adi t oweb. bi ndi ng. | Acti onCal | abl e. cal
(I'ActionCall abl e. java: 26)

at de. adi to. adi t oweb. bi ndi ng. | Acti onCal | abl e. cal
(I'ActionCall abl e.java: 16)

at de. adito. adi t oweb. bi ndi ng. Action.call (Action.java: 44)

at de. adi to. adi t oweb. neon. base. vaadi n. vclient. clientconponents
.images. frame. conponents. buttonstrip. NeonButtonStripUil. | anmbda$exec
ut eActi on$0(NeonButtonStripUtil.java: 153)

at de. adi t o. adi t oweb. neon. base. nodul e. ntcommon. Ul Wrker. | oop
(Ul 'wor ker . java: 53)

at java. base/java. util.concurrent. ThreadPool Execut or. runWr ker
(Thr eadPool Execut or. j ava: 1128)

at java. base/java.util.concurrent. Thr eadPool Execut or $Wor ker . run
(Thr eadPool Execut or. j ava: 628)

at java. base/java.l ang. Thread. run(Thread. j ava: 830)

If you proceed as advised above, you will be able to extract the only important log entry (ignoring all
the other stuff):

Cannot call nethod "toString" of nul
(Activity entity.entityFields.testAction.onActi onProcess#8)

In clear text, this log entry means:

® The error happens at line 8 of property "onActionProcess" of Action "testAction" of Entity
"Activity_entity".
® The problem is, that method "toString" is called on a variable or an object that has the value

null.

If you then navigate to this onActionProcess, you will easily be able to identify the source of the error:

{} onActionProcessjs »

Additionaly, you can halt at line 8 of this process, using the debugger, and inspect the variable values:

{} ons Processjs

A

15.4. Specific problems
15.4.1. Low performance

If your ADITO system is performing poorly, this could have various reasons. For example, if it takes long
time to load the content of a table, the reason might be that

® the table includes an EntityField whose value is calculated via a complex valueProcess (instead of
using the "expression" property of the RecordFieldMapping in the RecordContainer);
® the related database table needs indices to be set;

® the ADITO server has not enough main memory.

We strongly recommend you to read the ADITO Information Document AID066
o Performance Optimization. In this document you will find hints and advice on how
to optimize the performance of your ADITO system.

15.4.2. Changes are not visible in the client

If you have modified your application in the Designer, but the changes are not visible in the client, try

the following steps in the given order:
® Make sure that you have saved and deployed all changes, using button "Deploy Project" in the
Designer’s button bar.

® Always re-open the web page on which you expect your changes to be visible, by clicking on the

respective menu entry. (It is not enough to use the "refresh" button of your browser!)
® |og out and log into the client and open the respective page again.
® (In very rare cases:) Restart the ADITO server, proceeding as follows:

o Choose "Server - default" from the combo box in the button bar and press the green
triangle to the right of it. A dialog will appear asking you if the currently running server
instance should be stopped, which you need to confirm. In the "Output" window (lower
right part of the Designer), a new sub-windows "Server" will open, where you can watch

the new server instance starting, until the log shows "Server initialized".

o Alternatively to restarting in one step, you can restart the server in subsequent single
steps:

m Open the "Output" window (lower right part of the Designer)
®m Open the sub-window "Server".

m Click on button "Exit" (white square icon), view the server log entries, and wait

until you see the log "Server terminated". If this does not appear after a few

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

A

seconds, click button "Stop" (white cross icon).

m Choose "Server - default" from the combo box in the button bar and press the

green triangle to the right of it, view the server log entries, and wait until you see
the log "Server initialized". (Please note: Clicking on button "Start" (white triangle
icon in window "Output - Server", might not be enough, because in this case, less

properties are being reloaded.)

o Re-open the client: Select "Web Client (Neon)" in the combo box of the Designer’s button

bar, then click button "Execute..." (green triangle icon). This will re-start the client, in

which you can open the respective web page.

® |n rare cases, and depending on the browser you use, it can also be necessary to empty the

browser’s cache - in Google chrome, e.g., via the shortcuts CTRL+F5 ("deep refresh" of the

current web page) or CTRL+SHIFT+DEL > "Clear data" (deleting selected cache data) - in order to

see the changes effected by the deploy.

® Check if all configurations visible in the designer are consistent to the XML source code (this is

the format in which all ADITO configurations are actually stored).

Example:

If you have entered the title of an Entity (in the "Properties" window), saved and deployed it, but

you do not see it in the client, then

o double-click on the Entity (in the "Projects" window)

o open the tab "Source" in the Editor window (middle part of the designer)

o search for the tag <t i t | > and check if it includes the specified title. If not, you can

either write it in the XML manually, or - better in most cases - force ADITO to re-

synchronize Designer display and XML source code:

Close the Designer.

Navigate to the Roaming folder ".aditodesigner", open the folder corresponding to
your ADITO version number, and delete its sub-folder "cache". (By default, this
folder resides in the AppData\Roaming folder of the Windows user directory, e.g.
C:\Users\j.smith\AppData\Roaming.)

Re-start the Designer.

Re-enter the title. (Usually, this should be necessary, because the re-

synchronisation updates the display according to the XML source, not vice versa).
Re-check the XML source code, if the title is now present in the tag <t i t | e>.

If the problem persists, repeat the last steps, but this time, delete the complete
folder corresponding to your ADITO version number (sub-folder of folder

".aditodesigner").

A

m [f the problem still persists, repeat the last steps, but this time, delete the complete

".aditodesigner" folder.

From ADITO version 2022.1.0, folder ".aditodesigner" has one separate sub-folder
o (sub-user-directory) for every installed ADITO version, be it a major release (e.g.,
2022.0), a minor release (e.g., 2022.0.1), or a hotfix (e.g., 2022.0.0.2). Earlier

versions had sub-folders (sub-user-directories) only for every major release.

15.4.3. New database structure is not accessible

If you have changed the database structure via DML command, while the ADITO server is running (e.g.,
you have added a new database columnviaal t er table MYTABLE add col um
NEWCOLUMN), then you must first delete the corresponding cache before you can access the new
structure’s elements (e.g., the new column). Otherwise, you will get an error message stating that the

respective structure element is not found, if you try to access it.

To delete the cache, open the ADITO Manager (in the client’s Global Menu, choose "Server" in menu
group "Manager"), mark your server and choose option "Clear cache" via the three-dotted button in

the PreviewView. Alternatively, of course, you can achieve the same effect by re-starting the server.

This is required, because, for performance reasons, the ADITO server does not permanently update the

actual database structure.

A

Appendix A: JDito system modules and variables

A.1. System modules

Everything besides the basic functionality of JavaScript is provided by JDitos system modules. The
methods are grouped by topic. For example, system.calendar contains every method used for

interfacing with the calendar, system.db contains every method to interface with databases.
In general terms, a module contains every method and constant associated with its topic.

Constants are a kind of wrapper for badly readable values and are used so anyone who reads the code
knows what the meaning of a specific value is. For example: The database type for Apache Derby is the
numeric value "7", but there is a constant in the system.db module called "db.DBTYPE_DERBY10",

which represents the same value, but has a much better readability.

Methods are used to tell the ADITO system what to do, like collecting data from a database or changing
the value of a component. They’re not to be confused with functions. Functions are written in JDito and
describe an order of commands, while JDito methods are implemented into the interpreter to be able
to control the ADITO system.

To use a specific module, you need to import it into your JDito process using the i mport command.

o The import commands must always be at the very top of a process, otherwise an
error is thrown.

Example:

import { result } from"@ditosoftware/jdito-types";
/I code begins here

result.string("My result");
The different system modules are:

System module Description

system.ACTION This module only contains constants that hold
values for different client actions. Examples:
ACTION.FRAME_CREATE, ACTION.FRAME_EDIT

System module

system.ALIAS

system.SQLTYPES

system.calendars

system.cti

system.datetime

system.db

system.eMath

system.filelO

system.gantt

A

Description

This module only contains constants that are
used for referencing different keys within an
alias object. Examples: ALIAS.CHARSET,
ALIAS.PASSWORD

In this module are constants for the different
SQL columntypes and methods that help in
validating the type, like
SQLTYPES.isTextType(SQLTYPES.CHAR).

This module groups methods and constants
necessary for working with calendars and

calendar entries.

In this module you can find all methods and
constants needed for working with any

telephone system.

Datetime holds methods and constants for

working with dates, timestamps and time zones.

This module contains constants and methods for
communication with connected databases, like

executing selects, updates, and deletes.

eMath contains constants for different rounding
behaviours and methods, that can savely add,
subtract, multiply, divide and round data of the
data type String. Each type of calculation exists
seperately for integer and decimal values.

Here you can find constants and methods for

serverside file input / output operations.

This module currently has no contents.

A

System module Description

system.im In this module you can find methods and
constants regarding the XMPP Backend.

system.imClient In this module you can find methods and

constants regarding the XMPP Client.

system.indexsearch In here are the methods and constants used for
running the indexing processes and for

executing searches using the Solr indices.

system.logging This module holds all methods and constants
regarding the logging system.

system.mail This module contains methods and constants for

sending emails and working the email objects.

system.neon This module contains methods and constants to

control the neon web client.

system.neonTools This module contains methods to assist in

controlling the neon client.

system.net net contains methods used for calling web
services using REST or SOAP, for validating URLs
and for getting the contents of a URL.

system.notification Here you can find all methods and constants for

controlling the notification system.

system.pack pack offers methods and constants for working

with ZIP archives.

system.plugin This module contains methods for calling ADITO

plugins on the serverside.

A

System module Description

system.process In this module you can find all methods and
constants regarding the immediate execution of
"executable" JDito processes and for managing

the timed execution.

system.project This module offers methods and constants for
getting data models from the deployed project,
like get Al i as(), get Dat anodel (),
get I nst anceConfi gVal ue().

system.question This module holds the methods and constants

for displaying different modal dialogs.

system.report In this module are all methods and constants to

interface with the reporting engine.

system.result This module holds the methods used for
returning values to the ADITO core. Mainly used
in processes like valueProcess or

displayValueProcess.

system.text text contains methods for decoding and
encoding multistrings, formatting and parsing

text and for hashing.

system.tools Despite its name, there are no "tools" in this
module. Instead it holds all methods and

constants used for managing users and roles.
system.translate This module is used for calling the translation
system. It contains all necessary methods and

constants.

system.treetable This module currently has no contents.

A

System module Description

system.util This module contains utilitary methods and
constants. Mostly used for encoding and
decoding BASE64 Strings and generation of IDs
with getNewUUID().

system.vars This module offers methods for reading and
setting values from components, EntityFields,

and system/image/local variables.

A.2. System variables

System variables in general (these are not only variables named "Ssys.xxx") are containers for values
that are either provided by the ADITO application core or are set via JDito Code.

They are read by method var s. get () and set by method var s. set () of the system module
var s. Their name always has to be prefixed by the "$" sign.

Example:

/1 Reading a variable
vars. get ("$sys. operatingstate");
vars.get ("$field. UU D");

/1 Setting a variable

vars. set ("$cont ext. cal cul at edval ", cal cVal ue);
o vars. get String() isnolonger required, even for reading String values. This
method will be marked as deprecated in future ADITO versions.

There are four types of system variables (Simage and Scomp are not mentioned here, because they

belong to the ADITO Legacy platform):

1. Slocal
These system variables' session runtime is as long as the user is logged-in (per login). The
runtime of the server environment depends on the configuration of the server process (must
always be executed using a specific user) - e.g., in the process aut ost ar t Neon, various

variables are being set that are required in the client.

Mostly, Slocal variables are set by the ADITO core to pass values into specific processes. For

example: process_audit is the process where you can react to the auditing of a specific dataset.

A

This process gets the information what database columns are affected, what their types are and
what their old and new values are. These values are passed as local variables and are accessed

via the system.vars module. Example:

/[l getting the val ue

var action = vars.get("$local.action");
/[/setting a val ue

vars. set ("$l ocal . taskld", "1234-1234-1234");

As for the server, this means:
When you configure the interval of a server process, you can specify, if the "JDito instance"
should be kept:

o If yes, then the global variable persists over multiple runs (on the server - with "server"
meaning one single server pod, e.g. adi t 0- web- bg- 0, i.e., the software-sided instance
of an ADITO server);

o if no, then the global variable does not exist anymore for every new run and therfore

must be set anew.

It would be an extensive and hardly-to-maintain documentation to give a complete
summary of all Slocal variables, along with their availability and purpose in each single
context. Therefore, you will find only selected Slocal variables in appendix Slocal variables
- but beside this, we recommend the "trick" to simply use the Designer’s debugger: In
window "Debugger" (visible only if the debugger is active) you can inspect all Slocal
variables that are available in the context of the respective breakpoint, where the

debugger has halted. Here is an example:

Debugger - test

Variable

(In the Designer Manual, you can find more information on the debugger’s functionality

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

A

and handling.)

2. Ssys
The Ssys variables are visible within one client and are independent from a specific context. They
are typically used to store values that are used throughout the client, like global configurations,
rights management via sales areas, etc.

Ssys variables are accessed as follows:

/[l getting the val ue
var action = vars. get("$sys. useRi ghts");
//setting a value (only works, if SALESAREA is a dynam c user

property!)
vars. set ("$sys. sal esArea", tools.getCurrentUser()[tools.
PARAMS] [" SALESAREA"]) ;

o In appendix "Ssys variables", you can find a summary of all Ssys variables,
along with their individual purpose.

3. Sfield
Field variables are the equivalent to Scomp variables in Legacy ADITO, but they are used within
the Neon Entity environment.

o An EntityField value can only be read. For setting the value of an EntityField

refer to the corresponding method in the system.neon module.

Example:

/[l getting a val ue
var id = vars.get("$field. UUD");
//setting would lead to an error!

4. Scontext
These are variables that are valid during the runtime of a Context (neon data model) -i.e,, e.g.,

what you have opened in a MainView.

5. Scluster
Cluster variables are visible within all clients. They are set by the server. These are typically used
as caches or for values that have to be the same on all clients. They are accessed in the same

way as sys variables.

Example:

A

/[l getting a val ue

var supportEmail = vars.get("$cluster.supportMil");

/lsetting a val ue

vars.set ("$cluster.supportMil", "support@dito.de");
6. Simage

Deprecated. These variables were only used in the legacy client (equivalent to Scontect).

Variables can always be set only in the context in which they can also be read.
It is not possible to set from one context (e.g., "Organisation opened in tab 1") the
variable of another context (e.g., "Organisation opened in tab 2").

o Therefore, the possibilities to use globale variables as cache are very limited,
because the invalidation is difficult - usually, this happens after a re-login in the
aut ost art Neon process (or by a respective Servicelmplementation for this
process).

A

Appendix B: Database Access

Please remind that, for every database table, an appropriate setting of database
indices is required, in order to ensure an optimal performance of database access.

Find further information about performance optimization in AIDO66.

B.1. Basic SQL Statement

Although SQL is used in many parts of the ADITO application, there is one basic SQL statement that is
executed when a Context is opened, e.g., to display data in the FilterView. This basic SQL statement has

got, as most SQL statements, the following clauses (parts):
® 3 SELECT clause (including all columns to be load)
® a FROM clause (including all involved tables)

® an optional WHERE clause (including one or multiple conditions)

® an optional ORDER BY clause (including one or multiple columns to use as order criteria)

SELECT MYTABLE. MYCOLUWNL1, MYTTABLE. MYCOLUWNZ, (...)

FROM MYTTABLE

VWHERE MYCOLUMNL = 'nyParaneterl’ AND MYCOLUMNZ2 = ' nyParaneter 2’
ORDER BY MYTTABLE. MYCOLUWMN2

In ADITO,

® the SELECT clause is defined in the RecordContainer’s RecordFieldMappings MYFIELD.value and
MYFIELD.displayValue, with the properties

o recordfield: one specific database column to load

o expression: an SQL expression to use instead of a specific column (marked with "(...)" in
the above example SELECT). If ther esul t . st ri ng() argument of this property’s code
is simply " MYTABLE. MYCOLUMNL", then the effect is the same as if we had selected
MYTABLE.MYCOLUMN1 as recordfield. However, you can also enter advanced SQL code
here, e.g.

m to concatenate multiple columns, e.g.
result.string("MYTABLE. MYCOLUWNL || MYTABLE. MYCOLUVNL")

m to enter a sub-select, e.g., SELECT ... FROM ... WHERE.. (Caution: Depending
on the kind of sub-select, this will be executed for every single dataset, which may

decrease the performance).

A

® the FROM clause is specified in the following properties of the RecordContainer:

o linkInformation: one or multiple tables to which the specified columns (see above) belong
to. Caution: If you specify more than one table here, the cross product of all tables is
loaded by default, which can result in huge data masses and therefore be a performance
killer; therefore, multiple tables should only be specified along with additional properties,

especially fromClause (with, e.g., JOINs) and conditionProcess (see below).

o fromClauseProcess: Optionally, you can enter the complete FROM clause here (without
the word "FROM" itself). JOINs may be included. All involved tables must nevertheless be
specified in the property linkinformation. As usual for processes, the SQL must be
specified as argument of method resul t . string(), e.g.,
result.string("MTABLE JO N OTHERTABLE ON (..)").

® the WHERE clause can optionally be specified in the property conditionProcess (without the
word "WHERE" itself). As usual for processes, the SQL must be specified as argument of method
result.string(),e.g.,
resul t.string("MYTABLE. MYCOLUWL = (.)").

® the ORDER clause can optionally be specified in the property orderClauseProcess (without the
word "ORDER" itself). As usual for processes, the SQL must be specified as argument of method
result.string(),e.zg.,
result.string("MYTABLE. MYCOLUWNL, MYTABLE. MYCOLUVN2") .

In order to access a database, you should use prepared statements instead of plain
SQL code - at least in all cases, where an external input is processed (i.e., text input
by the user or a variable filled by an import process, see below). Among other
advantages, this increases the data security of ADITO, as attacks by the "SQL

o injection" technique are avoided. In the library Sql Bui | der _| i b you can find
several classes providing SQL helper functions, including prepared statements, in
particular, the class Sql Bui | der and Sgl Ut i | s. Examples can be found in
chapter SQL Helper Functions below.

B.2. Commit after database changes

All ADITO methods for inserting or changing structure or content of the database are always committed

automatically. A separate "commit" statement is never required.
B.3. SQL Helper Functions
This chapter includes several examples showing

® how SQL code is applied in ADITO, using prepared statements;

A

® what SQL code is actually generated by various SQL helper functions.

Generally, for reasons of data security, you should always use prepared statements

in ADITO, especially when you are processing external data, e.g.

g ® data input by the user (e.g., via a text field)
® data imported from an external source (e.g., the customer’s legacy system)

This prevents external attacks via "SQL injection" and, in some cases, improves the

performance of the system.

The central class for building prepared statements in ADITO is Sql Bui | der . You
can find a detailed description of its usage in the property "documentation" of

library Sql Bui | der _I i b (in folder process > libraries). Prerequisite for viewing

this documentation in the designer is that you have the installed the plugin
,AsciidoctorJ4ANB”.

B.3.1. Example: contentTitleProcess of CarDriver_entity
CarDriver_entity.contentTitleProcess
var carDriverld = vars.get("$field. CARDRI VERI D");

if (carDriverld) {

var displayData = newSel ect (" SALUTATI ON, FI RSTNAME, LASTNAME")

.from(" PERSON")
.j oi n(" CONTACT", " CONTACT. PERSON | D = PERSON. PERSONI D')

.join("CARDRI VER', " CARDRI VER CONTACT_I D = CONTACT. CONTACTI D")

. wher e(" CARDRI VER. CARDRI VERI D', carDriverld)
.arrayRow();

var salutation = displayData[O0];
var firstnane = displayDatall];
var | astnanme = displayDatal 2];

result.string(salutation + " " + firstname + " " + |astnane);

An instance of class Sql Bui | der enables you to build an SQL statement using several methods,

whose names are identical to the corresponding SQL clauses (select, from, join, etc.).

Method ar r ayRow() returns the SQL result as array of values: The contents of the first database

result row is returned, with the column values as a one-dimensional array; possible further rows are

ignored in this case.

© 2025 ADITO Software GmbH 367 /472

A

B.3.2. Example: valueProcess of EntityField availability

Car_entity.availability.valueProcess

var carld = vars.get("$field. CARID");
if (carld) {

var currentReservationld = newSel ect (" CARRESERVATI ONI D")
. fronm(" CARRESERVATI ON")

. wher e(" CARRESERVATI ON. CAR_I D', carld)

.and(" STARTDATE < CURRENT_TI MESTAMP")

.and(" ENDDATE > CURRENT_TI MESTAMP")

.cell();
var availability = "NO';
if (currentReservationld == "") {

availability = "YES";
}

result.string(availability);

Method cel | () returns the SQL result as one single value: the first column value of the first row;

possible further rows or columns are ignored in this case.

A

B.3.3. Example: conditionProcess of CarReservation_entity’s RecordContainer
CarReservation_entity.RecordContainers.db.conditionProcess

var cond = newWher el f Set (" CARRESERVATI ON. CARDRI VER | D', "$param Car Dri ver | d_parani)
.andl f Set (" CARRESERVATI ON. CAR_I D', "$param Car |l d_parant');

result.string(cond);

The SQL code built by the helper method newWher el f Set is (if called via the MainView of Context
CarDriver), e.g.:

CARRESERVATI ON. CARDRI VER_I D = ' 594811af - 9947- 4cf 3- 9c4c-d719cb88384a’

If the Parameters are not set (e.g., if you open the FilterView of Context CarReservation), the condition

is an empty String (= no condition at all), so all CarReservation datasets are shown.

A

B.3.4. Example: Driver’s name
CarDriver_entity.db.CONTACT _ID.displayValue.expression

result.string(PersUtils. getResol vingDi spl aySubSql (" CONTACT_ID"));

The helper function Per sUt i | s. get Resol vi ngDi spl aySubSqgl (" CONTACT _| D') generates
and returns the following SQL code, which is a subselect for displaying a person’s complete name
instead of its related CONTACTID:

SELECT CASE
WHEN tri m(PERSON. SALUTATION) |= '
AND PERSON. SALUTATI ON |'S NOT NULL
THEN CASE
WHEN tri m(PERSON. TI TLE) != "'
AND PERSON. TI TLE |'S NOT NULL
THEN tri n{ PERSON. SALUTATI ON) | |
ELSE tri m(PERSON. SALUTATI ON)
END
ELSE '
END || CASE
WHEN tri m(PERSON. TI TLE) != "'
AND PERSON. TI TLE |'S NOT NULL
THEN CASE
WHEN tri n{ PERSON. FI RSTNAME) |= "'
AND PERSON. FI RSTNAVE |'S NOT NULL
THEN tri n{ PERSON. TI TLE) ||
ELSE tri n(PERSON. TI TLE)
END
ELSE '
END || CASE
WHEN t ri m{ PERSON. FI RSTNAME) ! = '
AND PERSON. FI RSTNAME |'S NOT NULL
THEN CASE
WHEN tri m(PERSON. M DDLENAME) != '
AND PERSON. M DDLENAVE |'S NOT NULL
THEN tri n{ PERSON. FI RSTNAME) || '
ELSE tri n(PERSON. FI RSTNAVE)
END
ELSE
END || CASE
WHEN tri n{ PERSON. M DDLENAME) | = '°
AND PERSON. M DDLENAVE |'S NOT NULL
THEN CASE
WHEN tri m(PERSON. LASTNAME) != '
AND PERSON. LASTNAME |'S NOT NULL
THEN tri n{ PERSON. M DDLENAME) || '

ELSE tri m(PERSON. M DDLENANE)
END
ELSE °
END || CASE
WHEN tri n{ PERSON. LASTNAME) |= "'
AND PERSON. LASTNAME |'S NOT NULL
THEN tri m(PERSON. LASTNAVE)
ELSE ' °
END
FROM PERSON
JO N CONTACT ON (PERSON. PERSONI D = CONTACT. PERSON | D)
WWHERE CONTACT. CONTACTI D = CONTACT_I D

A

A

B.3.5. Example: Manufacturer

Car_entity.db.MANUFACTURER.displayValue.expression

var sql = KeywordUtils. get Resol vedTitl eSql Part ($Keywor dRegi stry. car Manuf acturer (), "CAR MANUFACTURER');
result.string(sql);

The helper function
KeywordUti | s. get Resol vedTi t| eSqgl Part ($Keywor dRegi st ry. car Manuf act ur er

(), "CAR MANUFACTURER") returns the following SQL code:

CASE

WHEN CAR. MANUFACTURER
THEN ' Mer cedes'
VWHEN CAR. MANUFACTURER
THEN ' BMWV

VWHEN CAR. MANUFACTURER
THEN ' VW

ELSE '

END

' 11a849d8- 67ed- 448e- 86aa- 6f 4ab54d22ee’

' 107a2bf 2- 803a- 4cf 0- bf 69-f f 649acc113b’

' 15a66e3a- 9e3e- 4051- be6f - eb5b425e0f de'

A

Appendix C: Order of execution of Entity processes

C.1. Load

[(1) oninit]1

[(2) beforeOperatingState] 1

[(3) afterOperatingState] 1

[(4) afterUilnit]

v

if EDIT or NEW state
true false

v

(5) onValidation
of EntityField, Consumer or Entity

v

(6) onValueChange
of EntityField

v v

[Entity is loaded]

Figure 39. Order of execution of processes when loading an Entity

1. onlnit
This process runs before the RecordContainer is loaded. Here you can initialize variables like
$gl obal . vari abl enane or $cont ext . vari abl enane.

2. beforeOperatingState
When this process runs, the Entity is already loaded, but is not in one of the operating states yet.

(see appendix "Operating state vs. record state")

3. afterOperatingState

Here it is determined, which operating state is used, but no components are loaded yet. This is

A

the place to react to changes in operating state.

4. afterUilnit
This process runs after the Ul is loaded. Here you can use methods to influence the Ul, i.e.
neon. addRecor d to add a new record to an Entity.

5. onValidation
In this process you can validate the data in the fields, before saving. This process should only be
used to validate data. Don’t react to changes here! If any text is given as result of the

onValidation process, an automatism makes sure that
o the validation is considered as "false";
o the given text is displayed to the right of the "Save" button;
o the "Save" button is disabled until the next call of the onValidation process.

o Example:resul t.string("Your input nust not include special
characters like "& .");

6. onValueChange
In this EntityField process you can react to changes in an EntityField and, e.g., a computed value

or set other components to inactive depending on the content.

o With property onValueChangeTypes (in the EntityField’s property sheet directly under
property onValueChange) you can define the types of sources (modifiers) that will trigger
the onValueChange process, e.g. "MASK" or "RECORD". Find more information about the
selectable modifier types and their meanings in the property description of

onValueChangeTypes.

o Variable $l ocal . nodi fi ert ype holds the type of the modifier (source type) that has
triggered the onValueChange process - see property description of onValueChangeTypes.
This variable can be helpful, if multiple modifier types had been selected in property

onValueChangeTypes, and a distinctive reaction is required, depending on the modifier

type.

C.2. Save

[onValidation of EntityFields J
v

[onValidation of Entity J
v

[onDBInsert]
v

[conditionProcess]
v

[fromClauseProcess]
v

[Entity is saved]
v

[beforeOperatingState]
v

[afterOperatingState]
v

[afterSave]

Figure 40. Order of execution of processes when saving an Entity with a dbRecordContainer

A

[onValidation of EntityFields]
v

[onValidation of Entity]
v

[cacheKeyProcess]
v

[contentProcess J
v

[oninsert }
v

[Entity is saved]
v

[beforeOperatingState]
v

[afterOperatingState J
v

[afterSave }

Figure 41. Order of execution of processes when saving an Entity with a jDitoRecordContainer

You can find a description of these processes in their JSDoc and partly in the previous chapter about

load processes. Here is some additional information:

o afterSave
The afterSave process was implemented to execute client commands after saving a record of an
Entity. In some cases, e.g., after saving, a popup message should be shown to the user, or
another Context should be opened. To try the same in the onDBInsert/onlInsert process, leads to

problems:

A

o Client commands (neon. XxX, quest i on. Xxx) are not allowed to be executed in
RecordContainer processes. (Entity can also be used server-side with "Read/Write Entity"
methods, then the methods lead to errors.)

o openCont ext does not work or was "overwritten".

Therefore, the afterSave process was introduced, in order to allow the execution of these
kind of actions after saving.

o Please note the following:

m The afterSave process is exclusively executed client-side. Therfore, in this process,
nothing must be changed/triggered etc. (processes, updates etc.). If this is
nevertheless necessary, it must be done manually on the server side, e.g., in the
on(DB)Insert process.

m |f a new Context is opened in the afterSave process, resul t. string(true);

must be returned, in order to avoid the default behavior after saving.

A

Appendix D: Requirements for customized Theme

In the below table you can find all information required by ADITO’s development department and its
UX designer in order to create a customized Theme that is optimized for being compliant with the

Display Screen Equipment Directive (e.g., contrast effects).

Table 5. Requirements for the creation of a customized Theme

Element Location of usage Default
Background image Login-/Logout View ADITO image
Company logo Login-/Logout View ADITO logo
First main color Buttons, hyperlinks, focus color | Dark blue
Second main color Menu header, active menu Red

entry
1 to 20 user-specific colors Charts, Avatars, score cards Various

Alternatively, if available, you can send us your own Cl guide.

You can find extensive background information on the topic "Themes" in the ADITO

Information Document AID121 "Themes".

It is strictly against the intention of ADITO that users modify the Theme by
A themselves. It is exclusively ADITO’s development department that is authorized to
modify a Theme or create a new Theme.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf

A

Appendix E: Checklist for new fields
Here is a checklist for how to proceed if you want to add a new EntityField. First of all,

® inform your ADITO client administrator about the new field, in order to make sure that its access

rights are configured correctly.

® inform the data security official in charge with your project (e.g., in Germany, the
"Datenschutzbeauftragter") about the new field, in order to make sure that possible concerns
will be included in the further configuration and programming (e.g., the implementation of a
dialog pointing to the "impact on the data privacy information (GDPR)" - see, e.g., method
DataPrivacyUrtils.notifyNeedDataPrivacyUpdate in DataPrivacy_lib).

Technically, the new field is added as follows:

® |n the "Projects" window, double-click on the Entity, so it is shown in the Navigator window.
® |n the Navigator window, right-click on the sub-node "Fields" and choose "New Field".

® Enter the field’s name - respecting the ADITO spelling guidelines (see ADITO Information
Document AID001, chapter "Spelling & Wording" > "ADITO models") - and press OK.

® Configure the new field’s properties:

o "title": Enter a title to be shown with the new field in the client, e.g., as label or as table

column header.

o "contentType": Change default value "TEXT", if required. For type "DATE", set also

property "resolution".
o Set further properties, if required (such as valueProcess, for calculated fields).

e (If the field’s value is to be stored in the database:) Create a new column corresponding to the

field, via one of the following ways:

o Use the ADITO database editor (system > default > Data_alias > ADITO): Right-click on the
database table and choose "Add column..." from the context menu. Make sure the name
of the new column is spelled exactly like the name of the EntityField. Enter all required
column properties, e.g., the data type. Consequently, update the Alias Definition (double-
click on alias > Data_alias, then, in the Navigator window, choose "Diff Alias <> DB Table"
from the context menu of parent node "Data_alias", and perform an update from

"remote" to "local").

o Alternatively, you can do it the other way round: Add the column in the Alias Definition:
Double-click on alias > Data_alias. Then, in the Navigator window, right-click on the
database table and choose "New Column" from the context menu. Make sure name of

the new column is spelled exactly like the name of the EntityField. Configure all required

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

A

column properties, e.g., "columnType". Consequently, update the database (in the
Navigator window, choose "Diff Alias <> DB Table" from the context menu of parent node
"Data_alias", and perform an update from "local" to "remote"). If you have a Liquibase

create file for this table, add the column manually.

o If you prefer to use Liquibase instead, create a separate change set for adding the column.
You can use one of the "alter_xxx.xml" files in one of the folders under alias > Data_alias >
basic as pattern, e.g., the file alter_SerialLetter.xml (under alias > Data_alias > basic >
2019.2.1). +

<?xm version="1.1" encodi ng="UTF- 8" standal one="no"?>
<dat abaseChangeLog xnl ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og"
xmi ns: ext="http://ww. | i qui base. or g/ xni / ns/ dbchangel og-ext"” xni ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi : schemalLocati on="http://wwu. | i qui base. or g/ xm / ns/ dbchangel og- ext
http://ww. | iqui base. org/ xm / ns/ dbchangel og/ dbchangel og- ext. xsd http://ww. | i qui base. org/ xm / ns/ dbchangel og
http://ww. | iqui base. org/xm / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="j.smith" id="77bf2086-3eac-4a2l-bb03-168140477e19">
<addCol urm t abl eNane="MYTABLE" >
<col urm nane="MYCOLUWN" t ype="NVARCHAR(50)"/>
</ addCol urm>
</ changeSet >
</ dat abaseChangelLog>

Perform a Liquibase update (right-click on alias > Data_alias and choose "Liquibase >
Update..." from the context menu). Remember to reference this new xml file also in the
appropriate changelog.xml file, making sure that it is executed after the create file of the
respective table. Consequently, update the Alias Definition (double-click on alias >
Data_alias, then, in the Navigator window, choose "Diff Alias <> DB Table" from the
context menu of parent node "Data_alias", and perform an update from "remote" to

"local").
e (If the field’s value is to be stored in the database:) Establish the connection between the field
and the corresponding database column:

o Set the new column in property "recordfield" of the new EntityField’s corresponding

".value" RecordFieldMapping in the RecordContainer.
o If another value than the stored value is to be displayed:

m Enter a subselect for the display value in property "expression" of the new
EntityField’s corresponding ".displayValue" RecordFieldMapping in the

RecordContainer, and/or

m enter a code retrieving the display value in the displayValueProcess of the new
field.

® Add the new field in the "columns" or "fields" properties of the ViewTemplates of all Views in

which the new field is to be shown.

® Include all configurations and code required to ensure the correct access rights and all concerns

A

of your data security official (see above).
® Save and deploy.

® Clear the cache: Open the ADITO Manager (in the client’s Global Menu, choose "Server" in menu
group "Manager"), mark your server and choose option "Clear cache" via three-dotted button in
the PreviewView. Alternatively, of course, you can achieve the same effect by re-starting the

server.

® Re-login to the ADITO client.

A

Appendix F: Accessing the value of an EntityField

This appendix is about the relation between the value of an EntityField and its associated variables.

In this chapter, "value of an EntityField" is actually referring to a specific value
e processed in the ADITO core. For a better understanding of the following
explanations, you can simply consider "value of an EntityField" to be the value that

is visible in the client.

If you have created an EntityField called MYFIELD, then it automatically has a system variable with the
name $f i el d. MYFI ELD associated. You can access the value of this variable via the method
vars. get ("$field. MYyFI ELD").

The EntityField value and the "Sfield" variable value are linked in the ADITO core. Each is calculated at

different times, and at certain points they are synchronized to each other.

F.1. Synchronization

There are two ways of synchronizing:
1. EntityField value - "$field" variable value
If the value of an EntityField is set, then it triggers a new calculation of the variable.
2. "$field" variable value - EntityField value

If the value of the "Sfield" variable changes, its value gets set to the EntityField value.

F.2. How does an EntityField value get set?

The value of an EntityField is set, when a user enters a value in a View. This is when the new calculation

of the variable is triggered according to the order of processes detailed in a previous appendix.

F.3. How does a "$field" variable get its value?

There are three variants of how the value of a "Sfield" variable can be determined:

1. Record
If you have linked your EntityField with your RecordContainer and have no valueProcess

specified, then the system takes the value from the record.

2. Process
If your EntityField is not linked to the RecordContainer, then the valueProcess is used to

determine the value of the variable.

A

3. Record process
This means, you have a mixture of the previous variants: You have linked your EntityField within
the RecordContainer and you have a valueProcess specified.
If the record returns a value, then it is used, while the valueProcess is being ignored. If, however,

the record does not return a value, then the valueProcess is executed to determine a value.
Please mind the following logic:

e |f your system changes into state "NEW" or "EDIT" (e.g., if you open the EditView of a Context),
all fields of the Context’s Entity are being retrieved (= loaded or calculated) - no matter if they
are displayed or only used in other processes. This makes sure that all data are up-to-date when

the user edits or enters a dataset.

® Generally: If you open a View (regardless of the system’s state), ADITO automatically determines,
what fields might be required - meaning not only the fields referenced in the View configuration,
but also fields that are used in one of the Entity’s processes, like, e.g., the titleProcess or the
onActionProcess. These fields are then always loaded (= the column or the "expression" of the
RecordFieldMapping will be included in the SQL’s SELECT clause) - even if it later turns out that
one or several fields' values are actually not used.
This will ensure that all (possibly) required values are immediately present when the client user
works with the View - without the system having to load/calculate them separately. On the other
hand, this can lead to performance issues, if there are a lot of fields calculated via property
"expression" - especially when these fields' calculation is complex or suboptimally realized.
On the contrary, if the field is only calculated via a valueProcess or displayValueProcess (and not
via the "expression"), the calculation is only done on demand.
If both types of calculation have been configured, the "expression" is automatically preferred, if

it actually returns a value.
Furthermore, the determination of the "Sfield" variable’s value depends on the state of the record:
1. VIEW mode

In VIEW mode, the user is only Viewing the data and cannot change it. In this mode, the value is

determined by the previously stated variants.
1. EDIT mode
To to determine a value in EDIT mode, the system proceeds as follows:

o First, it checks if a valueProcess is specified. If so, then it is executed. Thus, the
valueProcess can be used to preset a value. (This is where the $t hi s. val ue variable

has to be used (see next chapter).

o If the valueProcess does not return a value, then the user’s input is used.

A

F.4. Sthis.value

$t hi s. val ue is a special system variable that is accessible in the valueProcess of an EntityField. It is
accessed viavars. get (" $t hi s. val ue") and contains the current value of the EntityField (being
input or preset). It can therefore, e.g., be used to determine if something was entered or if the field

was completely empty.

If the field has no current value, $t hi s. val ue contains nul | , otherwise it
contains the value entered by the user.

o If the user has deleted the value, $t hi s. val ue will return an empty string (no
longer nul | 1).

Therefore, if you want to preset a value, you have to check fori f (vars. get (" $t hi s. val ue")

== nul |) to only set your preset value if no value was present before. In the onValidation and

onValueChange processes, you can use this to get and process the users input.

Example:

Presetting currency to "EUR":

Productprice_entity. CURRENCY.valueProcess.js

if (vars.get("$sys.recordstate"”) == neon. OPERATI NGSTATE_NEW && vars. get ("$this.value") == null)

{
resul t.string($Keywor dRegi stry. currency$eur());

}

F.5. Sthis.value vs. $field.MYFIELD

While variable $t hi s. val ue contains the current value of a field, variable

$f i el d. <FI ELDNAME> contains the last calculated value that was synchronized to the field. In most
cases, those two variables have the same value, due to a close synchronization. There are rare
exceptions when the values can differ, e.g.

® while the initial value of a field is determined;

® when a record gets reloaded.

F.6. Sthis.value and Sfield.MYFIELD in valueProcess

Generally, in a valueProcess you have to distinguish between the stored field value (Sfield.MYFIELD)

and the new value to set (Sthis.value).

Here is an overview about when and how a valueProcess is executed and what reactions are possible:

A

1. Initial loading of the field values
If the value of the field is initially loaded from the Entity, then Sthis.value is null. This case is
mostly used for presets when entering new data oder editing it, because this case occurs only
once. If you miss to check for $t hi s. val ue == nul | then the value of the field will be

overwritten with every refresh.

2. Field is explicitely set empty
In case the field is explicitely set empty (e.g., by the user), a check for! t hi s. val ue would

nn

fail, because in this case $t hi s. val ue ==

3. Changes of the field itself
If the value of the field itself changes directly (e.g., by user input, WriteEntity,
neon. set Fi el dVal ue, etc.) then $t hi s. val ue is filled with a value (or an empty string in
case 2, see above) and the field itself ($f i el d. MYFI ELD) ist empty (" "). Knowing this, you
can, e.g., prevent that the field is automatically filled by dependencies from other fields, because

the given value was entered explicitely.

4. Trigger of the valueProcess by other fields
This case only happens when entering new data, not when editing it. It is the constellation that
the value of the field itself has not changed, but it has been updated because of triggers/calls
etc. and thus the valueProcess is executed. In this case $t hi s. val ue and
$fi el d. MYFI ELD have the same value. This constellation can be used, e.g., to set the field
depending on other fields. This is the recommended approach, other than to use

neon. set Fi el dVal ue in the onValueChange process of another field.

neon. set Fi el dVal ue should only be used in onValueChange, if there is
absolutely no other possibility to realize the task. The performance of

A neon. set Fi el dVal ue is very low, because many dependencies need to be
updated and it can happen that the same code needs to be written in multiple
fields.

If the value of a field is set and you do not return anything in the valueProcess, then the set value will

be used. (This means, in case 3 only the return must be prevented.)

Example of the implementation of the above cases 1, 3, and 4:

The example task is that a field A should initially be filled with value 1, when entering a new dataset. It
should be possible to overwrite the field’s value when entering a new dataset or when editing it. If field
B is set to a specific value, then field A should automatically filled with the value 2 (works for "new",

not for "edit").
Example valueProcess for cases 1, 2, and 4

var fieldA = vars.get ("$field. A");

A

var thisValue = vars.get("$this.value");

/'l The value of the field is not required in this case,
/1 but it can work as trigger, if B changes.
var fieldB = vars.get ("$field.B");

var recordState = vars.get("$sys.recordstate");

i f ([neon. OPERATI NGSTATE_NEW neon. OPERATI NGSTATE_EDI T] . i ncl udes(recordSt at e))

{
i f(recordState == neon. OPERATI NGSTATE_NEW && t hi sVal ue == nul |)

/lcase 1: initial presetting the field with value 1

{
result.string(l);
}
else if(fieldA == "" && thisVal ue)
|l case 3: value was changed -> should be set now
{
result.string(thisVval ue);
/1 In this case, you can alternatively sinply return nothing.
/1 Then $this.value will be set as field val ue.
}

else if(fieldA == thisValue)

/'l case 4: thisValue and field have the same val ue

/1l -> The field was not changed, but was triggered sonmewhere,

/'l e.g., because a change of field B -> fieldA should be set to 2

{
}

result.string(2);

F.7. Slocal.value

This is a local system variable that is accessible in the onValidation and the onValueChange processes
and contains the entered value before it is written to the variable value, so you can validate it before

the data enters the system.

Example:

Checking if the user has input a wrong entry date:
Activity_entity. ENTRYDATE.onValidation.js

var entryDate = vars. get("$l ocal .val ue");
if (!DateUtils.validateNotlnFuture(entrybDate)) {
result.string(translate.text("Entrydate nmust not be in the future"));

}

© 2025 ADITO Software GmbH 386 /472

A

F.8. Slocal.rowdata and Slocal.initialRowdata

If you want to access the values of EntityFields in specific processes of a RecordContainer, you must
exclusively use $1 ocal . r owdat a or $l ocal . i ni ti al Rowdat a, because $f i el d variables
might contain outdated values at that time. In particular, these are the following processes:

® dbRecordContainer: onDBInsert, onDBUpdate, and onDBDelete

® DitoRecordContainer: onlnsert, onUpdate, and onDelete (see also sub-chapter "Advanced

explanations" of chapter JDitoRecordContainer)

o Find more information on $| ocal . r owdat a and $l ocal . i ni ti al Rowdat a
in appendix Slocal variables.

A

Appendix G: Operating state vs. record state
In ADITO, there are 2 types of system states, which can be retrieved via system variables:

e "operating state" - vars.get("Ssys.operatingstate")

® "record state" > vars.get("Ssys.recordstate")
The values of these state variables are Strings, namely (both for operating state and record state)

° "VIEW"

* "NEW"

e "EDIT"

e "SEARCH"
When coding and checking a state for a specific value, you should not use the above Strings itself, but
the corresponding constants

® neon. OPERATI NGSTATE_VI EW

e neon. OPERATI NGSTATE_NEW

e neon. OPERATI NGSTATE_EDI T

® neon. OPERATI NGSTATE_SEARCH

0 These constants are used both for operating state and for record state. There are no
specific constants for record state.

Operating state and record state are similar, but apply in different environments:

® QOperating state refers to the state a Context is currently in, while

® record state refers to the state of a record or even only a part of a record.

Example:

If you are in a MainView and use the pencil button of a component, the Context is still in the operating
state "VIEW", while the part of the record, which is covered by the component, is in record state
"EDIT".

Another example:
If you are in an EditView, operating state is "EDIT", because the whole Context is now in the "EDIT"

mode. The record state is now also "EDIT", because the record is edited with the help of the EditView.

A

In most cases, you should use $sys. r ecor dst at e to determine if data is being

edited, as the operating state still can be the VIEW mode, while the record state is
o EDIT.

Use $sys. oper at i ngst at e to determine if you are in an EditView.

Code example:

/I Presetting an ID, if a record is newy created.
if(vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_NEW && vars. get ("$this.value") == null)
{

result.string(util.getNewldU D());

}

A

Appendix H: LoadEntity and WriteEntity

LoadEntity and WriteEntity are essential functionality of the ADITO platform, used to manage
datasets/records. The naming of these terms is not related to method names, but they summarize

functionality represented by several methods used for loading and writing data from/into an Entity.

This means, the loading/writing does not, in the first place, target the database, but the Entity and its
Fields - respecting customized logic for values, displayValues, validations, etc. Of course, at last, the
database will be accessed via the Entity, but also calculated EntityFields, without relation to the

database, can be accessed.
You primarily use LoadEntity and WriteEntity if you want to

® |oad and write datasets strictly according to the permissions (access rights) configured by the
client administrator - which, e.g., is not the case when loading data via SqlBuilder or the db.xxx
methods (!).

® |oad or write data which is related to an Entity that is based on more than one database table

(no need to care for SQL joins etc.).
® |oad a calculated EntityField
® |oad the displayValue of an EntityField

® have an EntityField’s presets, validations, and dependencies to be respected in the

loading/writing logic

® utilize data caching via a RecordContainerCache.

LoadEntity and WriteEntity should be your preferred way to load and write data in

ADITO, when permissions (access rights) must be respected. Whenever you use
A other loading/writing options (e.g., SqlBuilder, db.xxx methods, etc.), the

permissions configured by the client administrator will be ignored, which may cause

severe data security leaks, as critical data may be disclosed to unauthorised persons.

However, performance issues can be involved, as LoadEntity and WriteEntity include
more overhead and calculations than an SQL select or insert. Therefore, it is
important to be careful when utilizing LoadEntity and WriteEntity: If the code is
frequently executed within loops or recurring processes and requires optimal speed,

A LoadEntity and WriteEntity may not be the most suitable options. Particularly in
Entity processes, LoadEntity and WriteEntity calls should be handled carefully, e.g.,
in onValidation, stateProcess, valueProcess, or displayValueProcess. Problems can

occur, because

A

® processes of the Entity are executed when loading
® a count is executed when loading

® When larger data amounts are involved, LoadEntity consumes extensively
RAM.

Example: If you use LoadEntity for validation of input of a Consumer, then the
already saved connected data will be loaded via LoadEntity in the onValidation
process of the Consumer. This process will be executed very often during editing,
and one Entity loading can take from 0,5 to up to multiple seconds. In this case, the
required data is very small, and in most cases there is no need for respecting
permissions. Thus, an SQL select would do the same job in a fraction of the time

LoadEntity requires.

In order to use any method of LoadEntity or WriteEntity, we need the following import:

import { entities } from"@ditosoftware/jdito-types";

o The documentation (JSDoc) of each method (available by using CRTL+SPACE) is not

finished yet. It will be available in a future ADITO version.

H.1. LoadEntity

The term LoadEntity summarizes the methods to get datasets related to an Entity.

The first step is to create a configuration object. There are 2 types of configuration objects available,

specific for different purposes:

/1 configuration for |oading datasets
[l (return value: Object of type "LoadRowsConfig")
var nmyConfigl = entities.createConfigForLoadi ngRows()

/1 configuration for |oading datasets froman Entity via a Consuner
[l (return value: Object of type "LoadConsumer RowsConfig")
var nmyConfig2 = entities.createConfigForLoadi ngConsunmer Rows()

These configuration objects provide setter methods (parameters) that can be chained in order to define
the datasets that should be loaded (similar to the chaining approach of, e.g., SqlBuilder). The order of
the method calls does not matter. To see how to add these parameters, please refer to the example

below. By adding a "." to the end of the configuration you can use the code completion to see all
available functions by using CTRL+SPACE.

A

Table 6. All setter methods (parameters) available for LoadEntity

Setter Method

.entity (String)

.fiel ds (Array)

.filter (String)

. count (Number)

. provi der (String)

. addPar anet er
(String, String)

. start Row
(Number)

. ui d (String)

. ui ds (Array)

. user (String)

Description

the name of the Entity whose datasets are to be loaded

list of EntityFields of the Entity. If you specify here only "#UID", then the
ADITO system tries to optimize the loading process (e.g., by skipping
unnecessary processes)

filter to be applied when loading the datasets

maximum number of datasets

name of the Provider that is to be used to retrieve the data

specifies a Parameter, to be used to supply a Provider. The first argument
of this method is the name of the Parameter (e.g., "Contactld_param"),
the second argument is the value to be assigned to this Parameter, e.g., a
uID).

number of the row of the datasets to start loading

UID of the dataset to be loaded

UIDs of the datasets to be loaded.
NOTE: If the argument of this setter method is

® an empty Array, then nothing is loaded (subsequent method
get Rows returns an empty Array, and method get RowCount
returns 0)

® null, then there there is not any UID-related restriction at all (=

same as if this setter method was not executed at all)

title of the user (e.g. "Harold Smith"), in whose "user context"
(permissions, calendar or mail settings, etc.) the loading logic will be
executed. For reasons of data security, this works only in server processes.

(In client-related processes, it will cause an error.)

A

.1 gnorePerm ssi Load without respecting the permissions of the respective user (but other

ons() user-specific functionality, e.g., calendar or mail settings, do still apply).

The methods . entity and. fi el ds are mandatory. If these are not used, the configuration is
invalid. You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

The configuration can be executed via 3 different methods, which have different purposes.

Table 7. The executing methods of LoadEntity

Method Description
entities. get Row(LoadRowsConfig) returns a single row (datasets)
entities. get Rows (LoadRowsConfig) returns all rows (datasets)

entities. get RowCount (LoadRowsConfig) | returns the number of rows (datasets)

(The methods for LoadConsumerRowsConfig are the same.)

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

The methods enti ti es. get Rowandentities. get Rows differ in their
behavior, which has an effect especially on the processing of the results and the

filling of variables like Sys. ui d - see chapter getRow vs. getRows.

H.1.1. Benefits

Using LoadEntity shows the following advantages compared to loading data directly via SqlBuilder or

the db.xxx methods:
1. LoadEntity respects the permissions (access rights) configured by the client administrator.
Nevertheless, if required, you can skip the permissions, by adding . i gnor ePer ni ssi ons() .

2. Complex SQL queries (with JOINs, subselects, etc.) can be avoided - e.g., in cases when an Entity

is related to more than one single database table.
3. An EntityField’s presets and dependencies are respected in the loading logic.

4. The data is loaded via the RecordContainer of the Entity; thus, all data can be cached - which
results in a better user experience and faster response times when using programs like, e.g.,

Apache Ignite.

A

5. Every EntityField of the Entity can be loaded, even if this EntityField is not directly related to one
specific database field (e.g., a calculated EntityField).

H.1.2. Example

Below you find an example code of a test Action that loads all datasets of the xXRM project’s Entity
Activity_entity and logs the result in detail. The loading is restricted to the values of the fields SUBJECT,
INFO, ENTRYDATE, and the display values of the fields DIRECTION and RESPONSIBLE. You can always

reduce the size of the result set by filtering according to values or entering UIDs.

MyTest_entity.testActionla.onActionProcess

/'l creating the configuration object
var config = entities.createConfigForLoadi ngRows();
/] setting the Entity's nane
config.entity("Activity_entity");
/1l defining the required EntityFields
config.fields([

" SUBJECT",

"I NFQO',

" DI RECTI ON. di spl ayVal ue",

" ENTRYDATE",

" RESPONSI BLE. di spl ayVal ue"

1);

/1l optional restriction to 1 U D
/1 config.uid("Ocf02b72-a46a-4cd2-975f-15556618ea90");

/'l optional restriction to nultiple U Ds
/1 config.uids(["0cf02b72-a46a-4cd2-975f-15556618ea90",
/1 "21852330-9c66-42a3-9d25- d053833f 146d"]) ;

var nyResult = entities.getRows(config);

/'l Retrieving a summary of each dat aset

for (let i in nmyResult) {
| ogging. log("----- > Dataset nunmber " + i + ":")
[oggi ng. | og(nyResul t[i]);
}
/'l Retrieving the single values of specific EntityFields
for (let i =0; i < nyResult.length; i++) {
| ogging. log("----- > Dat aset nunber " + i);
/'l each part of the result is an associative array
| oggi ng. l og("SUBJECT = " + nyResult[i]["SUBJECT"]);
logging.log("INFO =" + nyResult[i]["INFO']);
| ogging. log("DI RECTION = " + nyResult[i]["D RECTI ON. di spl ayVal ue"]);
| oggi ng. l og("ENTRYDATE = " + nyResult[i]["ENTRYDATE"]);
| oggi ng. | og("RESPONSI BLE = " + nyResul t[i][" RESPONSI BLE. di spl ayVal ue"]);
}

© 2025 ADITO Software GmbH 394 /472

A

Variation: Example of loading only 1 specific dataset viaent i ti es. get Row(confi g) .
.MyTest_entity.testActionlb.onActionProcess

var config = entities.createConfigForLoadi ngRows();
config.entity("Activity entity");

config.fields(]

" SUBJECT",

"I NFO',

" DI RECTI ON. di spl ayVal ue",
" ENTRYDATE",

" RESPONSI BLE. di spl ayVal ue"
1);

/1l Restrictionto 1 UD
config. ui d("Ocf02b72-a46a-4cd2-975f-15556618ea90") ;

var nyResult = entities.get Rowconfig);
/'l Retrieving each field of the dataset

for (let i in myResult) {

/'l e.g., nyResult["SUBJECT"]

| ogging.log("----- > Dataset index =" +i + ": " + nyResult[i]);
}

Please note that, in this case, the result is 1 single object, which you can directly access as associative
array, e.g., like this: nyResul t [" SUBJECT"] . Furthermore, note that
entities.get Row config) requires a configuration that restricts the result to one single

dataset. Otherwise, you will get an exception.

H.1.3. getRow vs. getRows

The methodsent i ti es. get Rowandentiti es. get Rows differ in their behavior, which has an
effect especially on the processing of the results and the filling of variables like sys. ui d.

entities.get Row

® This method loads a specific dataset.
® Variables like sys. ui d are automatically filled with the values of the loaded dataset.

e |f the requested dataset cannot be found, an exception is thrown, which must explicitly be

caught by an individual error handling.

® The behavior is similar to opening a PreviewView or MainView.

entities. get Rows:

A

Here, multiple datasets are returned, based on a filter.

Variables refering to single datasets, like Sys. ui d, are not filled.

If no datasets are found, no exception will be thrown - even not in case only one single dataset

was expected.

The behavior is similar to the loading of a FilterView.
Consequences in practice:

® Specific data handling: If it is required that variables like sys. ui d are filled, then
entities. get Rowshould be used. In this case, you need to make sure that possible

exceptions (caused, e.g., by not findable datasets) are handled appropriately.

® Exception-tolerant queries: ent i ti es. get Rows should be used for queries with no exact
number of hits to be guaranteed or expected, in order to avoid exceptions and to keep results
flexible.

Example:

Here is an example code to be used with ent i t i es. get Row, covering every error case:

var conf = entities.createConfigForLoadi ngRows()
.entity("Person_entity")
. ui d("38ch4af ab- 64f 9- 4d8e- aabf - a158d13f c933")
.fields(["#CONTENTTI TLE"]);

try {
var myRow = entities.get Row conf);

| og.info("Dataset successfully |oaded: " + myRow "#CONTENTTI TLE"]);

/'l process dataset
(...)
}

} catch (exception) {
/'l Exception handling (can be adapted to requirenents individually)
log.error("Error when | oading dataset: " + exception.nessage);

/1l Specific action in case of an exception

/'l e.g., setting standard val ues, informng the user,
[l or cancelling the operation

(..)

H.2. WriteEntity

The term WriteEntity summarizes the methods to write datasets "into" an Entity, and thus, into the

A

database table(s) related to it (create, update, or delete records).

The first step is to create a configuration. There are 3 types configurations available, specific for

different purposes:

/1 configuration for creating new datasets
var nmyConfig = entities.createConfigForAddi ngRows()

/1l configuration for updating new datasets
var myConfig = entities.createConfigForUpdati ngRows()

[l configuration for del ecting new datasets
var nmyConfig = entities.createConfigForDel eti ngRows()

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

These configuration objects provide setter methods (parameters) that can be chained in order to define
the datasets that should be loaded (similar to the chaining approach of, e.g., SqlBuilder). The order of
the method calls does not matter. To see how to add these parameters, please refer to the example

below. By adding a "." to the end of the configuration you can use the code completion to see all
available functions by using CTRL+SPACE.

Depending on the configuration type, there are different parameters available:

Table 8. All setter methods (parameters) available for create configuration (createConfigFor
AddingRows())

Setter Method Description of arguments

.entity (String) the name of the Entity whose datasets are to be written

. fieldval ues an Array of the EntityFields or Consumers, along with their values
(Array) (Important: Mind the order! See information box further below.)

If the values are restricted by a value list (via
dropDownProcess or a Consumer) there is no

o validation, i.e., the values are written as given, even if
they are not included in the value list. If you need a

validation, use onValidation.

. consuner (String) name of the Consumer that is to be used to write the data

A

. provi der (String) name of the Provider that is to be used to write the data

. addPar anet er specifies a Parameter, to be used to supply a Provider or a Consumer.

(String, String)

The first argument of this method is the name of the Parameter (e.g.,
"Contactld_param"), the second argument is the value to be assigned to
this Parameter, e.g., a UID).

. user (String) title of the user (e.g. "Harold Smith"), in whose "user context"

. i gnorePer
ns()

(permissions, calendar or mail settings, etc.) the create logic will be
executed. For reasons of data security, this works only in server

processes. (In client-related processes, it will cause an error.)

M SSi 0 | Write without respecting the permissions of the respective user (but

other user-specific functionality, e.g., calendar or mail settings, do still

apply).

For the create configuration, the methods . enti ty and. fi el dVal ues are mandatory. If these are

not used, the configuration is invalid.

You can see the

When writing the Array-typed argument of method . fi el dVal ues, please
urgently consider the correct order of the EntityFields, as the ADITO platform will
process the EntityFields exactly in the given order. This is crucial, if one EntityField is
logically dependend on another EntityField - e.g., if the valueProcess of
MYENTITYFIELD2 contains the code

vars. get ("$fi el d. MVENTI TYFI ELD1"), then, in the Array,
MYENTITYFIELD1 must necessarily be specified before MYENTITYFIELD2. Otherwise,
the required value of MYENTITYFIELD1 will not yet be set when var s. get is called.
This behavior no bug, but intended, because WriteEntity should work like a user
works in the client: If, e.g., users call an Action without filling in the value of a

dependent EntityField before, they will also not get the intended result.

documentation (JSDoc) of each method by using CRTL+SPACE.

Table 9. All setter methods (parameters) available for update configuration (createConfigFor
UpdatingRows())

Setter Method

.entity (Str

Description

ing) the name of the Entity whose datasets are to be written

A

. ui d (String) UID of the dataset to be updated
.fieldval ues an Array of EntityFields or Consumers, along with their values
(Array) (Important: Mind the order! See information box above.)

If the values are restricted by a value list (via
dropDownProcess or a Consumer) there is no

o validation, i.e., the values are written as given, even if
they are not included in the value list. If you need a

validation, use onValidation.

. consuner (String) name of the Consumer that is to be used to update the data

. provi der (String) name of the Provider that is to be used to update the data

. addPar anet er specifies a Parameter, to be used to supply a Provider or a Consumer.
(String, String) The first argument of this method is the name of the Parameter (e.g.,

"Contactld_param"), the second argument is the value to be assigned to

this Parameter, e.g., a UID).

. user (String) title of the user (e.g. "Harold Smith"), in whose "user context"
(permissions, calendar or mail settings, etc.) the update logic will be
executed. For reasons of data security, this works only in server

processes. (In client-related processes, it will cause an error.)

.ignorePerm ssi o | Write without respecting the permissions of the respective user (but

ns() other user-specific functionality, e.g., calendar or mail settings, do still

apply).

For the update configuration, the methods . entity,. fi el dVal ues, and. ui d are mandatory. If

these are not used, the configuration is invalid.
You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

Table 10. All setter methods (parameters) available for delete configuration (createConfigFor

DeletingRows())

Setter Method Description

.entity (String) the name of the Entity whose datasets are to be written

A

. ui d (String) UID of the dataset to be updated

. provi der (String) name of the Provider that is to be used to delete the data

. addPar anet er specifies a Parameter, to be used to supply a Provider. The first argument
(String, String) of this method is the name of the Parameter (e.g., "Contactld_param"),

the second argument is the value to be assigned to this Parameter, e.g.,
a UID).

. user (String) title of the user (e.g. "Harold Smith"), in whose "user context"
(permissions, calendar or mail settings, etc.) the delete logic will be
executed. For reasons of data security, this works only in server

processes. (In client-related processes, it will cause an error.)

.ignorePerm ssi o | Load without respecting the permissions of the respective user (but

ns() other user-specific functionality, e.g., calendar or mail settings, do still

apply).

For the delete configuration, the methods . ent i t y and . ui d are mandatory. If these are not used,

the configuration is invalid.

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

Depending on the purpose (and thus, on the configuration), there are the following execute methods:
Table 11. The execute methods of WriteEntity

Function Description
entities.creat eRow(CreateRowConfig) creates a new dataset and returns its UID
entities. updat eRow(UpdateRowConfig) updates the dataset

entities. del et eRow(DeleteRowConfig) deletes the dataset

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

H.2.1. Benefits

Using WriteEntity shows the following advantages compared to writing, updating, or deleting data
directly via SqlBuilder or the db.xxx methods:

H.2.2.

A

. WriteEntity respects the permissions (access rights) configured by the client administrator.

Nevertheless, if required, you can skip the permissions, by adding . i gnor ePer ni ssi ons() .

. Complex or multiple SQL queries can be avoided - e.g., in cases when an Entity is related to more

than one single database table.

. Updated or deleted records can be cached, which results in a better user experience and faster

response times when using programs like, e.g., Apache Ignite.

. An EntityField’s presets, validations, and dependencies are respected in the writing logic.

. No need for subsequently executing refresh logic (like neon. r ef r eshAl | ()). This means,

e.g., in a "table" ViewTemplate

a. del et eRowonly deletes the respective datasets - no refreshing/reloading of all datasets

required.

b. updat eRowautomatically reloads (only) the respective datasets.

. Every EntityField of the Entity can be loaded, even if this EntityField is not directly related to one

specific database field (e.g., a calculated EntityField).

. Encapsulation with configurations.

Examples

Example 1:

Below you find an example code of a test Action that creates an Activity dataset, without ActivityLinks.

MyTest_entity.testAction2a.onActionProcess

/1l creating the configuration object

var

config = entities.createConfigForAddi ngRows();

/1 name of the Entity
config.entity("Activity_entity");

/1 mapping of the EntityFields and their val ues
config.fieldval ues({

1)

"SUBJECT": "Test Activity",

"INFO': "This is sone deno infornmation",
"Dl RECTION': "o",

"ENTRYDATE": datetinme.date().toString(),
"CATEGORY": "MAIL"

/'l execution nethod for creating a new dataset

var

id = entities.createRow(config);

A

/1 loggin the automatically created U D of the new dataset,
/1l e.g., "38ch4fab-64f9-4d8e-aabf-al58d13fc978"
| oggi ng. log("ACTIVITYID: " + id);

After executing this Action’s code, the "onDBInsert" process of the given Entity will be executed.

Note that you can re-use config objects, e.g., if you want to create multiple similar datasets and the
config is the same except for the respective ID. The following example shows how to insert one Activity
dataset along with multiple ActivityLinks to various Projects.

MyTest_entity.testAction2b.onActionProcess

[l 1Ds of the projects ot be linked to the Actitvity

var projectlds = ["c702e624-6675-4841-ac98-38dal33alc5b",
"559646cf - dcbf-4171- b251-952ac2ab9100",

" 4436f 590- ladb- 466f - aad2- 2cba0174aad7",

"9c78b5a2- 36ee- 45dd- 9543-9099b78d28f 2",

"029e0150- 87bc- 4f 3a- 9d34- 7c455201f 246"] ;

/1l config for creating the Activity dataset
var config = entities.createConfigForAddi ngRows();
config.entity("Activity_entity");

/1 config for creating ActivityLink datasets
var configLink = entities.createConfigForAddi ngRows();
configLink. fiel dval ues({

"OBJECT_TYPE": "Sal esproject”

}
)

/1 field values for creating the Activity dataset
config.fieldVal ues({
"SUBJECT": subj ect,
"TYPE": "LETTER',
"ENTRYDATE": datetine.date().toString(),
/1 link to configLink object
"Links": [configLink]
}
)

/] createRow is executed nmultiple tines via a | oop
/'l each loop cycle with the same configLink object,
[l but with different projectld val ues

for (let projectld of projectlds) {

configLink. fiel dval ues({
"OBJECT_ROWD"': projectld
}

© 2025 ADITO Software GmbH 402 / 472

A

)
entities.createRowconfig);
}
Example 2:

Below you find an example code of a test Action that updates an existing Activity dataset.
MyTest_entity.testAction3a.onActionProcess

/1l creating the configuration object
var config = entities.createConfigForUpdati ngRows();

/1 name of the Entity
config.entity("Activity entity");

/1 mapping of the fields to be updated
config.fieldVal ues({
"SUBJECT": "My new Subj ect val ue",
"DIRECTION": "i"

DK

/1 UD of the dataset to be updated
confi g. ui d("38ch4f ab- 64f 9- 4d8e- aabf-a158d13fc978");

/'l execution nethod for updating a dataset
entities.updateRow(config);

After executing this Action’s code, the "onDBUpdate" process of the given Entity will be executed.

Also for updates, you can re-use config objects, e.g., if you want to update multiple datasets, with the
config being the same except for the respective ID. The following example shows how to set 3 different
Persons (identified by their CONTACTID) inactive.

MyTest_entity.testAction3b.onActionProcess

/] CONTACTI Ds of Person datasets to be set inactive

var contactldsToUpdate = ["4c9e95f e- 25ae-4875- bd84- 7b3705edd4f a",
"27596c¢b7-2211-429b- 801f - b428250496€8",
"6263b12a- b19c-4870- 97a4- 1f 044f e102e5"] ;

/1 one config for all changes
var config = entities.createConfigForUpdati ngRows();
config.entity("Person_entity");
config.fieldVal ues({
"STATUS": " CONTACTSTATI NACTI VE"

© 2025 ADITO Software GmbH 403 /472

A

1)

/'l updateRow is executed nultiple tines via a | oop,

/1l each loop cycle with the sanme config object,

/1 but with different CONTACTI D val ues

for (let idToUpdate of contactldsToUpdate) {
config.uid(idToUpdate);
entities.updateRow(config);

Example 3:
Below you find an example code of a test Action that deletes an existing Activity dataset.
MyTest_entity.testAction4.onActionProcess

/'l creating the configuration object
var config = entities.createConfigForDel etingRows();

/1 name of the Entity
config.entity("Activity_entity");

/1 UDof the dataset to be del eted
confi g. ui d("38ch4f ab- 64f 9- 4d8e- aa6f - a158d13f c978");

/1 execution nethod for deleting a dataset
entities.del eteRow(config);

Before (!) executing this Action’s code, the "onDBDelete" process of the given Entity will be executed.
Example 4:

Below you find an example code of a test Action that creates an Activity dataset, along with ActivityLink
datasets (linking the Activity to other Entities). As you can see, you can encapsulate multiple

configurations with WriteEntity.
MyTest_entity.testAction5.onActionProcess

/'l encapsul ated configuration for |inkl
var configLinkl = entities.createConfigForAddi ngRows() ;

/1 field nmapping
configLinkl. fiel dval ues({
[l "field" : "value"
"OBJECT_TYPE": "Person",
"OBJECT_ROW D': "c7ddf982-0e58-4152-b82b- 8f 5673b0b729"

1)

© 2025 ADITO Software GmbH 404 / 472

/1 encapsul ated configuration for |ink2
var configLink2 = entities.createConfigForAddi ngRows();

/1 field mapping
confi gLink2. fiel dval ues({
"OBJECT_TYPE": "Organisation”

"OBJECT_ROW D': "6ef b4f ab- 64f 9- 4d8e- aabf - a158d13f c273"

1)

/1l now create a new Activity with ActivityLinks

/1l creating the configuration object
var config = entities.createConfigForAddi ngRows() ;

/1 nanme of the Entity
config.entity("Activity entity");

//field mapping

config.fieldVal ues({
"SUBJECT": "My Linked Activity",
"INFO': "This is sone deno i nformation",
"Dl RECTION': "o",
"ENTRYDATE": datetine.date().toString(),
" CATEGORY": "MAIL",
/1 connect the configurations
/[l via Activity_entity's Consumer "Links"
"Links": [configLinkl, configLink2]

1)

/'l execution nethod for creating a new dat aset
var id = entities.createRowconfig);

/1 loggin the automatically created U D of the new dataset,

/1l e.g., "88aedfab-64f9-4d8e-aabf-al58d13fd132"
| oggi ng. log("ACTIVITYID: " + id);

After executing this Action’s code, the onDBInsert process of the given Entity will be executed.

H.3. Usage in server processes

A

LoadEntity and WriteEntity can also be used in server processes. However, if you use it there, a user

must be assigned. If required, simply create a "technical user" for that purposes, i.e., a user dataset

that is not related to a real person but only to be used by specific internal logic.

H.4. Skipping prevalidation

© 2025 ADITO Software GmbH

405 / 472

A

Every of the Entity configs provides the . ski pPr eval i dat i on(Bool ean) setter method. The
default value within the config is f al se. In this default state the changes get validated before the
Entity is saved. This prevents incomplete entries from being saved. If you set the value to true,

validations are performed when saving data.

Using this method may be necessary when writing or changing at lot of data via processes as it reduces

the number of validations and may lead to an increased performance.

o If you skip the prevalidation, you have to make sure your data is correct. Otherwise

it may fail validation checks and incomplete data might be saved.

A

Appendix I: RecordContainerCache

In order to increase the performance of your ADITO system for repetitive requests of the same data,

you can utilize a RecordContainerCache.

e In ADITO, a cache is always defined separately for each RecordContainer. It is neither

possible nor reasonable to cache simply "everything".

Only data generated by the RecordContainer can be cached, be it a

dbRecordContainer (including "expression" properties), or a jDitoRecordContainer,
o with its contentProcess. On the contrary, e.g., the data generated or retrieved by the

valueProcess of an EntityField cannot be cached (even if it interacts directly with the

database!), as the valueProcess is not a part of the RecordContainer.

1.1. Basics

Generally, it makes sense to implement a RecordContainerCache, if

® data are relatively static (i.e., they do not change permanently)

® the amount of data is overseeable.

o Therefore, caching is only possible for RecordContainers that are not
pageable.

® the same set of data is often requested, without any changes, and this is a problem for the

system.

o Example 1: The workload of the DBMS is unnecessary high, and the execution speed is
slowed down. If data have not changed, it is faster to load them from a cache than from

the database.

o Example 2: ADITO is connected to an external, public, open source web service. If data

have not changed, it is faster to load them from a cache than to utilize the web service.

Use cases in the xRM project are mostly helper lists, such as keywords, attributes, country-related data,
languages, definitions of classifications, currency lists, price lists (if they change only once in a few

months), district definitions, or other information related to any configurations.

Note that the usage of a cache itself consumes substantial system resources,
o particularly RAM. Therefore, a solid analysis of the users' behaviour (what data is
actually requested repeatedly by whom, and how often is this the case?) and the

amount of available RAM is required before deciding whether or not to utilize a

A

cache for a specific RecordContainer.

o SELECT COUNT queries are generally excluded from caching. Find more

information in chapter COUNT queries.

1.2. Setup

By default, a RecordContainer does not use a cache. To activate caching, 2 propertys of the
RecordContainer must be configured, which can be found in section "Cache" of the "Properties"

window:

® cacheType

® cacheKeyProcess

o As caching is not possible for pageable RecordContainers, these properties are only
present, if property "isPageable" is set to false.

Furthermore, there is a project property named maxEntryLifetimelnCache, in order to limit the lifetime

of a cache entry.

1.2.1. cacheType

The following cache types (scopes) are selectable:

® NONE: No caching. This is the default value for newly created RecordContainers.

® SESSION: This option is session-specific. One cache store is created separately for each user
(assuming that each user opens only one session). The cache store for user A will be different
from the cache store for user B. This is useful, if specific users often request specific data,

differently from other users.

® GLOBAL: This option creates a common (shared) cache store for all sessions/users logged into
the system. Example: If, for the first time, user A requests certain data, it will be loaded from the
database. If, at a later time, user B requests exactly the same data, it will be loaded from the
cache store instead of from the datbase - hence the loading process will be faster for user B and

all other users requesting the same data.
In most cases, scope GLOBAL fits best to the users' requirements - also in case you

utilize multiple languages (in this case, you only need to make sure that your

cacheKey includes the locale).

1.2.2. cacheKeyProcess

A

In principle, a cache store is a list of key-value pairs, with the key being a unique identifier and the value
being the set of requested data. Thus, the result of the cacheKeyProcess must be a unique key
representing the requested data. If, e.g., 2 times the same set of data is requested, then exactly the
same key must be generated. This enables caching: When a set of data is requested for the first time, it
is loaded from the database and saved in the cache store, along with the unique key. When, at a later
time, the same set of data is requested a further time, the RecordContainer first uses the same unique
key to check the cache store for data associated with this key - and if it is found, it is loaded from there,

not from the database.

The following factors influence the data generated by a RecordContainer and hence must be respected
when constructing the cache key:
1. Components that determine, filter, and restrict data:
o Lists of IDs to be included or excluded in the data query
o Filters (user filters, search filters, permission filters, etc.)

o Parameters evaluated in, e.g., the conditionProcess (dbRecordContainer) or

rowCountProcess/contentProcess (jDitoRecordContainer).
2. Components that influence data presentation:

o Language: Often relevant with RecordContainers, especially during translation of display

values (e.g., Keywords).
o Region: Can be significant in specific cases.
o Sorting

© Grouping

1.2.2.1. Helper functions

Although, in principle, you are free to construct the cache key as you like (as long as uniqueness is
ensured and as long as the same request for a specific set of data always results in the same cache key),

it is strongly recommended to utilize the specific helper functions provided by the ADITO platform:

The ADITO library "CachedRecordContainer_lib" (see, "process" > "libraries", in the project tree)
already includes a helper class named CachedRecor dCont ai ner Ut i | s that consists of several
helper functions. These functions return a key string that can be used as result of the cacheKeyProcess.
The helper functions read the values of various variables (lists of IDs, filter configurations, etc.) or
Parameters and integrate these values into the key. Examples: $| ocal . i dval ues,

$local . filters,or$param Onl yActi ves_param

If, at the time of the data request, a variable does not exist oder if it contains no value, its name is used

A

instead of the value - which contributes to the requirement to make the key string unique.
All variable values/names are concatinated using a dot (".").
The following helper functions exist:

e get Key is the basic function. It enables you to define the complete key by yourself (via
arbitrary variables as arguments) without the requirement to construct the string manually. In
practice, get Key is seldomly used directly in a cacheKeyProcess; rather, it is internally called by

the other helper functions (see below).

e get KeyW t hPr eset is used, if you want the cache key to respect all criteria that usually
influences data, e.g., specific IDs, filters, sortings, and groupings. get KeyW t hPr eset

internally calls function get Key, using the following arguments:

© (mandatory:) a predefined set of variables (= "preset"), to be specified via a constant
defined in class CachedRecor dCont ai ner Fi el dPr eset s (also part of

CachedRecordContainer_lib). In particular, the following constants are available:

m STANDARD: includes the variables $| ocal . i dval ues,
$l ocal . i dval uesExcl uded, $l ocal .filters,$l ocal . order, and
$l ocal . gr ouped.

m STANDARD W TH_LOCALE: includes all variables of constant STANDARD plus (if
present) the variable $sys. cl i ent | ocal e.

o (optionally:) an arbitrary number of additional variables

e get CommonKey internally calls function get KeyW t hPr eset , using the constant
STANDARD W TH_LOCALE (see above). Optionally, you can specify an arbitrary number of

additional variables as arguments.

These functions are well-documented: You can learn how to use them by reading
their JSDoc. Furthermore, you can learn how they construct the cache key string, by

inspecting their source code in the CachedRecordContainer_lib.

1.2.2.2. Examples in the xXRM project

Examples of the design of a cacheKeyProcess can easily be found, if you simply search the complete

XRM project for the string "CachedRecordContainerUtils.get".
Here is an example, used in the jDitoRecordContainer of Attribute_entity:

Attribute_entity.jDito.cacheKeyProcess

inport { result } from"@ditosoftware/jdito-types";

A

inport { CachedRecordContai nerFi el dPresets, CachedRecordContainerUtils } from "CachedRecordContainer_lib";

var key = CachedRecordContainerUtils. get ConmonKey(
"$param Attri but eCount _parant',
"$param Chi |l dI d_par ant',
"$param Chi | dType_par ant',
"$param Fil teredAttributel ds_parant,
"$par am Get Onl yFi r st Level Chi | dren_par ant',
"$par am | ncl udePar ent Recor d_par ant',
"$par am oj ect Type_par ant',
"$par am Par ent | d_par ant',
"$par am Par ent Type_par ant

)

result.string(key);

Another example can be found in the dbRecordContainer of ResourcePlanning_entity:
ResourcePlanning_entity.db.cacheKeyProcess

i mport { CachedRecordContainerUils } from"CachedRecordContainer |ib";
import { result } from"@ditosoftware/jdito-types";

var res = CachedRecordContai nerUtils. get ConmonKey(
"$param Or gani sati onCont act | ds_par ant',
"$par am Per sonCont act | ds_par an',
"$par am Resour ceQper ati onl ds_par ant'

)

result.string(res);

You can improve your understanding of the generation of the cache key by
debugging or logging the results of the cacheKeyProcesses of various
RecordContainers of the xRM project, in order to observe the generated key and its
structure. Simply play around with, e.g., the filter in the web client, and see how the
content of the key changes.

Furthermore, for testing purposes, you can also add (further) arguments to one of
the helper functions (see above), e.g., new variables or Parameters. Keep in mind
that the cache key will only change, if a variable/Parameter actually influences the

SQL statement that retrieves the data.

1.2.2.3. Logged example
Let’s, for testing reasons, include a logging in the dbRecordContainer of KeywordEntry_entity:

KeywordEntry_entity.db.cacheKeyProcess

import { CachedRecordCont ai nerFi el dPresets, CachedRecordContainerUtils } from "CachedRecordContainer_|ib";
inport { logging, result } from"@ditosoftware/jdito-types";

var res = CachedRecordContainerUils. get CormonKey(
"$par am Cont ai ner Narme_par ant',
"$param Bl ackl i st ds_parant,

A

"$param Onl yAct i ves_par ant',
"$param Wi tel i st1ds_parant,
"$par am Local e_par ant'
)
I ogging.log("------ > Keyword Entry (db) Cache Key: " + res);

result.string(res);

Furthermore, make sure that the logging of database queries is active (see chapter Logging).

Now, open Context "Keyword Entry" and define, e.g., the filter "Keyword Category equal AddressType".
Then apply the filter and watch the log. Among several other log entries, you should see

1. the key string generated by the cacheKeyProcess:

(b)) mmmmmemee > Keyword Entry (db) Cache Key: en_US. $l ocal . i dval ues. $l ocal . i dval uesExcl uded. {"type": "group”,
“operator”:"AND", "childs":[{"type":"row', "nane": " AB_KEYWORD CATEGORY_| D", "operator":"EQUAL", "val ue": " AddressType", "key": " 1f 70
0f d2- 5295- 43a9- 95ad- e73add4b5086", "cont ent t ype": "TEXT"}]}.{}. ____ $local .grouped. _____$param Cont ai ner Nane_param _____$param

.Blacklistlds_param fal se. $param Wi telistlds_param $param Local e_param

- See how the key consists of a mixture of variable/Parameter values (e.g., the filter
configuration) and variable/Parameter names (= names of variables/Parameters that do not exist

or do not have a value). All variable/Parameter names/values are separated by a dot (".").

2. the database query used to load the filtered data:

(...) SELECT AB_KEYWCRD ENTRY.TITLE , AB_KEYWORD_ENTRY. SORTING , AB_KEYWORD ENTRY. | SESSENTI AL , AB_KEYWORD_ENTRY. | SACTI VE ,
AB_KEYWORD_ENTRY. AB_KEYWORD_ENTRYI D , AB_KEYWORD_ENTRY. KEYI D , AB_KEYWORD_ENTRY. AB_KEYWORD_CATEGORY_ID , (sel ect
AB_KEYWORD_CATEGCRY. NAME from AB_KEYWORD_CATEGORY where AB_KEYWORD CATEGORY. AB_KEYWORD CATEGCRYI D = AB_KEYWORD_ENTRY

. AB_KEYWORD_CATEGORY_ | D) AS CATEGORY_NAME ~ FROM AB_KEYWORD ENTRY — WHERE AB_KEYWORD_ENTRY. AB_KEYWORD CATEGORY | D =

" 1f 700f d2- 5295- 43a9- 95ad- e73add4b5086' ORDER BY CATEGORY_NAME , AB_KEYWORD ENTRY. SORTI NG , AB_KEYWORD_ENTRY. TI TLE ,
AB_KEYWORD_ENTRY. AB_KEYWORD_ENTRYI D

Subsequently, load the same data again, simply by clicking on the "refresh" button of your browser.
Then, in the log, you can see the same key string again, but not the database query - which proofs that
the cache is effective, as the repeatedly requested data has been loaded from the cache store, not from
the database. Q.E.D.

1.2.3. Cache invalidation

In specific cases, it can be required to invalidate (= delete) the cache store (or parts of it) of a specific

Entity. In particular, this is required, in order to avoid

® outdated cache store entries

® allocation of too much memory (RAM)

ADITO includes various automatisms and manual options in order to perform a cache invalidation,

some of which refer to

A

® an individual cache store entry or
® the complete cache store of a specific RecordContainer or

® qall cache stores of all RecordContainers of a project

1.2.3.1. Automatic

1.2.3.1.1. RecordContainer-specific

The ADITO platform includes an automatic cache invalidation, which is executed whenever data is

changed (inserted, updated, or deleted) via a specific RecordContainer.

Example:

The dbRecordContainer of KeywordEntry entity caches all requests of keyword entries. Now, when,
e.g., the keyword entries of a specific keyword category have been cached (see the Logged example)
and later the user adds a further keyword entry refering to the same keyword category, then the cache
store of the dbRecordContainer of KeywordEntry_entity is outdated and must be refreshed - which is
automatically initiated by the ADITO platform: The cache is deleted, in order to load the fresh data from
the database (and cache it again), as soon as a user requests data of KeywordEntry_entity again. Thus,

the cache store is now refreshed and provides the correct data for further requests.

1.2.3.1.2. Timespan-related

maxEntryLifetimelnCache is a project-related property (see project tree: preferences >
PREFERENCES_PROJECT), which defines the amount of time an individual cache entry remains in any
cache store of any Entity. Here, you can optionally change the default value to a value more suitable for
your project. The property description explains the syntax, e.g., "1D 42M" means "1 day and 42

minutes".
This value needs to be set with great care:
The larger this time span is,

® the more data requests (cache store entries) are collected in the cache store, and thus the
higher ("wider") is the effect of the cache; but

® the more memory (RAM) is required, and

® the higher is the probability that the user works with outdated data (in cases when, by mistake,
there is neither an automatic nor a manual cache invalidation, see the other sub-chapters of this

topic)

The smaller this time span is,

A

® the less data requests (cache store entries) are collected in the cache store, and thus the lower

("narrower") is the effect of the cache;
® the less memory (RAM) is required, and

® the lower is the probability that the user works with outdated data (in cases when, by mistake,
there is neither an automatic nor a manual cache invalidation, see the other sub-chapters of this

topic)

Therefore, the value of maxEntryLifetimelnCache needs to be set strictly according to the usual
influencing factors, particularly
® the expected user behaviour, e.g.,
o the expected frequency of data changes;
o the expected kind and frequency of data requests;

® the memory (RAM) available for the ADITO system.

1.2.3.2. Manual

Besides the built-in automatic cache invalidation (see above), there are cases that require a manual

cache invalidation. In particular, these are cases in which

1. datais changed (inserted, updated, deleted) independent from the invalidation automatisms of
the RecordContainer. This happens, e.g., when the database is modified via direct SQL
statements (using, e.g., db. XXX methods or the SqlBuilder), instead of using the
RecordContainer-utilizing methods of "Write Entity" (see appendix chapter WriteEntity). A
common use case is the inserting, updating, or deletion of data via an importer, which (for
performance reasons) might use direct SQL statements.

2. the change of data of a specific Entity influences another (dependent) Entity. Example: If you add
a new keyword category via the KeywordCategoryEdit_view, then the cached list of available
keyword categories shown in the KeywordEntryEdit_view needs to be updated, in order to

include also the new keyword category (see code example below).

In these kinds of cases, method i nval i dat eCache(<name of Entity>, <name of RecordContainer>)
must be executed. Here is an example from the ADITO xRM project:

KeywordCategory_entity.db.onDBInsert.js
inmport { entities } from"@ditosoftware/jdito-types";

/ I dependeci es are updated so the cache needs to be updated
entities.invalidateCache("KeywrdEntry entity", "db");

A

If (in rare cases) it is required to invalidate all RecordContainerCaches of the complete project, simply
execute method i nval i dat eCache() without arguments. Here is an example from the ADITO xRM

project, where a specific server process uses this method call:
mark_cachedrecordcontainers_invalid_serverProcess.process.js
inmport { entities } from"@ditosoftware/jdito-types";

entities.invalidateCache();

1.3. Shared caching with multiple ADITO servers

If your system includes multiple ADITO servers, it would be negative, if each server used only its own
local cache store, independently from the cache stores of the other servers. In this case, server A had

no information what happens on server B, and vice versa.

Rather, a shared (remote) cache must be applied, by utilizing a remote cache server. This server makes
sure that all data requests in all sessions use one single (shared) cache store. (To be more precise:
Internally, every server still has a local cache, called "NearCache", in order to reduce latency for
accesses of the remote cache - but this architecture can be ignored here; it is enough to imagine the

remote cache server as providing one single cache store, shared between all sessions of all servers.)

Example:

Given, in a multi-server environment, a cache of type GLOBAL has been configured for the
RecordContainer of a specific Entity. User A logs in, which opens a session on, say, server A; user B logs
in, which opens a session on, say, server B. Now, if user A requests a specific set of data of the
respective Entity, then these data are loaded from the database and cached. Now, if every server used
its own local cache and user B, subsequently, requests the same set of data, then the data would,
again, be loaded from the database and cached a second time, this time on server B. If, however, the
ADITO system utilized a remote cache server, then the data requested by user A would be stored in the
shared cache store, and the (same) data requested by user B would be found and loaded from there -

not again from the database.

Using a shared cache only makes sense for caches of type GLOBAL. Caches of type
0 SESSION are always restricted to one single session, and caches of other sessions are
ignored, be they running on the same server or on other server - even if a remote

cache server is active.

Therefore, each managed ADITO cloud system, by default, comes with an alias for a pre-configured,
ready-to-use remote cache server. Its alias is named "RecordContainerCache" - see the AliasConfig

(double-click on system > default, after the tunnel has been established):

A

Projects xa L X
v dev-twtest4-c2-adito-cloud [ADITO xRM]

system

hl default lcon Config
N L Message Que...

Mosaico
Cloudservi...
Msgconvert
Plu

Editor Users Source Histo

RecordContainerCache
Remote Cac...
WorkflowModeler
Workflow Model...

{3} [iND @O0 0%

0
0
0
0
0
0
0

If this remote cache alias is not present yet, you need to add it first:

1. In the project tree, right-click on node "alias" and choose "New" from the context menu.

report
N language

2. A dialog named "Create New Model" appears. Here, type in a suitable name (e.g.,
"RecordContainerCache").

B Create New Model X

Project: dev-twtest4-c2-adito-cloud

Name: RecordContainerCache

Type: alias

3. A dialog named "Create AliasDefinition Model" appears. Here, select the type "Remote Cache".

A

W Create AliasDefinition Model X

& Database

' MS-Exchange (Webservice)

' IBM Lotus Domino (REST)

Telemetry
& Remote Cache

Cluster Messaging Cache

4. Deploy your project. Then, the new alias appears in the AliasConfig.

Now, check if the cache alias is set as value of the project property "recordContainerCachingAlias" (see
preferences > PREFERENCES_PROIJECT, in the project tree):

Projects X 4 PREFERENCES_PROJECT X
dev-twtestd-c2-adito-cloud [ADITO xRM]
system

preferences

! PREFERENCES_PROJECT projectName ADITO xRM
‘application : YSTEMALIAS

S
context SYSTEMALIAS
notificationtype v JDito
entity
dashboard jditoMaxContentSize 55M

Editor Source History

v System

renderer V¥ Recordcontainer Cache
process recordContainerCachingAlias RecordContainerCache
test

service v Cluster Messaging Cache

RecordContainerCache
report

language v Internationalisation
role

>
>
>
>
>
>
>
>
>
>
>
>

If it is not set yet,

1. set it now,
2. deploy your project,
3. restart the ADITO server,
4. re-establish the tunnel to your cloud system,
5. reconnect to your your system, in order to see the AliasConfig again.
Now, if you click on the cache alias in the AliasConfig, you can inspect its properties in the "Properties"

window. Here, you should see that the address of the cache server (properties "host" and "port") has

been set automatically:

RecordContainerCache_dev - Properties
v

type aliasConfig

comment Managed by ADITO cloud. Changes might be reverted

v =

v Address:

host adito-ignite.dev-twtest4-c2-adito-cloud.svc.cluster local
pert 47500

v Client

useClientNea...

maxLocalRec...

A

Workflow engi...
IndexSearch
Index Sear...
mailServerlMAP
Mailserver IMAP
VianagerBackend

Mosaico

Cloudservi..
Msgconvert

Plu
RecordContainerCache
Remote Cac...
WorkflowModeler
Warkflow Madel

This semi-automatic activation of a remote cache server only works for managed

ADITO cloud systems, as these systems by default come with a pre-configured,

e ready-to-use installation of a remote cache server. If, however, your system is an

unmanaged cloud system, you first need to order the transformation of your system

to a managed cloud system from ADITO.

ADITO does not offer support of integrating remote cache servers into "on premise"
g (not cloud-based) systems. Although, in principle, this is possible, the installation of
the cache server and its integration as remote cache server must be realized by the

customers themselves.

1.3.1. Alternative cache servers

By default, every managed ADITO cloud system comes with an installation of Apache Ignite as pre-

configured, ready-to-use remote cache server. (Besides, ADITO utilizes Ignite also as cluster messaging

server, see chapter Notifications with multiple ADITO servers.) In principle, you can also use other kinds

of remote cache servers, but their installation and integration is not supported by ADITO (besides

providing properties for the remote cache server’s host and port; see above).

https://ignite.apache.org/

A

Appendix J: EntityField/Keywords vs. Attributes

If you want to add flexible features to the datasets of an Entity (e.g., the color of a car, along with

selectable values "green", "red", "blue", etc.) you have, in principle, at least the following 2 options:

’

1. Add an additional EntityField (e.g., CARCOLOR), which consumes KeywordEntries (e.g., GREEN,
RED, BLUE), having a specific category (e.g. "CarColor").

2. Make the client-side setting of Attributes available, via an "Attribute" tab in the Entity’s
MainView, whose content is filled via a Consumers connected with Attribute_entity’s
corresponding Providers.

You may study and copy this technique at the example of Organisation_entity’s View
OrganisationAttributeRestriction_view (referencing AttributeRelationTree_view), whose content
is filled via several Consumers named "AttributeXXX", along with several Parameters (in
particular, ObjectRowld_param, and ObjectType_param). In the client, the result can be seen
and used in the upper part of tab "Attributes" of Context "Company"'s MainView.

Both approaches show advantages and disadvantages. Generally speaking, you should use

Attributes only, if
o their values are only used for displaying purposes, not for calculations;

o or used only for a low number of datasets.
Otherwise you are likely to run into performance issues.

This means, an additional EntityField with Keywords should be preferred, if the values of this

EntityField are not only to be displayed, but also used for evaluations, groupings, or complex filters.

In critical cases, it might be recommended to test the usability and performance of

both approaches before deciding about what approach to use in the live system.

Find more details in the following chapters.

J.1. EntityField/Keywords
Advantages:

® higher performance when used for evaluations, groupings, complex filters, etc.

® better "visibility", if no value has been set yet: When using Attributes, no "suggestions" are
shown, but you need to know in advance, what kind of feature can be assigned to a dataset -
while an EntityField is always visible and can therefore suggest the user to examine its values

and choose one.

A

® can be used in an index search (other than Attributes)
® can change its state (visible, mandatory, etc.), according to specific conditions (unlike Attributes)
® can be integrated in an ADITO Workflow

® The EntityField can be directly included in the access rights management (permissions); this
means, e.g., that you can configure it in a way that it is only visibile or editable for user having a

specific role.
Disadvantages:

® requires customizing - therefore, the effort for integrating and maintaining it, is higher

e if multiple Keyword-related EntityFields are used, the total number of EntityFields can get too

high, and the Entity therefore confusing to understand and to maintain

Conclusion:
An additional EntityField with Keywords should be preferred, if the values of this EntityField are not

only to be displayed, but also used for evaluations, groupings, complex filters, etc.
J.2. Attributes
Advantages:

® Once the general customizing is done (connection of the Entity with Attribute_entity, see above),

no additional customizing in the Designer required, but everything else can be done in the client:
o Arbitrary Attributes can be configured and maintained by the client administrator.
© Those configured Attributes can then be set by the client user.

® See "Disadvantages" of previous chapter.
Disadvantages:

® Low performance is likely if used for evaluations, groupings, complex filters, etc.

® see "Advantages" of previous chapter
Conclusion:
Attributes should only be preferred, if their values are

® only used for displaying purposes, not for evaluations, groupings, complex filters, etc.

® or only used for a low number of datasets.

A

Appendix K: Ssys variables

Ssys variables are visible within one client and are independent from a specific context. They are

typically used to store values that are used throughout the client, like global configurations, rights

management via sales areas, etc. Find more information in appendix JDito system modules and

variables.

Here is an overview of all Ssys variables:

Name: Ssys...

activeimage

activewindow

ancestorimageuid

calenderusers

clientcountry

clientdata

clienthome

clientid

clientlanguage

clientlocale

clientos

clienttemp

clientuid

clientvariant

clientversion

Description of return value

internal ID of the active top image (entity, report, mail)

internal ID of the active frame

ID of all currently opened frames

calender users

country of the client

DATA directory of the client. Visible with the variable SADITO_DATA

HOME directory of the client

ID of the client

language of the client

localisation of the client (e.g. "de_DE")

name of operating system of the client

temp directory of the client

UID of the client

language variant of the client

version of the client (e.g 2021.0.1)

content

currentcontextname

currententityname

currentimage

currentimagename

currentimagetype

datarow

datarowcount

datarowcountfull

date

dbalias

dynamicdate

extendedpattern

filter

filterable

groupable

groups

A

ID of the current selected record

name of the current Context

name of the current Entity

ID of the current image variable

name of the current image variable

type of the current image variable

condition of the current record without the keyword "where"

number of all datasets loaded in the RecordContainer (if so, respecting a
filter), up to the limit configured in the RecordContainer (see property
maximumDbRows)

number of all datasets (loaded or not) available via the RecordContainer (if
so, respecting a filter), ignoring the limit configured in the RecordContainer
(see property maximumDbRows)

system date as long

active database alias

system date as long

current pattern as executed

current selection of the frame. Object that includes: filter, .permission,

filterCondition, .condition (e.g. vars.get("Ssys.filter").filter)
boolean value stating whether or not the current View is filterable
boolean value stating whether or not the current View is groupable

current active groups

hasSelection

licenseid

operatingstate

order

origin

outsidelineaccess

pageable

parententity

parentuid

pattern

pendingpattern

preferencesid

presentationmode

recordstate

scope

selection

selectionRows

A

boolean value stating whether or not it a selection is used

ID of the license

current operatingstate of the Entity/View

order of the current records

origin of the URL

area code of the Provider (CTI)

boolean value stating whether or not the RecordContainer is pageable
name of the parent for the dependencies

UID of the parent for dependencies

current pattern as entered

returns the next pattern that will be executed

ID of the selected preferences if multiple choices are available
state of the current View/Entity

state of the single record in the current View/Entity

scope of the client

current selection (for Entity or index)

all rows of a selection

selections

serveraddress

serverdata

serverhome

serverid

serveros

serverport

servertemp

serverversion

staticdate

staticmillis

superframe

superframeid

superimage

superimageid

superimagetype

superwindowid

A

array as a multistring including the following information:
- [0] Static: part of the selection that was used to open the
Context/Entity/View

- [1] Designer: part that was coded in the Designer
- [2] search mask: part of search

- [3] dependency: connection to the record

- [4] extra: global search

address of the server (URL)

DATA directory of the server

HOME directory of the server

ID of the current system

operating system of the server

ports of the current server

TEMP directory of the server

version of the server

current date as long

current date in milliseconds

name of the upper frame

ID of the upper frame

name of the upper image

ID of the upper image

type of the upper image

ID of the upper window

tablescanbecreated

tablescanbedeleted

tablescanbeedited

tableselection

tableviewselection

timezone

today

uid

uidcolumn

user

useridletime

usertoken

validationerrors

viewmode

workingmode

workingmodebefore

save

A

boolean value stating whether or not records can be created in this Context
boolean value stating whether or not records can be deleted in this Context
boolean value stating whether or not records can be edited in this Context
condition for the seleceted table

structured condition

timezone of the current user

current day without any time as long

current UID of the record

UID column name of the record

username of the current user

idletime of the current user

token of the current user

string with the current validation errors

viewmode of the current component

current workingmode

workingmode that was active before a save action was triggered

A

Appendix L: Slocal variables

These system variables are only visible within specific processes and are mostly set by the ADITO core
to pass values into these processes. Find more information in appendix JDito system modules and

variables.

Here is a short list of selected Slocal variables (may be extended in future versions of this manual,

according to demand).

This list does not include Slocal variables that are explained in other chapters of this
manual. You will find them in the respective chapters, e.g. "Slocal.operator2" in

o chapter "FilterExtension", or "Slocal.value" in appendix "Accessing the value of an
EntityField".

When using a full-text search for a Slocal variable over this document, consider that,
for formatting reasons, some variable names include a line break, so you will find it
not via their full name (e.g., "Slocal.initialRowdata"), but only via the second part of

their name (e.g., "initialRowdata").

WARNING: Please do consider that this list is neither complete nor covering all
A cases. It contains only a few typical examples. Several Slocal variables have

different meanings/purposes in different processes.

Name: Slocal... Examples of Data type Examples of usage
return value

condition filter condition, e.g., String filterConditionProcess
"CONTACT.STATUS is of a FilterExtension;
null" groupQueryProcess of

a FilterExtensionSet

filter filter configuration object contentProcess of a
(see below) jDitoRecordContainer

idvalue IDs affected by a object affectedlds process of
change in an a
indexRecordContainer indexRecordContainer,

see chapter "Index for
'Global Search™

idvalues

initialRowdata

lookupFieldName

rawvalue

rowdata

uid

ID affected by a
changeina

jDitoRecordContainer

values of an Entity’s
dataset at initial
loading, i.e., BEFORE
the user has made

changes

(see below)

user input (e.g.,
selection in combo
box)

values of an Entity’s
dataset (if so) AFTER
the user has made

changes

identifier of a dataset
ina
dbRecordContainer
(see table in property
linkInformation >

column "Primary key"

in line marked as "UID

Table")

String

object with EntityField
names (as key) and

their initial values

String

String

object with EntityField
names (as key) and
their corresponding

values

String

In the following, find detailed explanations of selected variables:

L.1. Slocal.filter

Example of structure and content of variable Slocal.filter

[/ if afilter

{

"filter":

is set, it looks |ike this:

A

contentProcess of a

jDitoRecordContainer

onDBUpdate process
ofa

dbRecordContainer

FilterExtensionSet for

Attributes (see below)

filterConditionProcess
of a FilterExtension;
find details in chapter
"FilterExtension"

onDBdelete

onDBlnsert,
onDBUpdate,
onDBDelete

A

"type": "group",

"operator": "AND',

"childs": [

{

"type": "row',
"nane": "ACTI VE",
"operator": "EQUAL",
"val ue": "Ja",
"key": "true",
"contenttype": "TEXT"

]
b
"perm ssions": null,
"subset": null,

"ids": null
}
[/ if afilter is NOT set, it |ooks like this:
"filter": null),
"perm ssions": null,
"subset": null,
"ids": null
}

L.2. Slocal.lookupFieldName
® Availability:
This variable is available in the valueProcess of a Parameter of a Consumer.
e Content:

o If the Consumer is connected to an EntityField (= lookup), then the variable contains the

name of this EntityField.

o FilterExtensions and FilterExtensionSets can also use a Consumer for a lookup. In these

cases, the variable contains the name of the FilterExtensionField.

® Use case in XRM: FilterExtensionSet for Attributes: With some FilterExtensionFields, a Consumer
is used for the values. To inform the Consumer, which FilterExtensionField has been selected, the

name of the field is retrieved via Slocal.lookupFieldName.

A

Appendix M: Sproperty variables

Name: Examples of Data type Examples of usage

Sproperty.MY_FIELD... | return value

contentDescription String current

contentDescription

contentTitle String current contentTitle

contentType String current contentType

dropDown key + value Object result of a
dropDownProcess,

without it being
calculated anew. Via
the key, the displayed

value can be resolved.

iconld String current iconld
image current image
metadata current metadata
state current state
title String current title

titlePlural String current titlePlural

A

Appendix N: XML in JDito

This appendix is about working with XML in JDito. XML is short for eXtensible Markup Language, which
is a way to express various data in a structured form. XML consists of HTML-like tags and their
attributes, but those tags and attributes are not predefined, but rather defined by the developer. XML

is often used in APIs or webservices to exchange data in a defined format.

If you have the choice between using XML and JSON, you should always choose
0 JSON as it is native to JavaScript and JDito and it’s more lightweight in terms of
memory usage. Only use XML if an external API requires it and JSON is not an

option.

In JDito you have access to the XML and XMLList object, which can be imported like i nport { XM
} from"@ditosoftware/jdito-types";.Thisobject offers methods for building the XML
script in a builder-like way. It can also take a XML script as a string at instantiation to prefill the object
based on that. XMLList is used to represent an XML document containing multiple elements and XML is

used to represent one element.

Simple example:

import { XM., logging } from"@ditosoftware/jdito-types";

var xm Obj ect = new XM ("<xm >\
<elenentl attributel=" val uel'
attribute2="value2'> \
el ementl content \
</ el ement 1> \
<xm >");

| ogging.log("Elenentl content: " + xm Cbject.elementl + "\ nEl enentl
attributel: " + xm Cbject.elenmentl]"attributel”]);

To access the elements, the typical object notation is used. If you're dealing with simple XML scripts,
this is the preferred way. More complex XML scripts may require the usage of the XML object’s
methods like . chi 1 d(),. children() or.appendChil d() to build or process the XML. As an
XML element can contain further elements or even contain several elements having the same name,

.chi 1 d() returns an array of XML objects.

Example of reading an XML containing multiple children of the same name:

import { XML, logging } from"@ditosoftware/jdito-types";
[linitializing as object froma XM string

A

var xm Object = new XM.("<xm > \
<elenmentl attributel=" val uel'
attribute2="value2'> \
el ement1l content \
</ el ement 1> \
<elenmentl attributel=" val uel'
attribute2="value2'> \
el ementl content \
</ el ement 1> \
<elenmentl attributel=" val uel'
attribute2="value2'> \
el ement1l content \
</ el ement 1> \
<xmi >")

/[literating over the children of the XM. object
for(let child in xm Object.children())

{
| ogging. log("Content: " + child.text() + "\nAttribute 1: " +
child["attributel"] + "\nAttribute 2: " + child["attribute2"]);

}

Example of building a XML script:

import { XM.List, XM., logging } from"@ditosoftware/jdito-types";

/1l Task: A JSON object containing our data needs to be
/1 "converted" into an XM.. (Nanmes are chosen generically.)

var data = {

{
"attributel":"valuel”, "attribute2":"value2", "content":
"el enent content"”
}
’{
"attributel":"valuel”, "attribute2":"value2", "content":
"el enent content"”
}
’{
"attributel":"valuel”, "attribute2":"value2", "content":
"el enent content"”
}

1
[l preparing the main el ement of our XM

var xm ListQbj = new XM.Li st ("<data></data>"),

© 2025 ADITO Software GmbH 431 /472

A

/1 appendi ng children based on the content of your data JSON

for(let obj in data)

{

xm Li st Qbj . appendChi | d(new XM_("<el enentl attributel="" + obj
.attributel + "' attribute2="" + obj.attribute2 + "'> " + obj
.content + "</elenmentl1l>"));

}

/I checking the generated XML in the server |og

| oggi ng. l og(xm Li stQhj .t oXM.String());

Do no longer handle XML using the inline syntax (E4X), example:

A var nyXm = <el ement 1>
<el ement 2>My first text.</el enment2>

<el ement 3>My second text. </el enent 3>
</ el enent 1>;

© 2025 ADITO Software GmbH 432 /472

A

Appendix O: Car pool example: EntityFields

As the spelling of the EntityFields' names is essential for the function of the following code examples,

you can find the names of all car pool related EntityFields below, ready for "copy & paste".

Furthermore, the following tables indicate the preferable contentType of the EntityField, as well as the

data type of the corresponding database column.

Table 12. Car_entity

Name contentType Liquibase data type
availability BOOLEAN - (calc.)

CARID TEXT CHAR(36)
COLOR TEXT VARCHAR(36)
CURRENCY TEXT VARCHAR(36)
damages TEXT - (calc.)
LICENSEPLATENUMBER TEXT NVARCHAR(20)
MANUFACTUREDATE DATE DATE
MANUFACTURER TEXT VARCHAR(36)
mileage NUMBER - (calc.)
PICTURE IMAGE LONGBLOB
PRICE NUMBER DECIMAL(10,2)
TYPE TEXT NVARCHAR(30)
carValue NUMBER - (calc.)

Table 13. CarDriver_entity

A

Name contentType Liquibase data type
age NUMBER - (calc.)
CARDRIVERID TEXT CHAR(36)
CONTACT_ID TEXT CHAR(36)
drivingExperience NUMBER - (calc.)
DRIVINGLICENSENUMBER TEXT NVARCHAR(30)
DRIVINGLICENSEISSUEDATE DATE DATE
parkingTicketFinesSum NUMBER - (calc.)
speedingFinesSum NUMBER - (calc.)

Table 14. CarReservation_entity

Name contentType Liquibase data type
CAR_ID TEXT CHAR(36)
CARDRIVER_ID TEXT CHAR(36)
CARRESERVATIONID TEXT CHAR(36)
CURRENCY TEXT VARCHAR(36)
DAMAGE TEXT NVARCHAR(300)
ENDDATE DATE DATETIME
MILEAGERETURN NUMBER INT

mileageStart NUMBER - (calc.)

PARKINGTICKETFINE NUMBER DECIMAL(7,2)

A

Name contentType Liquibase data type
SPEEDINGFINE NUMBER DECIMAL(7,2)
STARTDATE DATE DATETIME

© 2025 ADITO Software GmbH 435 /472

Appendix P: ResourceTimeline example: Liquibase and code
P.1. Liquibase

A folder named resourceTimelineExample was created in the top level of the

Data_alias alias definition. You can adopt this or change it to your own chosen path.
Changelog:

<?xm version="1.1" encodi ng="UTF-8" standal one="no"?>

<dat abaseChangeLog xm ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi : schemaLocation="http://ww. | i qui base. org/ xni / ns/ dbchangel og http://ww. | iqui base. org/xn / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<include rel ativeToChangel ogFi | e="true" file="resTi neline_creates.xm"/>

</ dat abaseChangelLog>

Changeset:

<?xm version="1.1" encodi ng="UTF-8" standal one="no"?>
<dat abaseChangeLog xm ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi : schemaLocation="http://ww. | i qui base. org/ xni / ns/ dbchangel og http://ww. | iqui base. org/xn / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<changeSet author="" id="8e3865a8-6824-4ff 2- a5da- cd4351e674c7">
<createTabl e tabl eName=" EXAMPLERESOURCE" >
<col um nane="BUSI NESSHOURFROM' t ype="NVARCHAR(10) ">
<constraints nul | abl e="fal se"/>
</ col urm>
<col um nane="BUSI NESSHOURTO' type="NVARCHAR(10)">
<constraints null abl e="fal se"/>
</ col um>
<col um nane="CONTACT_I D' type="VARCHAR(36)">
<constraints nul |l abl e="fal se"/>
</ col utm>
<col um nane="EXAMPLERESOURCEI D' t ype="CHAR(36) ">
<constraints prinaryKey="true" primaryKeyNanme="PK_EXAMPLERESOURCE_EXAMPLERESOURCEI D'/ >
</ col urm>
<col um nane="DATE_NEW type="DATETI ME"/>
<col um nane="USER_NEW type="VARCHAR(36)"/>
<col umm name="DATE_EDI T" type="DATETI NE"/ >
<col um nane="USER_EDI T" type="VARCHAR(36)"/>
</ creat eTabl e>
<creat eTabl e t abl eName="EXAMPLEPLANNI NGENTRY" >
<col um nane="EXAMPLECOPERATI ON_| D' type="VARCHAR(36)" >
<constraints nul |l abl e="fal se"/>
</ col utm>
<col um nane="EXAMPLERESOURCE | D' type="VARCHAR(36)">
<constraints nul |l abl e="fal se"/>
</ col utm>
<col um nane="DATE_START" type="DATETI VE">
<constraints nul | abl e="fal se"/>
</ col urm>
<col um nane="DATE_END' type="DATETI ME">
<constraints null abl e="fal se"/>
</ col um>
<col utm nane="EXAMPLEPLANNI NGENTRYI D' t ype="CHAR(36)" >
<constraints prinaryKey="true" prinmaryKeyNane="PK_EXAMPLEPLANNI NGENTRY_EXAMPLEPLANNI NGENTRY! D"/ >
</ col utm>
<col umm name="DATE_NEW type="DATETI ME"/ >
<col um nane="USER_NEW type="VARCHAR(36)"/>
<col um nane="DATE_EDI T" type="DATETI ME"/>
<col um nane="USER_EDI T" type="VARCHAR(36)"/>
</ creat eTabl e>
<createTabl e tabl eName="EXAMPLEOPERATI ON' >
<col um nane="TI TLE" type="NVARCHAR(512)">
<constraints null abl e="fal se"/>
</ col um>
<col um nane="| NFO' type="NCLOB"/>
<col um nane=" EXAVMPLEOPERATI ONI D" type="CHAR(36) ">
<constraints primaryKey="true" primaryKeyNanme="PK_EXAVMPLEOPERATI ON_EXAMPLECPERATI ONI D"/ >

© 2025 ADITO Software GmbH 436 /472

A

</ col utm>
<col um nane="DATE_NEW type="DATETI ME"/>
<col um nane="USER_NEW type="VARCHAR(36)"/>
<col um nane="DATE_EDI T" type="DATETI ME"/>
<col um nane="USER_EDI T" type="VARCHAR(36)"/>
</ creat eTabl e>
</ changeSet >
</ dat abaseChangelLog>

P.2. Code

Code for DATE_NEW fields: valueProcess

inmport { result, neon, vars } from"@ditosoftware/jdito-types";

i f(vars.get("$sys.recordstate”) == neon. OPERATI NGSTATE_NEW && !vars. get ("$thi s.val ue"))
{

result.string(vars. get("$sys.date"));

}
Code for DATE_EDIT fields: valueProcess

import { result, neon, vars } from"@ditosoftware/jdito-types";

i f(vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_EDI T && !vars. get ("$this.val ue"))
{

result.string(vars.get("$sys.date"));

}
Code for USER_NEW fields: valueProcess

inmport { result, neon, vars } from"@ditosoftware/jdito-types";

i f(vars.get("$sys.recordstate”) == neon. OPERATI NGSTATE_NEW && !vars. get ("$this.val ue"))
{

result.string(vars.get("$sys.user"));

}
Code for USER_EDIT fields: valueProcess

import { result, neon, vars } from"@ditosoftware/jdito-types";

i f(vars.get("$sys.recordstate") == neon. OPERATI NGSTATE_EDI T && !vars. get ("$this.val ue"))
{

resul t.string(vars.get("$sys.user"));

}

Code for EXAMPLERESOURCEID, EXAMPLEPLANNINGENTRYID and EXAMPLEOPERATIONID fields;

valueProcess

A

import { util, vars, result, neon } from"@ditosoftware/jdito-types";

i f(vars.get("$sys.recordstate”) == neon. OPERATI NGSTATE_NEW && !vars. get ("this.value"))

{
result.string(util.getNewdUl D());

}

© 2025 ADITO Software GmbH 438 / 472

A

Appendix Q: Content types

For every EntityField, you need to select one of multiple content types, via property contentType. Some
of the content types have special options via additional properties, e.g., to limit the size of their input.
If the content is set via property contentTypeProcess, all additional properties are displayed; but still

only those of them are evaluated that belong to the respective content type.
Here is a list of available content types:
Table 15. Available values for property contentType

Content type Description
TEXT Sequence of strings, with the option to limit the size via property maxFieldSize

LONG_TEXT Similar to TEXT, but with the option to distribute the text to multiple lines (press
ENTER for new line)

NUMBER Numbers, with the option to limit the size via properties minValue, maxValue,
maxIntegerDigits, and maxFractionDigits. Via properties outputFormat and
inputFormat, a fixed format can be determined (not recommended for
international environments). There is an in-built validation, if the input is actually a
number: If you enter, e.g., letters or special characters, the save button is disabled,

and the message "Wrong number format" is shown.

DATE Date values, with the option to set the accuracy via property "resolution" (e.g.,
MONTH, DAY, or HOUR), which determines the function of the "Date picker". Via
properties outputFormat and inputFormat, a fixed format can be determined (not
recommended for international environments) - but be aware that still property

"resolution" determines the accuracy of saving the value.

HTML Allows input via a HTML editor, which saves an HTML string. You can limit the input
size via property maxFieldSize. Via property "htmlEditorFeatures" you can
determine if the editor should have only basic features, like font stylings, or also
advanced features, like tables.

Content type

IMAGE

TELEPHONE

EMAIL

LINK

PASSWORD

SIGNATURE

FILE

A

Description

Provides a component to upload an image, either via a file chooser or via drag &
drop. Can also show icons (VAADIN:*, NEON:*) or the colored placeholder icons
(TEXT:*). If the user chooses a file that is no image (.png, .jpg, etc.), no error
message is shown, but the component remains in default state, and nothing is
saved. The data type of the corresponding database colum must be selected
accordingly, e.g., LONGBLOB for MariaDB.

Provides an input field for a telephone number. After saving, the content is shown
with a hyperlink that leads to a computer telephone integration (cti). PLEASE NOTE:
There is no validation, if the input has a valid telephone number format. This has to
be done additionaly, via an onValidation process (see, e.g., EntityField
PHONE_ADDRESS of Employee_entity).

Provides an input field for an email address. After saving, the content is shown
with a hyperlink that leads to the standard email client of the user. PLEASE NOTE:
There is no validation, if the input has a valid email format. This has to be done

additionaly, via an onValidation process.

Provides an input field for a hyperlink. After saving, the content is shown with a
hyperlink that leads to the standard browser of the user. PLEASE NOTE: There is no
validation, if the input has a valid hyperlink format. This has to be done additionaly,

via an onValidation process.

Provides an input field for a password. During input, one asterisk is shown instead
of each character, and after saving, three asterisks are always shown,
independently from the actual length of the password. PLEASE NOTE: In the

database, the password is still saved in cleartext.

Provides an input field for a signature, to be written on a rectangular field with the
mouse pointer or with another suitable input device. The signature is saved as
base64 string (data:image/png;base64). The data type in the database should be
seleced accordingly, e.g., LONGTEXT for MariaDB.

Provides a file upload component that works both via a file browser and via drag &
drop. The file is saved as base64 string (data:image/png;base64). The data type in
the database should be seleced accordingly, e.g., LONGTEXT for MariaDB.

A

Content type Description

FILESIZE Provides an input field for entering the size of data, in Bytes. After saving, the

number will automatically be shown with a suitable unit, e.g., Byte, kB, MB, or GB.

BOOLEAN Provides a slider component for entering a boolean value. The slider on the left
position means "false", the slider on the right positioin means "true". In the ADITO
client, the corresponding values are, by default, shown as "No" (meaning "false")
or "Yes" (meaning "true"), whatever data type you may use for the corresponding
database column. Works with various data types, e.g., BOOLEAN, CHAR, VARCHAR,
INT, etc. Exception: If you set a decimal data type (e.g., DECIMAL(5,2)), the client

shows "0.00" instead of "No" ("false"), and "1.00" instead of "Yes" ("true").

FILTER_TREE Provides a button "Open extended filter conditions", which opens a popup
window, in which you can define extended filter conditions - just like the ones you
know from the filter component of a FilterView. Requires at least an empty filter to
be preset, e.g., via the valueProcess - see, e.g., EntityField FILTER of
TopicTreeTopicConfiguration_entity. Otherwise you get an error message,

explaining "The value of the node 'filter' is expected."

A

Appendix R: Siblings vs. refreshParent

The Entity parameter "siblings" and the Consumer parameter "refreshParent" both reflect the situation

that there are dependencies between 2 Entities.
Now, when to use Siblings and when refreshParent?

® Siblings are suitable for 2 Entities that are relatively similar, and you want to keep them updated

e refreshParent is the standard to be used for updating normal connections (e.g., parent-child)

Example:

If you work with multiple tabs that, e.g., all show tickets, then "siblings" refreshes all these tabs and
thus increases the server workload. Furthermore, the timer for the closing of the session is set back,
which increases the memory usage. When using refreshParent, however, only the effected tab/dataset

is updated, which thus is more performant.

A

Appendix S: LexoRank

If you are not interested in basics and background information, and you simply want
to know how to integrate LexoRank in an ADITO Context, you may skip the following

chapters and continue reading with chapter Example implementation.

S.1. Introduction

LexoRank is an algorithm used as core of a list ordering system. It originates in the software lJira,

developed by company Atlassian.

With LexoRank ("Lexo" stands for "Lexicographic"), an order of elements is established not by only
numbers (1 < 2 < 3<...9564739), but in an alphanumerical way, e.g.,

® a<b

® a<aa

® 3qa<ab

® 33aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa < aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab

® al<a2

® ala<alb

® etc.

This leads to lists that can be (re-)ordered arbitrarily by drag-and-drop, with the content of the sorting
fields being generated automatically, e.g.,

® Cii

S.2. Benefits

The benefits of LexoRank are, amongst others,

https://en.wikipedia.org/wiki/Jira_(software)
https://en.wikipedia.org/wiki/Atlassian
https://en.wikipedia.org/wiki/Lexicographic_order

A

1. to solve the performance problem that you can have with numerical ordering systems.

2. to simplify drag and drop.

S.2.1. Performance

Example:

Given a table with a numerical ordering system, using integers, e.g.:

Order | Name

1 Cat

2 Dog

3 Bird
4 Horse
5 Pig

If you now, e.g., want to drag "Cat" from the first position and drop it down to the position between
"Horse" and "Pig" you have the problem that there is no integer between 4 and 5. Therefore, you have

to re-index ("rebalance") almost all order fields:

Order | Name

1 Dog

2 Bird

3 Horse
4 Cat

5 Pig

While the rebalancing process is running, any changes (insert, delete, drag and drop) must be

completely disabled.

If you have very long tables, this requirement of frequent rebalancings can lead to substantial

A

performance issues. Instead, with LexoRank, you only need to calculate the order field value of the

moved row.

Example:

Given a table that uses LexoRank as (alphanumerical) ordering system, e.g.:

Order | Name

a Cat

b Dog

o Bird

d Horse
e Pig

If you now, e.g., want to drag "Cat" from the first position and drop it down to the position between
"Horse" and "Pig", the LexoRank algorithm only needs to calculate a suitable order field value for the

moved row, e.g., "di", while all other order field values remain unchanged:

Order | Name

b Dog
c Bird
d Horse
di Cat
e Pig

As you can see here, the problem that there is no letter between "d" and "e" is solved by introducing a
further digit and setting its value, e.g., to "di" (because d < di < e). This is not possible with numerical
ordering systems, as (in the above example), e.g., "45" is not a value between "4" and "5", but 4 < 5 <
45. (Allowing decimal numbers like "4.5" would only shift the problem, as, in practice, decimal numbers

usually have very limited decimal places.)

A

As you can see, the more digits you allow for your ordering field, the more powerful your ordering
system will be.

Still, in practice, you will have a parameter defining the maximum number of digits.
If this maximum is reached, a rebalancing will also be required, like it is for
numerical ordering systems (see above). In ADITO xRM, by default, rebalancing is
not integrated. Rather, the database field holding the order value usually is of data
o type VARCHAR(255), allowing 255 digits. Thus, the probability of running out of
digits is close to zero. (And, if the rare case of reaching the maximum should really
happen, drag-and-drop would not be disabled for the whole table, but only for cases

that require the generation of an ordering value that exceeds the maximum.)

S.2.2. Drag and drop

Formerly, in ADITO, enabling drag and drop required multiple additional fields, like ITEMSORT,
SORTINGLAYER, and SORTINGVALUE. Now, only one field is required, holding the LexoRank value (in
ADITO named LEXORANK). Thus, also the related code can be simplified significantly.

S.3. Further information

In this manual, LexoRank will not be explained in detail, as an internet search for the term will lead you
to various web sites with further information, e.g.,

® https://confluence.atlassian.com/adminjiraserver/managing-lexorank-938847803.html

https://tmcalm.nl/blog/lexorank-jira-ranking-system-explained/

https://lexorank.richardboeh.me/

https://medium.com/whisperarts/lexorank-what-are-they-and-how-to-use-them-for-efficient-
list-sorting-a48fc4e7849f

https://medium.com/turkcell/lexorank-managing-sorted-tables-with-ease-f404f7eb00a9

S.4. Usage in ADITO

There are several reference implementations inspired by LexoRank, with lexorank4j being the wrapper
used in ADITO, particularly simplifying drag and drop in ViewTemplates of type TreeTable. Although, in
the strict sense, the term "LexoRank" is restricted to the algorithm included in Jira, it is used in the
broader sense in this documentation - meaning any algorithm that follows the same principles as
LexoRank in Jira.

LexoRank was introduced in ADITO mainly as ordering system that simplifies drag and drop in

TreeTables (e.g., in the "Offeritem" Context). Besides, performance could be optimized, e.g., in the

https://confluence.atlassian.com/adminjiraserver/managing-lexorank-938847803.html
https://tmcalm.nl/blog/lexorank-jira-ranking-system-explained/
https://lexorank.richardboeh.me/
https://medium.com/whisperarts/lexorank-what-are-they-and-how-to-use-them-for-efficient-list-sorting-a48fc4e7849f
https://medium.com/whisperarts/lexorank-what-are-they-and-how-to-use-them-for-efficient-list-sorting-a48fc4e7849f
https://medium.com/turkcell/lexorank-managing-sorted-tables-with-ease-f404f7eb00a9
https://github.com/pravin-raha/lexorank4j

A

"TopicTree" Context. The LexoRank functionality is mainly provided via the library "lexorank" of the
ADITO platform (core). The main function is the calculation of the value of an ordering field (i.e., an

additional EntityField, usually named "LEXORANK"), in the following cases:

1. Arow is added in the TreeTable. (This also works for other tables, like MultiEditTables, and for

Trees.)

2. Arow is moved in the TreeTable, via drag and drop.

Although the "lexorank" library includes powerful functionality, you still need some customizing, in

order to add LexoRank to your ADITO project (see chapter Example implementation).

S.4.1. Format

The format of the LexoRank values is a combination of

® the "bucket" number (0, 1, or 2 - see below)
® a 6-digit alphanumerical string, separated by a vertical bar, and followed by a colon

® optional further digits
Examples:

® "0|abc123:"

® "O|abc123:xy5".

Its maximum length is defined via the data type of the corresponding database column LEXORANK

(default: VARCHAR(255)) and via the property "maxLexoRankLength" of the corresponding Provider.

"Buckets" are used in the context of rebalancing. In the internet you can find various
explanations of LexoRank format, including the purpose of "buckets" - see, e.g.,
here.

S.4.2. Mainly used methods

In the customizing of ADITO applications, the following methods of library lexorank are mainly used:

e | exor ank. genNext (<current rank>):Generates the next rank from the provided
current rank. e.g. genNext (" 0] 000000: ") returns 0] 200000:

e | exor ank. m ddl e() : Returns the rank that is in between the min and the max rank.

An overview of the names and JSDoc of all methods of library lexorank is available,

as usual, via the autocompletion:

https://medium.com/turkcell/lexorank-managing-sorted-tables-with-ease-f404f7eb00a9

A

ank.middle ()) ;

(method) lexorank.between(pCurrent: string | number | boolean, pOther: string
| number | boolean): string

Current and pOther. e.g. between

after the current rank.

@return — the rank that's between pCurrent and pOther.

S.4.3. Rebalancing

The implementation of LexoRank in ADITO does not include rebalancing (see the corresponding note in
chapter Performance). However, on demand, rebalancing can be added according to the LexoRank
algorithm in Jira, as described, e.g., here. To enable this, the format of the LexoRank value, in ADITO,

already includes a preceding bucket number (see chapter Format).

S.5. Example implementation

In the following sub-chapters, the integration of LexoRank in ADITO will be explained using the example
of Context "Offeritem". Here, LexoRank is used for supporting the Views OfferitemFilter_view (with
ViewTemplate OfferitemsTreeTable) and OfferitemMultiEdit_view (with ViewTemplate
OfferitemsMultiEditTable). In the web client, you can find both Views subordinated to
OfferOfferitem_view, which in turn is a part of OfferMain_view.

The main purpose of introducing LexoRank here was not primarily performance, but the simplification

of drag and drop (see chapter Benefits with sub-chapter Drag and drop).

The naming has no technical reason. Nevertheless, you should keep to the naming
o conventions as given below, e.g., to name the central EntityField LEXORANK. This will
ensure consistency to existing LexoRank implementations and simplify orientation

for other developers.

https://confluence.atlassian.com/adminjiraserver/managing-lexorank-938847803.html

A

S.5.1. Introduce new database column LEXORANK

The first step, when integrating LexoRank, is to introduce a new database column named LEXORANK,
with data type VARCHAR(255). (255 is the current default size/length for LEXORANK in ADITO. This
value can be changed on demand. Anyway, it must match the property maxLexoRankLength of the

related Provider - see sub-chapter Set sorting properties.)

You may use the following Liquibase snipped in your changelog:

<changeSet author="j.smth" id="256ddeb8-292f-456d-99b6-9e75d5305ab5" >
<addCol umm t abl eName=" OFFERI TEM' >
<col um nane="LEXORANK" type="VARCHAR(255)"/>
</ addCol um>
</ changeSet >

Depending on whether there already is another ordering system in your application (e.g., based on
fields like ITEMSORT etc.), you may include a suitable "sql" tag in your Liquibase changeset, in order to

enable a smooth transfer to LexoRank, keeping the current order. Example:

<changeSet author="j.snith" id="256ddeb8-292f-456d- 99b6- 9e75d5305ab5" >
()

<sql > updat e OFFERI TEM set LEXORANK = CONCAT (CONCAT (CONCAT (CONCAT (CONCAT ('O]i', floor (I TEMSORT / 1000) % 10), fl oor
(I TEMBORT / 100) %10), floor (1 TEMSORT / 10) %10), I|TEMBORT %10), '0:') </sql>

</ changeSet >

S.5.2. Introduce new EntityField LEXORANK

The next (and main) step is to introduce and configure a new EntityField named LEXORANK (here: in

Offeritem_entity), leaving all properties in default state (contentType remains TEXT), except for

® title: LexoRank
® valueProcess: see below

® RecordFieldMapping: Connect the EntityField LEXORANK with the corresponding database
column LEXORANK, as usual.

S.5.3. Set valueProcess

Set the valueProcess of EntityField LEXORANK as follows:

A

i f (neon. OPERATI NGSTATE_NEW == vars. get ("$sys.recordstate”) &% Utils.isNull O EnptyString("$this.value"))
{
I et |astLexorankUnder Parent = newSel ect (" MAX(OFFERI TEM LEXORANK) ")
. fron(" OFFERI TEM')

. wher e(" OFFERI TEM ASSI GNEDTO', vars. get (" $fi el d. ASSI GNEDTO'))
cell();

resul t.string(lexorank. genNext (| ast LexorankUnder Parent));

The above valueProcess code is simple and universal to use. In the original
o Offeritem_entity, the valueProcess of EntityField LEXORANK uses a Parameter
named MetaData_param, which retrieves additional information about the parent

item. As this is not required for LexoRank itself, we can ignore it here.

S.5.4. Set sorting properties

In the Provider that is consumed in the Context holding the superordinated View (in our example, this

is Offeritem_entity’s Provider "Offerltems") set the following properties:

® sortingField: LEXORANK
® sortingMethod: LEXORANK

® maxLexoRankLength: 255 (This is the current default value in ADITO. It can be changed on
demand. Anyway, it must match the size/length given in the data type of the corresponding
database column LEXORANK, see sub-chapter Introduce new database column LEXORANK.)

Only a TreeTable should access this Provider. As the ViewTemplate MultiEditTable
does not support it, Offeritem_entity has 2 Providers - one for TreeTable and one for

o MultiEditTable. (Otherwise, MultiEditTable would override the LexoRank with a
simple sorting 1,2,3...).

S.5.5. enableDragAndDrop

In the TreeTableViewTemplate, make sure property "enableDragAndDrop" is set to true.

S.6. Further examples

Besides Offeritem, you can find further LexoRank implementation examples in ADITO xRM, e.g., in the
following Contexts:

® Orderitem: see OrderMain_view > OrderOrderitem_view > OrderitemFilter_view > Treetable

® TopicTree: see TopicTreeFilter_view > treeTable

® ResourceOperationTask (from ADITO version 2024.2.2):

o see ResourceOperationTaskTemplateMain_view >

ResourceOperationTaskFilterAddFromTemplateAction_view > TreeTable

o see ResourceOperationMain_view > ResourceOperationTask_view >
ResourceOperationTaskFilterPlannedDrawer_view > TreeTable

A

Appendix T: Trainee example

In the following you can find the files you need to prepare the "Trainee" example that is used to explain

the configuration of a FilterExtensionSet.

T.1. Extending the changelog.xml files

In the project tree, under alias > Data_alias, create a new folder named "trainee". Then create the

following new changelog file in the folder "trainee".

alias/Data_alias/trainee/changelog.xml

<?xni version="1.1" encodi ng="UTF-8" standal one="no"?>
<dat abaseChangeLog xm ns="http://ww. | iqui base. org/ xnl/ns/ dbchangel og"

Then add a reference to the new changelog.xml file in the "master" changelog.xml file:

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"”

xsi : schemaLocation="http://ww. | i qui base. org/ xni / ns/ dbchangel og http://wmv. | i qui base. org/ xni / ns/ dbchangel og/ dbchangel og- 3. 6. xsd" >
<include rel ativeToChangel ogFi |l e="true" file="create_trainee.xm"/>
</ dat abaseChangelLog>

alias/Data_alias/changelog.xml!

<?xm version="1.1" encodi ng="UTF- 8" standal one="no"?>

<dat abaseChangeLog xni ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og"

ext.xsd http://www | iquibase. org/xnl/ns/dbchangel og http://ww.|iquibase. org/xm /ns/dbchangel og/ dbchangel og- 4. 4. xsd" >

(..

xm ns:ext="http://ww.|iquibase. org/xn /ns/dbchangel og-ext"
xni ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schena- i nst ance"

xsi : schemalLocation="http://ww. | i qui base. org/ xm / ns/ dbchangel og-ext http://ww.|iqui base. org/xnl/ns/dbchangel og/ dbchangel og-

<include rel ativeToChangel ogFi |l e="true" file="../Loghistory_alias/changel og. xm "/>
)
<include rel ativeToChangel ogFil e="true" file="../Denodata_Data_alias/changel og. xm "/>

<include rel ativeToChangel ogFi | e="true" file="trainee/ changel og. xm "/>

</ dat abaseChangelLog>

T.2. Creating the database table

In the "trainee" folder, add the following file and name it "create_trainee.xml".

alias/Data_alias/trainee/create_trainee.xml!

<?xm version="1.0" encodi ng="UTF-8"?>

<dat abaseChangelLog xni ns="http://ww. | i qui base. or g/ xnl / ns/ dbchangel og"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xsi:schemalLocati on="http://wmv. | i qui base. org/ xnl / ns/ dbchangel og- ext
http://ww. | iqui base. org/ xn / ns/ dbchangel og/ dbchangel og- ext. xsd http://ww. | i qui base. or g/ xm / ns/ dbchangel og

http://ww. | i qui base. or g/ xnl / ns/ dbchangel og/ dbchangel og- 4. 1. xsd" >

<preCondi tions onFai | =" MARK_RAN'>
<not >
<t abl eExi sts tabl eNane="trai nee" />
</ not >
</ preCondi tions>
<creat eTabl e tabl eNanme="trai nee">
<col um name="TRAI NEEI D' type="CHAR(36)">
<constraints nullable="fal se" prinaryKey="true" />
</ col um>
<col um nane="Fl RSTNAME" type="VARCHAR(30)" />
<col umm nanme="LASTNAME" type="VARCHAR(30)" />

<col um def aul t Val ueConput ed="NULL" nane="BI RTHDAY" type="date"

xm ns:ext="http://ww. |iquibase. org/xnl/ns/dbchangel og-ext"

<changeSet author="p.dietl" id="a4d54535-7193-4148-b6b7-58624b5e05fd" >

© 2025 ADITO Software GmbH

452 / 472

<col um nanme="GENDER' type="VARCHAR(36)" />
<col um def aul t Val ueConput ed="NULL" nanme="GRADEENGLI SH' type="INT" />
<col um def aul t Val ueConput ed="NULL" name=" GRADEGERVAN' type="INT" />
<col um def aul t Val ueConput ed="NULL" name="GRADEVATH' type="INT" />
<col um def aul t Val ueConput ed="NULL" name="PI CTURE" type="LONGBLOB" />
<col um nanme="TYEAR' type="VARCHAR(50)" />
</ creat eTabl e>
</ changeSet >
<changeSet author="p.dietl" id="a4d54535-7193-4148-b6b7-58624b5e05f 7" >
<insert tabl eName="trainee">
<col um name="TRAI NEEI D' val ue="17c57879- 31f 0- 4ec3- b510- 8ef a414b6127" />
<col um FI RSTNAME" val ue="John" />
<col umm nane="LASTNAME" val ue="Smi th" />
<col um nane="BI RTHDAY" val ueDat e="1996- 05- 23" />
<col um nane="GENDER' val ue="ni" />
<col um nane=" GRADEGERVAN' val ueNuneric="3" />
<col um na CGRADEMATH' val ueNumeric="2" />
<col um nane="TYEAR' val ue="1" />
</insert>
<insert tabl eNane="trainee">
<col um name="TRAI NEEI D' val ue="19588327- 6191- 4a63- be40- 0ea617690f Of " />
<col um na FI RSTNAME" val ue="Luke" />
<col um nanme="LASTNAME" val ue="Taylor" />
<col um Bl RTHDAY" val ueDat e="2009- 01- 26" />
<col um nane="GENDER' val ue="nt" />
<col umm nane=" GRADEGERMAN' val ueNuneric="4" />
<col um name="GRADEMATH' val ueNuneric="4" />
<col um nane="PI CTURE" />
<col um nane="TYEAR' val ue="2" />
</insert>
<insert tabl eNane="trainee">
<col um name="TRAI NEEI D' val ue="633d69a4- a64b- 4356- a870- b55f blcef 10b" />
<col um nane="FlI RSTNAME" val ue="Anne" />
<col um nane="LASTNAME" val ue="MIler" />
<col um nane="BI RTHDAY" val ueDat e="2010- 04- 13" />
<col um na GENDER' val ue="f" />
<col umm nane=" GRADEENGLI SH' val ueNuneric="2" />
<col urm nane=" GRADEMATH' val ueNuneric="4" />
<col um nane="TYEAR' val ue="3" />
</insert>
<insert tabl eNane="trainee">
<col unmm nane="TRAI NEEI D' val ue="6539126d- 4a59- 413e- a468- 4bc36b5ae7f5" />
<col um nane="Fl RSTNAME" val ue="Thomas" />
<col um name="LASTNAME" val ue="Hiller" />
<col um nane="BI RTHDAY" val ueDat e="2008- 10-28" />
<col um nane="GENDER' val ue="nt" />
<col unmm nane=" GRADEENGLI SH' val ueNuneric="2" />
<col um GRADEMATH' val ueNumeric="1" />
<col um name="PI CTURE" />
<col um nane="TYEAR' val ue="2" />
</insert>
</ changeSet >
</ dat abaseChangelLog>

T.3. Executing a Liquibase update

Execute a Liquibase update on the "master" changelog.xml. After a few seconds, you should be able to

see the new database table "trainee" in the database editor of the ADITO Designer.

T.4. Creating the Entity

In the project tree, navigate to folder "entity" and create a new Entity named "Trainee_entity". Open

the "Source" tab of the new Entity and replace its content by the following .aod code:

entity/Trainee_entity

<?xm version="1.0" encodi ng="UTF-8"?>
<entity xm ns="http://ww.adito.de/ 2018/ ao/ Mbdel " xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Scherma- i nst ance" VERSI ON="1.4.0"
xsi : schemalLocati on="http://ww. adi t 0. de/ 2018/ ao/ Model adito://nodel s/ xsd/entity/1.4.0">

<nane>Trai nee_enti ty</ nane>

<maj or Mbdel Mode>Dl STRI BUTED</ maj or Mbdel Mode>

© 2025 ADITO Software GmbH 453 / 472

<i con>VAADI N: GAMEPAD</ i con>
<contentTitl eProcess>%adi toprj%entity/ Trai nee_entity/contentTitleProcess.js</contentTitleProcess>
<i conl d>VAADI N: ABACUS</ i conl d>
<recor dCont ai ner >db</ r ecor dCont ai ner >
<entityFiel ds>
<entityProvider>
<nane>#PROVI DER</ nanme>
</ entityProvider>
<entityProvider>
<nanme>#PROVI DER_AGGREGATES</ name>
<useAggregates v="true" />
</ entityProvider>
<entityFiel d>
<name>TRAI NEEI D</ nane>
<title>Traineeid</title>
<groupabl e v="fal se" />
</entityField>
<entityField>
<nane>GENDER</ nane>
<title>Gender</title>
<groupable v="fal se" />
<dr opDownPr ocess>%adi toprj % entity/ Trai nee_entity/entityfields/gender/dropDownProcess. js</dropDownProcess>
</entityField>
<entityFiel d>
<nane>F|I RSTNAVE</ nane>
<title>Firstname</title>
<groupabl e v="fal se" />
<mandatory v="true" />
</entityField>
<entityFiel d>
<name>LASTNAME</ nanme>
<title>Lastname</title>
<groupabl e v="fal se" />
<mandatory v="true" />
</entityField>
<entityField>
<name>Bl RTHDAY</ nanme>
<title>Birthday</title>
<cont ent Type>DATE</ cont ent Type>
<resol uti on>DAY</resol uti on>
<groupabl e v="fal se" />
</entityField>
<entityField>
<name>GRADEENGLI SH</ name>
<title>English</title>
<col or Process>%adi toprj % entity/ Trainee_entity/entityfields/gradeenglish/col orProcess.js</col orProcess>
<cont ent Type>NUMBER</ cont ent Type>
<maxlntegerDigits v="1" />
<maxFractionDigits v="2" />
<groupabl e v="fal se" />
</entityField>
<entityField>
<name>GRADEGERVAN</ nanme>
<title>German</title>
<col or Process>%adi toprj % entity/ Trai nee_entity/entityfiel ds/gradegerman/ col or Process.j s</col or Process>
<cont ent Type>NUMBER</ cont ent Type>
<groupabl e v="fal se" />
</entityField>
<entityFiel d>
<name>GRADEVATH</ nane>
<title>Math</title>
<col or Process>%adi toprj % entity/ Trai nee_entity/entityfields/grademath/col or Process.js</col or Process>
<cont ent Type>NUMBER</ cont ent Type>
<groupabl e v="fal se" />
</entityField>
<entityFiel d>
<nane>f ul | Nane</ nanme>
<title>Full Name</title>
<groupabl e v="fal se" />
<val ueProcess>%adi toprj % entity/ Trainee_entity/entityfields/fullnanme/val ueProcess.|s</val ueProcess>
</entityField>
<entityField>
<nanme>gr adeAver age</ name>
<title>Average G ade</title>
<col or Process>%adi toprj % entity/ Trainee_entity/entityfields/gradeaverage/ col orProcess.js</col or Process>
<cont ent Type>NUMBER</ cont ent Type>
<groupabl e v="fal se" />
<val ueProcess>%adi toprj % entity/ Trai nee_entity/entityfields/gradeaverage/val ueProcess. js</val ueProcess>
</entityField>
<entityActionFiel d>
<name>showOver al | Aver age</ nane>
<title>Show Overal| Average</title>
<onAct i onProcess>%adi toprj%entity/ Trainee_entity/entityfiel ds/showoveral|average/ onActionProcess.js</onActionProcess>
<i conl d>VAADI N: ABACUS</ i conl d>

© 2025 ADITO Software GmbH 454 [472

</entityActionFiel d>
<entityField>
<name>i con</ name>
<cont ent Type>l MAGE</ cont ent Type>
<groupabl e v="fal se" />
<val ueProcess>%adi toprj % entity/ Trai nee_entity/entityfields/icon/val ueProcess.js</val ueProcess>
</entityField>
<entityFiel d>
<nane>age</ nane>
<title>Age</title>
<groupabl e v="fal se" />
<val ueProcess>%adi toprj % entity/ Trainee_entity/entityfiel ds/age/val ueProcess.js</val ueProcess>
</entityField>
<entityField>
<nane>Pl CTURE</ name>
<title>Picture</title>
<cont ent Type>l MAGE</ cont ent Type>
<groupabl e v="fal se" />
<di spl ayVal ueProcess>%adi toprj % entity/ Trai nee_entity/entityfiel ds/picture/displayVal ueProcess.js</displayVal ueProcess>
</entityField>
<entityField>
<nanme>TYEAR</ nane>
<title>Year of training</title>
<groupabl e v="fal se" />
<dr opDownPr ocess>%adi toprj % entity/ Trai nee_entity/entityfields/tyear/dropDownProcess.js</dropDownProcess>
</entityField>
<entityConsumner >
<nanme>Keywor dGender s</ nane>
<dependency>
<nane>dependency</ name>
<entityNanme>KeywordEntry_entity</entityNane>
<fi el dName>Speci f i cCont ai ner Keywor ds</ f i el dName>
</ dependency>
<chi I dren>
<entityParaneter>
<name>Cont ai ner Nanme_par anx/ nanme>
<val ueProcess>
Y%aditoprj%entity/ Trainee_entity/entityfields/keywordgenders/children/containername_parani val ueProcess. j s</val ueProcess>
<expose v="fal se" />
</ entityParaneter>
</ children>
</ entityConsuner >
</entityFiel ds>
<r ecor dCont ai ner s>
<dbRecor dCont ai ner >
<nane>db</ nane>
<al i as>Data_al i as</al i as>
<recor dFi el dMappi ngs>
<dbRecor dFi el dMappi ng>
<name>Bl RTHDAY. val ue</ nane>
<recordfi el d>TRAI NEE. Bl RTHDAY</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dMappi ng>
<dbRecor dFi el dMappi ng>
<nane>F|I RSTNAME. val ue</ nane>
<recordfi el d>TRAI NEE. FI RSTNAME</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dMappi ng>
<dbRecor dFi el dMappi ng>
<nane>GENDER. val ue</ nane>
<recordfi el d>TRAI NEE. GENDER</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dvappi ng>
<dbRecor dFi el dMappi ng>
<nanme>GRADEENGLI SH. val ue</ nane>
<recordfi el d>TRAI NEE. GRADEENGLI SH</ recor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dvappi ng>
<dbRecor dFi el dMappi ng>
<name>GRADEGERMAN. val ue</ nane>
<recordf i el d>TRAI NEE. GRADEGERVAN</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dvappi ng>
<dbRecor dFi el dMappi ng>
<nanme>GRADEVATH. val ue</ nane>
<recor df i el d>TRAI NEE. GRADENMATH</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dMappi ng>
<dbRecor dFi el dMappi ng>
<nanme>LASTNAME. val ue</ nane>
<recordfi el d>TRAI NEE. LASTNAVE</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dMappi ng>
<dbRecor dFi el dMappi ng>

© 2025 ADITO Software GmbH 455 /472

<nanme>TRAI NEEI D. val ue</ nane>
<recordfi el d>TRAI NEE. TRAI NEEI D</ r ecor df i el d>
<isFilterable v="true" />
</ dbRecor dFi el dMappi ng>
<dbRecor dFi el dMappi ng>
<nanme>Pl CTURE. val ue</ nane>
<recordfi el d>TRAI NEE. PI CTURE</ r ecor df i el d>
</ dbRecor dFi el dMappi ng>
<dbRecor dFi el dMappi ng>
<nanme>TYEAR. val ue</ nane>
<recordfi el d>TRAI NEE. TYEAR</ recor dfi el d>
</ dbRecor dFi el dvappi ng>
<dbRecor dFi el dMappi ng>
<name>f ul | Nane. val ue</ nane>
<expressi on>
%adi toprj % entity/ Trai nee_entity/recordcontai ners/db/recordfiel dnappi ngs/ful | nane. val ue/ expressi on. j s</ expressi on>
</ dbRecor dFi el dvappi ng>
</ recor dFi el dVappi ngs>
<l'i nkl nfoormati on>
<l'i nkl nf or mati on>
<name>TRAI NEE</ nane>
<t abl eName>TRAI NEE</ t abl eName>
<pri mar yKey>TRAI NEEI D</ pri mar yKey>
<i sUl DTable v="true" />
<readonly v="fal se" />
</1i nkl nf or mati on>
</l'inkl nfornmation>
<filterExtensions>
<filterExtensionSet>
<nane>exanpl e_fil t er Set </ nane>

<filterFiel dsProcess>%aditoprj%entity/Trainee_entity/recordcontainers/db/filterextensions/exanple_filterset/filterFieldsProcess.js</f
ilterFieldsProcess>

<filterVal uesProcess>%aditoprj%entity/ Trainee_entity/recordcontainers/db/filterextensions/exanple_filterset/filterValuesProcess.js</f
ilterVal uesProcess>

<filterConditionProcess>%ditoprj%entity/Trainee_entity/recordcontainers/db/filterextensions/exanple_filterset/filterConditionProcess
.js</filterConditionProcess>
<i sG oupabl e v="true" />

<groupQuer yProcess>%adi toprj % entity/ Trai nee_entity/recordcontainers/db/filterextensions/exanple_filterset/groupQueryProcess.js</group
Quer yProcess>
<filtertype>BASI C</filtertype>
</filterExtensionSet>
</filterExtensions>
</ dbRecor dCont ai ner >
</ recor dCont ai ner s>
</entity>

T.5. Creating Context and FilterView

In the project tree, navigate to folder "context" and create a new Context named "Trainee". Set the new

Context’s property "entity" to "Trainee_entity".

Create a new View for the "Trainee" context and name it TraineeFilter_view. Open the new View’s tab

"Source" and replace its content by the following .aod code:

context/Trainee/TraineeFilter_view

<?xm version="1.0" encodi ng="UTF-8"?>
<neonVi ew xm ns="http://ww. adi t 0. de/ 2018/ ao/ Model " xm ns: xsi ="htt p: // www. w3. or g/ 2001/ XM.Schema- i nst ance” VERSI ON="1. 2. 3"
xsi : schemalLocati on="http://ww. adi t 0. de/ 2018/ ao/ Mbdel adito://nodel s/ xsd/ neonVi ew 1. 2. 3">
<nanme>Tr ai neeFi | t er _vi ew</ nane>
<maj or Model Mode>Dl STRI BUTED</ maj or Mbdel Mode>
<filterable v="true" />
<l ayout >
<groupLayout />
</l ayout >
<chi I dren>
<t abl eVi ewTenpl at e>
<nane>t abl e</ nane>
<col ums>

© 2025 ADITO Software GmbH 456 / 472

<neonTabl eCol urm>
<nane>c37bea5c- ¢392- 4d15- 9f e6- cb78f de71f 44</ nane>
<entityFi el d>PI CTURE</ enti tyFi el d>
</ neonTabl eCol um>
<neonTabl eCol um>
<nanme>304b0639- 465d- 4bc3- 99af - cheae503061f </ nane>
<entityFi el d>i con</entityField>
</ neonTabl eCol um>
<neonTabl eCol urm>
<nanme>693f 9d93- a5af - 469c- 92d2- 40bf 803d4335</ nane>
<entityFiel d>ful | Name</entityFiel d>
</ neonTabl eCol um>
<neonTabl eCol urm>
<nane>11bc9624- 2e5e- 46f a- aalc- c589ele828be</ nane>
<entityFi el d>Bl RTHDAY</ enti tyFi el d>
</ neonTabl eCol um>
<neonTabl eCol urm>
<nane>29846123- c312- 4ec8- 9ald- b60b6084254a</ nane>
<entityFiel d>age</entityFiel d>
</ neonTabl eCol um>
<neonTabl eCol um>
<nane>4eaellf c- 78e6- 449b- b78e- 0261b4085921</ nane>
<entityFi el d>GENDER</ enti t yFi el d>
</ neonTabl eCol umn>
<neonTabl eCol urm>
<nane>8lbeca91l- 5f 97- 44f 6- b081- 2a6bb913ab6d</ nane>
<entityFiel d>TYEAR</ entityFiel d>
</ neonTabl eCol um>
<neonTabl eCol urm>
<nane>a99c5447- ef 47- 4d5e- bd77- 6346f bceeee6</ nane>
<entityFi el d>GRADEENGLI SH</ enti t yFi el d>
</ neonTabl eCol um>
<neonTabl eCol um>
<nane>e78f 0f 90- b82c- 455e- 85be- 091f deb46290</ nane>
<entityFi el d>GRADEGERVAN</ ent i t yFi el d>
</ neonTabl eCol um>
<neonTabl eCol um>
<nanme>b152e8f 8- aa70- 4b56- 9084- d86418227bde</ nanme>
<entityFi el d>GRADENMATH</ enti tyFi el d>
</ neonTabl eCol um>
<neonTabl eCol urm>
<name>70908d27- 330e- 4574- 986e- c645466627ad</ name>
<entityFi el d>gradeAverage</entityFiel d>
</ neonTabl eCol um>
</ col ums>
</t abl eVi ewTenpl at e>
<treeTabl eVi ewTenpl at e>
<nane>t r eet abl e</ nanme>
<col ums>
<neonTr eeTabl eCol utm>
<nane>ad9d3a2c- d14a- 4337- 86b0- 7df dc9dbc319</ nane>
<entityFi el d>PI CTURE</ enti t yFi el d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol utm>
<nanme>4e9dad95- ecc0- 4bdd- 8d4e- 43c73ddc3680</ nane>
<entityFiel d>i con</entityField>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol urm>
<name>22b9cc6d- df 6b- 4028- 9571- ¢3791f 813d31</ nanme>
<entityFi el d>ful | Name</entityFiel d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol utm>
<nane>a857676b- b6ed- 4bdf - aaec- c354176831a7</ nane>
<entityFi el d>Bl RTHDAY</ enti tyFi el d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol um>
<nanme>6763a5cd- 7f a3- 4ee7- 93b6- 0dcf af 8f ee94</ nanme>
<entityFi el d>age</entityFiel d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol utm>
<nane>091e3e63-f e3c- 4855- bd47- c3ef e97323dd</ nane>
<entityFi el d>GENDER</ enti t yFi el d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol urm>
<nane>b7356bb8- d671- 4755- 84e7- 41b4196af 971</ nanme>
<entityFi el d>TYEAR</ entityFiel d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol utm>
<nanme>d033c989- 85a3- 4346- b2f f - c9f c465c¢852d</ nane>
<entityFi el d>GRADEENGLI SH</ enti tyFi el d>
</ neonTr eeTabl eCol um>
<neonTr eeTabl eCol utm>
<name>c06f 06cb- 8f 8a- 4804- a315- d060f 61af 8d7</ nanme>
<entityFi el d>GRADEGERVAN</ enti t yFi el d>

© 2025 ADITO Software GmbH 457 / 472

</ neonTr eeTabl eCol um>

<neonTr eeTabl eCol utm>
<nane>f 9c9e994- ceed- 4451- bb55- 2209b974bedc</ nane>
<entityFi el d>GRADEVATH</ enti t yFi el d>

</ neonTr eeTabl eCol um>

<neonTr eeTabl eCol urm>
<nane>9ad174dd- 6913- 47df - 9981- 7f 2ec05e6342</ nane>
<entityFiel d>gradeAverage</entityFi el d>

</ neonTr eeTabl eCol urm>

</ col urms>
</ treeTabl eVi ewTenpl at e>
</ children>
</ neonVi ew>

Now, set the "Trainee" Context’s property "filterView" to "TraineeFilter_view".

T.6. Adding the Context to the Global Menu

In the project tree, open the menu editor (application > SYSTEM_APPLICATION_NEON) and add
the new Context "trainee" to the Global Menu. (You may create a new menu group for it, titled, e.g.,

"Trainee Management".)

Deploy, logout, and login to the web client. Open the new Context "Trainee". Now, you can continue

with chapter FilterExtensionSet.

A

Appendix U: Version history

Version

2024.1.1

2024.1

Changes

Chapter ResourceTimeline: New sub-chapter Specific color constants.

Minor grammatical optimizations.

New chapter on GridlLayout

New chapter on Slocal.rowdata and Slocal.initialRowdata in RecordContainer-

related processes

Chapter JDitoRecordContainer: Added prompts not to use $f i el d variables

in onlnsert/onUpdate/onDelete processes.

Chapter WriteEntity: Setter method . fi el dVal ues: Added info box on

nonexistent validation against value lists.
Various bugfixes, updates, rearrangements, and optimizations.

This is the official version of the Customizing Manual for ADITO version 2024.1.

A

Version Changes
2024.0 ® Updated chapter RecordContainers, including new introduction and new
chapter COUNT queries

® New appendix RecordContainerCache with extensive information about how
to utilize a cache in ADITO, including explanations regarding shared caching
with Apache Ignite (see chapter Shared caching with multiple ADITO servers)

® New chapter Notifications and observations, including explanations regarding
distributed notification management with Apache Ignite (see chapter

Notifications with multiple ADITO servers)

® |ncluded references to the new ADITO Information Document AID121
"Themes" in chapter Themes and in appendix Requirements for customized

Theme.

® New appendix Version history, including summaries of changes in previous
versions of this document. This appendix replaces the previous long table at
the beginning of the manual, which had forced the reader to scroll down a lot

of pages before reaching the table of content.
® Updated chapter Export (required entry in Dependency_lib)
® Minor bugfixes
® Minor linguistical refactoring

® This is the official version of the Customizing Manual for ADITO version 2024.0.

2023.1.1 ® Some refactoring to various code examples

® Added a reference to an example of a multi selection action to chapter Multi

Selection Action

2023.1 ® Chapter Assigning layout and ViewTemplates: Added description of how to

configure the content search bar (Context filter)
® New chapter Export
® New appendix Siblings vs. refreshParent

® Chapter Customized logging: Added "Tip" box recommending the optimal
parameter setting of JSON. stri ngi fy

® minor improvements and bugfixes

® This is the official version of the Customizing Manual for ADITO version 2023.1.

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf

A

Version Changes

2023.0 ® New chapter Sthis.value and Sfield.MYFIELD in valueProcess
® New chapter Visibility of tabs
® New chapter Field Groups
® Chapter JDitoRecordContainer:
o Bugfix in example code of property onUpdate
o Step-by-step example added
o Chapter Filtering a JDitoRecordContainer added
® New chapter Lookup for translated values
® Chapter Add Dashlets: Explanation of mandatory icon added

® Chapter Adding a LOGS tab extended by explanation of further useful custom

properties

® Chapter LoadEntity and WriteEntity: Warning box extended with respect to

performance
® New chapter Storing user-specific data outside ASYS_USERS
® New appendix Content types
® New chapter Paging
® New chapter Creating new project roles
® Chapter Retrieving pending records extended and improved

® Chapter about ViewTemplate Gantt extended, incl. description of property
"isSubstep"

® Chapter EntityRecordsRecipe, sub-chapter Usage in customized methods:

Added note box regarding usage of method . fil ter
® Chapter Configuring EntityFields:
o added warning regarding outputFormat
o added description of length-restricting properties
® Chapter FilterExtension: Included not regarding index

® Chapters FilterExtension and FilterExtensionSet: Extended explanations of

groupQueryProcess

A

Version Changes

2022.2 ® Chapter Adding a LOGS tab: Added a screenshot detailing where to find the
Auditmode of a table

® Code examples using SqlBuilder got updated to a more recent syntax.

(newsSelect)
® Corrected several typos and bugs in code examples

® Code example Person_entity.db.age.value.expression rebuilt using Sqgl helper

functions
® Added section Skipping prevalidation to Appendix Load/Write Entity

® changed "isSelectionAction" to new "selectionType" in Actions and

ActionGroups

® added description of expandRoot | t ens property to chapters Tree and
TreeTable

® added an info box to FilterExtension detailing the use of FilterExtensions and

FilterExtensionSets on RecordContainers without paging

® added detailed description and a simplified implementation example of the

new ResourceTimeline ViewTemplate ResourceTimeline

® This is the official version of the Customizing Manual for ADITO version 2022.2.

2022.1 ® Chapter Creating Entities: Warning box about not to overlook the refactoring
tab

® |nfo box about one [userDirectory] being generated for every ADITO version

(major/minor/hotfix).
® New chapter Adding an ATTRIBUTES tab
® New chapter Troubleshooting > Bug tracking
® New appendix about using XML in JDito
® Appendix chapter WriteEntity
o Bugfix in code examples

o Deprecated "for each" in code examples replaced by standard syntax
"“for...of" (ES2015)

® minor improvements and bugfixes

A

Version Changes

2022.0 ® New chapter Adding a LOGS tab
® New chapter Using gif files

® Extended description of RecordFieldMapping’s property [expression],
including an info box regarding its invalidity, if property "recordField" is set

® chapter What is JDito?: new warning box that system-reserved names must

not be used for variable naming

® chapter Configure Dashboard defaults updated regarding new Dashboard

editor

e chapter How does a "Sfield" variable get its value? extended by description of

criteria for the automatic loading/calculation of a field

® appendix LoadEntity: Description of effect if an empty Array is passed to setter
method ui ds

® chapter EntityRecordsRecipe: Description of effect if an empty Array is passed
to setter method ui dsl ncl udel i st

® chapter JDitoRecordContainer: EntityField named "UID" must always be

present
® new chapter Avatars
® chapter Themes: Description of how to view the available colors
® chapter Color: Effect on Avatars included

® chapter Internationalization: new sub-chapters User help and Validation of

address and communication data
® new chapter Device-specific designs
® new chapter Retrieving pending records

® chapter 360Degree Context updated and extended by referencing property
"documentation" of 360Degree_entity.

® bugfix in code of init_car.xml (values of MANUFACTUREDATE) - see chapter

Entering example data

® appendix WriteEntity extended by info box explaining the importance of
EntityField order when using method . f i el dVal ues

® new chapter explaining ViewTemplate Favorite

A

Version Changes

2021.2 ® new chapter EntityRecordsRecipe
® new chapter Dynamic filter values

® new chapter FilterBuilder; FilterBuilder included in code fragments (instead of
JSON)

® new chapter Prerequisites, explaining the prerequisites for reading this
manual, including a description of how to activate an extended Logging of

database access and JDito processes

® chapter Trigger, explaining the principles when the valueProcess of an

EntityField is being executed.

® chapter Configuring EntityFields: Reference to AID066 regarding max.

resolution/size of images

® chapter JDitoRecordContainer: Improved description of property

[hasDependentRecords]

® appendix Order of execution of Entity processes: Description of variable

"Slocal.modifiertype" in paragraph about property [onValueChange]

® chapter Calculated fields restructured and enhanced by remark regarding
"checking for null" in valueProcess, in order to avoid unintended overwriting

of existing values
® chapter Translate all extended by notes on settings required for DeepL API.
® reference to AIDO03 Design Guideline in chapter Controlling the design
® explanation of parameter [pOpeninNewTab] of method neon.openContext

® chapter Troubleshooting: New sub-chapter Low performance, referencing

AID066 Performance Optimization.

® chapter Connecting EntityFields with database columns (RecordContainer):
RecordFieldMapping: Renaming of uninitializing option: "Delete" - "Restore

Default Value"
® minor improvements and bugfixes

® This is the official version of the Customizing Manual for ADITO version 2021.2.

Version

2021.1.1

A

Changes

new chapter AggregateFields
new chapter Using database views
chapter Deploy extended by paragraph [Deploy_of a_single_model]

chapter Internationalization enhanced by including a reference to the DeepL

APl and to the corresponding chapter of the Designer Manual

This is the official version of the Customizing Manual for ADITO versions
2021.1.0 and 2021.1.1.

A

Version Changes
2021.0.3 ® chapter FilterExtension restructured and extended by subchapters describing
properties

o useConsumer/consumer

© groupQueryProcess
® chapter FilterExtensionSet extended by

O tip box describing how to relate to a Consumer

o info box mentioning property groupQueryProcess
® chapter Filter presets extended and improved

® chapters SingleDataChart and MultiDataChart: Description of new property
"colorField"

® chapter ViewTemplates: Description of properties common to multiple or all

ViewTemplates, including "maxDbRow", "title", and "entityField"

® chapter Liquibase update: New note box on emptying the server’s cache after

changes in the database structure

® chapter Grouplayout: Tip box on how to customize the list items of the View

selection button

® chapters Add Dashlets and MasterDetailLayout: New info box stating that

DashletConfigs are not available for Views having a MasterDetailLayout

® appendix "Create Liquibase files automatically" removed and transferred to
the Designer Manual (chapter "Plugin Liquibase")

® Refactoring because of updated wording:

o "Diff with DB tables" - "Diff Alias <> DB Table" (see chapter Updating
the Alias Definition)

© "nodes in the dbRecordContainer" - "RecordFieldMappings" (see
chapter Connecting EntityFields with database columns

(RecordContainer))

® chapter Connecting EntityFields with database columns (RecordContainer):
Description of requirement to initialize a RecordFieldMapping before being

able to configure it

® multiple notes of requirement to initialize an exposed Parameter (under a

Provider) before being able to configure it

Version

2021.0.1

A

Changes

® new chapters on

o new ViewTemplates Map and MultiEditTable
o new model type Renderers

new appendix EntityField/Keywords vs. Attributes, explaining the pros and

cons of each approach

new appendix Ssys variables with overview of all Ssys variables and their

purposes
new appendix Slocal variables with description of selected Slocal variables

description of Slocal variables extended in chapter JDito system modules and

variables
chapter FilterExtensionSet extended by names of Slocal variables

refactoring and extension of chapter Using keywords (predefined values),

because of new keyword data structure (category instead of container)
chapter FilterExtension: bugfix in example code for filterConditionProcess
chapter on ViewTemplate WebContent (IFrame) extended

reference to AID114 "Blueprints" included

description of property [hideContentSearch] included in chapter on

ViewTemplate Table

description of new configuration method "user" included in appendix on
LoadEntity and WriteEntity

minor improvements and bugfixes
version history table: hyperlinks to chapters added; formatting optimized

This is the official version of the Customizing Manual for ADITO version
2021.0.1.

Version

2020.2.2

2020.2.1

A

Changes

® chapter FilterExtension: new paragraph about examples in ADITO xRM;

extended description of variable $| ocal . conpari son

explanation of property [isLookupFilter]

new tip box regarding [zooming] the code in the Editor window

new example of [CarDriver_entity_contentTitleProcess] using "LoadEntity"
extended information in chapter Troubleshooting

new chapter [EnablingDemoData] covering control and danger of demo data in

Liquibase master changelog file

extended description of [contentTitleProcess] and LookupView
chapter System variables: paragraphs on Simage and Scomp removed
bugfix in initFilterProcess

explanation of the ViewTemplate Generic's property [hideEmptyFields]
tip box added explaining how to [deactivate] a displayValue at runtime
added info box regarding PreviewView in DatalessRecordContainer
minor improvements.

This is the official version of the Customizing Manual for ADITO version
2020.2.2.

new chapter DatalessRecordContainer
new chapter Blueprints
chapter Icons: new paragraph about how to find a suitable icon quickly

appendix LoadEntity and WriteEntity: new paragraph "Usage in server

processes"
further example of LoadEntity (loading 1 single row)
minor improvements

This is the official version of the Customizing Manual for the ADITO version
2020.2.1.

A

Version Changes

2020.2.0.1 ® new appendix LoadEntity and WriteEntity, along with warnings regarding

permissions to be ignored when using [SqlBuilder] and db.xxx methods
® reference to Reporting Manual in description of ViewTemplate Report
® note regarding setting of EntityField [ISESSENTIAL] (KeywordEntry_entity)
® minor improvements

® This is the official version of the Customizing Manual for ADITO version
2020.2.0.

2020.2.0 ® new chapters with description of ViewTemplates DynamicSingleDataChart and
DynamicMultiDataChart

e extended description and illustration of ADITO models and their Logical

hierarchy
® extended description of Deploy

® added example of calculating Person_entity.db.age.value.expression in the

expression process of the RecordContainer
® example code of FilterExtension improved
® minor improvements and bugfixes

® This is a beta version of the Customizing Manual for ADITO version 2020.2.0.

2020.1.3.1 ® Hotfix: refactoring CHAR(36) - VARCHAR(36) for AB_KEYWORD_ENTRY.KEYID
and corresponding EntityFields, including removal of calling autopad

functionality
® minor improvements

® This is the official version of the Customizing Manual for ADITO version
2020.1.3.

2020.1.3 ® Syntax of version number changed, in order to have a unique reference to the

corresponding ADITO version

® This is a beta version of the Customizing Manual for ADITO version 2020.1.3.

A

Version Changes

2.3 ® Added example code for form definition of ViewTemplate DynamicForm
® added short description of ViewTemplate Tiles
® refactoring KeywordRegistry_basic - KeywordRegistry _carPool

® minor improvements.

2.2 ® short notice regarding logging and debugging
® warning regarding usage of [openContext] in RecordContainer processes
® added chapter "Tree and TreeTable: Advanced explanations"

® significant extensions of chapters JDitoRecordContainer, SingleDataChart, and

MultiDataChart (see sub-chapters "Advanced explanations")
® refactoring SpellingGuidelines - AID001

e refactoring vars.getString(...) = vars.get(...), including revision of chapter

System variables, as vars.getString(...) is no longer required
® SALUTATION of driver added
® field name changed: DRIVINGLICENSEID - DRIVINGLICENSENUMBER

® chapter Example: Sum of fines: Note added regarding calculation of fines sum
via SQL

® minor improvements

® version for 2020.1.1

2.1 ® New chapters about FilterExtension and FilterExtensionSet;
® new chapter on Filter presets

® new chapters about ViewTemplates CardTable, DynamicForm, Lookup, and
Report

® warning regarding database [indices]; specifications for customized icons;

examples of database indices in Liquibase file create_carreservation.xml.xml|
® minor improvements

® version for 2020.1.0

Version

2.0

1.9

1.8

1.7

1.6

A

Changes

new appendix Accessing the value of an EntityField
new appendix Operating state vs. record state
new chapter Resetting Dashboards

chapter IndexRecordContainer extended by instructions on how to rebuild the

index

extended warnings of using the [valueProcess] or [displayValueProcess]

instead of the "expression" properties
minor improvements

version for 2020.0.2

Extended description of ViewTemplates SingleDataChart and MultiDataChart;

extended Liquibase documentation, including how to auto-generate Liquibase
files from existing database structure and content (see new appendix "Create

Liquibase files automatically)

database changes via Alias Definition
extended description of property "color"
appendix Checklist for new fields added
chapter Actions extended

minor improvements

new version for 2020.0.1

Refactoring SqlCondition - SqlBuilder

new appendix Requirements for customized Theme

minor further optimizations

new chapter 360Degree Context
warning of customizing [xRM_libraries]
new chapter Internationalization

new chapter QuickEntry

A

Version Changes
1.5 ® refactoring of wording: xRM-Basic - xRM
® bugfixes

® minor improvements

14 ® table and illustration fpr dependencies

® ER diagram of the ADITO xRM project’s core tables (along with their former

names, until ADITO 5) of carpool project
® new chapter [Colors]
® new tip box explaining [mass_edit] support

® various minor improvements and bugfixes

1.3 ® new appendix Order of execution of Entity processes

® bugfixes, minor improvements

1.2 ® new appendix Database Access

1.1 ® new chapter Layouts
® new chapter JDitoRecordContainer

® new chapter IndexRecordContainer

1.0 ® First release for ADITO version 2019.2.0

	Customizing Manual
	Character Formatting
	Index
	Preface
	1. Introduction
	2. Overview
	2.1. Structure of ADITO projects
	2.2. Logical hierarchy

	3. Prerequisites
	3.1. Documentation
	3.2. ADITO Web Client
	3.3. ADITO platform and xRM project
	3.4. ADITO database
	3.5. ADITO server
	3.6. Instance configuration
	3.7. Logging
	3.7.1. Predefined logging
	3.7.2. Customized logging
	3.7.3. Logging in "catch" section
	3.7.4. Debugging vs. temporary logging

	4. JDito
	4.1. What is JDito?
	4.2. How to use JDito
	4.3. Further information

	5. Core tables of the xRM project
	6. Modelling the data structure
	7. Creating Entities
	7.1. Configuring Entities
	7.2. Configuring EntityFields

	8. Creating database tables and columns
	8.1. Creating a folder for your xml files
	8.2. Creating an xml file for every table
	8.3. Including xml files in changelog
	8.4. Liquibase update
	8.5. Updating the Alias Definition
	8.6. Connecting EntityFields with database columns (RecordContainer)
	8.7. Using database views

	9. Making data visible
	9.1. Creating Contexts
	9.2. Views
	9.2.1. Creating Views
	9.2.2. Assigning layout and ViewTemplates
	9.2.3. Blueprints

	9.3. Extend the Global Menu
	9.3.1. Creating new project roles

	9.4. Deploy
	9.4.1. Practically
	9.4.2. Technically

	9.5. A first test
	9.5.1. Entering example data

	9.6. Dashboard and Dashlet
	9.6.1. Add Dashlets
	9.6.2. Configure Dashboard defaults
	9.6.3. Resetting Dashboards
	9.6.3.1. Reset of a "public" Dashboard
	9.6.3.2. Reset of a "private" Dashboard

	9.6.4. Creating new Dashboards

	10. Advanced functionality
	10.1. Consumer and Provider: Connecting Entities
	10.1.1. Example: Cars and car drivers in car reservations
	10.1.2. Example: Car drivers and Persons
	10.1.3. Retrieving pending records
	10.1.3.1. Basics
	10.1.3.2. Example 1
	10.1.3.3. Example 2
	10.1.3.3.1. EntityConsumerRowsHelper
	10.1.3.3.2. Implicit refreshing

	10.1.3.4. Further information

	10.2. Using keywords (predefined values)
	10.2.1. Example: Car colors
	10.2.2. Example: Manufacturers
	10.2.3. Example: Currency

	10.3. Controlling the displayed value
	10.3.1. displayValue of a RecordContainer field
	10.3.1.1. Example: Driver’s name
	10.3.1.2. Example: Manufacturer
	10.3.1.3. Example: Car color
	10.3.1.4. Example: Currency

	10.3.2. displayValueProcess of an EntityField
	10.3.2.1. Example: Car Color
	10.3.2.2. Example: Currency

	10.4. Complex dependencies
	10.4.1. MasterDetailLayout
	10.4.1.1. Example: Showing all reservations of a driver in the MainView
	10.4.1.2. Example: Showing all reservations of a car in the MainView

	10.5. Actions and ActionGroups
	10.5.1. Configuration
	10.5.2. Appearance
	10.5.3. Example: Reserve this car
	10.5.4. Example: Reserve car for this driver
	10.5.5. Multi Selection Action

	10.6. Calculated fields
	10.6.1. expression (RecordContainer)
	10.6.2. valueProcess (EntityField)
	10.6.2.1. Common use cases
	10.6.2.2. Warning
	10.6.2.3. Conditional execution
	10.6.2.4. Trigger
	10.6.2.5. Examples
	10.6.2.5.1. Example: Driving experience
	10.6.2.5.2. Example: Age
	10.6.2.5.3. Example: Sum of fines
	10.6.2.5.4. Example: Sum of damages
	10.6.2.5.5. Example: Mileage
	10.6.2.5.6. Example: carValue
	10.6.2.5.7. Example: Availability

	10.7. AggregateFields
	10.7.1. Appearance
	10.7.2. Configuration
	10.7.2.1. when using DbRecordContainer
	10.7.2.2. when using JDitoRecordContainer

	10.7.3. displayValueProcess of an AggregateField
	10.7.4. Usage in filter
	10.7.5. Usage in Consumer
	10.7.6. Properties allowing AggregateFields

	10.8. Field Groups
	10.9. Advanced filter options
	10.9.1. Dynamic filter values
	10.9.2. Filter presets
	10.9.2.1. FilterBuilder
	10.9.2.2. initFilterProcess
	10.9.2.3. neon.setFilter

	10.9.3. FilterExtension
	10.9.3.1. General example
	10.9.3.1.1. Creating a new FilterExtension
	10.9.3.1.2. General properties
	10.9.3.1.3. filterValuesProcess
	10.9.3.1.4. useConsumer/consumer
	10.9.3.1.5. filterConditionProcess
	10.9.3.1.6. groupQueryProcess
	10.9.3.1.7. supportsFilterExtensionGrouping

	10.9.3.2. Specific example task
	10.9.3.2.1. Creating a new FilterExtension
	10.9.3.2.2. Setting the FilterExtension’s properties

	10.9.4. FilterExtensionSet
	10.9.4.1. Example
	10.9.4.1.1. Creating Consumer for gender-related field
	10.9.4.1.2. filterFieldsProcess
	10.9.4.1.3. filterValuesProcess
	10.9.4.1.4. filterConditionProcess
	10.9.4.1.5. groupQueryProcess

	10.9.4.2. Further examples
	10.9.4.3. Available local variables
	10.9.4.4. useConsumer
	10.9.4.5. groupQueryProcess

	10.9.5. EntityRecordsRecipe
	10.9.5.1. Technical background
	10.9.5.2. General usage
	10.9.5.3. Usage in "openContextWithRecipe"
	10.9.5.4. Usage in "LoadEntity"
	10.9.5.5. Usage in customized methods
	10.9.5.6. $sys.selectionsRecordsRecipe
	10.9.5.7. Example: Notifications

	10.9.6. Context filter (content search)
	10.9.6.1. Availability
	10.9.6.2. Evaluation

	10.10. RecordContainers
	10.10.1. Database RecordContainer
	10.10.1.1. COUNT queries
	10.10.1.1.1. Purpose
	10.10.1.1.2. minimizeCountQueries
	10.10.1.1.3. Caching not required

	10.10.2. JDitoRecordContainer
	10.10.2.1. Introduction
	10.10.2.2. Advanced explanations
	10.10.2.3. Step-by-step example
	10.10.2.4. Filtering a JDitoRecordContainer

	10.10.3. IndexRecordContainer
	10.10.4. DatalessRecordContainer

	10.11. Tags
	10.12. Notifications and observations
	10.12.1. Basics
	10.12.2. Setup
	10.12.2.1. Manually triggered notifications
	10.12.2.2. Observation
	10.12.2.2.1. Observation of selected datasets
	10.12.2.2.2. Observation of filtered datasets

	10.12.3. Notifications with multiple ADITO servers

	10.13. Adding an ATTRIBUTES tab
	10.14. Adding a LOGS tab
	10.15. Adding Tasks
	10.16. Auto-generated Primary Keys
	10.17. PreviewMultiple
	10.18. Paging
	10.18.1. Paging with a DbRecordContainer
	10.18.2. Paging with a JDitoRecordContainer
	10.18.3. Further information

	10.19. Storing user-specific data outside ASYS_USERS
	10.20. Lookup for translated values
	10.21. Export
	10.21.1. Export of a subordinated Entity

	11. Controlling the design
	11.1. Themes
	11.2. Layouts
	11.2.1. NoneLayout
	11.2.2. DrawerLayout
	11.2.3. BoxLayout
	11.2.4. GroupLayout
	11.2.5. HeaderFooterLayout
	11.2.6. GridLayout
	11.2.6.1. Properties

	11.2.7. MasterDetailLayout

	11.3. ViewTemplates
	11.3.1. ActionList
	11.3.2. Actions
	11.3.3. Card
	11.3.4. CardTable
	11.3.5. DragAndDrop
	11.3.6. DynamicForm
	11.3.7. DynamicMultiDataChart
	11.3.8. DynamicSingleDataChart
	11.3.9. Favorite
	11.3.10. Gantt
	11.3.11. Generic
	11.3.12. GenericMultiple
	11.3.13. IndexSearch
	11.3.14. Lookup
	11.3.15. Map
	11.3.15.1. MapTiler
	11.3.15.2. General information on the required structure of map data sources
	11.3.15.2.1. Requirements
	11.3.15.2.2. Property "configField"
	11.3.15.2.3. URL
	11.3.15.2.4. Server flexibility

	11.3.16. SingleDataChart
	11.3.16.1. Overview
	11.3.16.2. Advanced explanations
	11.3.16.2.1. Properties
	11.3.16.2.2. Example

	11.3.17. MultiDataChart
	11.3.17.1. Overview
	11.3.17.2. Advanced explanations
	11.3.17.2.1. Properties
	11.3.17.2.2. Example

	11.3.18. MultiEditTable
	11.3.19. Picture
	11.3.20. Report
	11.3.21. ResourceTimeline
	11.3.21.1. Advanced explanations
	11.3.21.1.1. Important properties
	11.3.21.1.2. Outlining the Entities
	11.3.21.1.3. Example: Implementing the basic functions

	11.3.21.2. Specific color constants

	11.3.22. ScoreCard
	11.3.23. Signature
	11.3.24. Stepper
	11.3.25. Table
	11.3.26. Timeline
	11.3.27. Tiles
	11.3.28. TitledList
	11.3.29. Tree
	11.3.30. TreeTable
	11.3.31. Tree and TreeTable: Advanced explanations
	11.3.31.1. Important properties - Tree
	11.3.31.2. Important properties - TreeTable
	11.3.31.3. Building a Tree/TreeTable
	11.3.31.4. Examples
	11.3.31.4.1. Simple Tree of organizations and their persons

	11.3.32. WebContent (IFrame)
	11.3.32.1. Advanced explanations
	11.3.32.2. Common mistakes

	11.3.33. Further ViewTemplate types

	11.4. Renderers
	11.4.1. NUMBERFIELD
	11.4.2. BADGE
	11.4.3. MULTISELECTCOMBOBOX
	11.4.3.1. Basics
	11.4.3.2. Configuration
	11.4.3.3. Value format

	11.5. Device-specific designs
	11.6. Further design elements
	11.6.1. Icons
	11.6.1.1. Predefined icons
	11.6.1.2. Icons from user’s resources
	11.6.1.3. Variable icons
	11.6.1.4. Avatars
	11.6.1.5. Using gif files

	11.6.2. Client navigation helpers
	11.6.2.1. QuickEntry
	11.6.2.2. linkedContext

	11.6.3. Color
	11.6.4. Login web page

	11.7. Automatisms
	11.7.1. Visibility of tabs

	12. 360Degree Context
	13. Internationalization
	13.1. Language files
	13.1.1. Refresh
	13.1.2. Extract keys
	13.1.3. Find unused keys
	13.1.4. Export/import
	13.1.5. Translate all

	13.2. User help
	13.3. Validation of address and communication data

	14. Further information
	15. Troubleshooting
	15.1. Built-in Designer help
	15.2. ScanServices
	15.3. Bug tracking
	15.4. Specific problems
	15.4.1. Low performance
	15.4.2. Changes are not visible in the client
	15.4.3. New database structure is not accessible

	Appendix A: JDito system modules and variables
	A.1. System modules
	A.2. System variables

	Appendix B: Database Access
	B.1. Basic SQL Statement
	B.2. Commit after database changes
	B.3. SQL Helper Functions
	B.3.1. Example: contentTitleProcess of CarDriver_entity
	B.3.2. Example: valueProcess of EntityField availability
	B.3.3. Example: conditionProcess of CarReservation_entity’s RecordContainer
	B.3.4. Example: Driver’s name
	B.3.5. Example: Manufacturer

	Appendix C: Order of execution of Entity processes
	C.1. Load
	C.2. Save

	Appendix D: Requirements for customized Theme
	Appendix E: Checklist for new fields
	Appendix F: Accessing the value of an EntityField
	F.1. Synchronization
	F.2. How does an EntityField value get set?
	F.3. How does a "$field" variable get its value?
	F.4. $this.value
	F.5. $this.value vs. $field.MYFIELD
	F.6. $this.value and $field.MYFIELD in valueProcess
	F.7. $local.value
	F.8. $local.rowdata and $local.initialRowdata

	Appendix G: Operating state vs. record state
	Appendix H: LoadEntity and WriteEntity
	H.1. LoadEntity
	H.1.1. Benefits
	H.1.2. Example
	H.1.3. getRow vs. getRows

	H.2. WriteEntity
	H.2.1. Benefits
	H.2.2. Examples

	H.3. Usage in server processes
	H.4. Skipping prevalidation

	Appendix I: RecordContainerCache
	I.1. Basics
	I.2. Setup
	I.2.1. cacheType
	I.2.2. cacheKeyProcess
	I.2.2.1. Helper functions
	I.2.2.2. Examples in the xRM project
	I.2.2.3. Logged example

	I.2.3. Cache invalidation
	I.2.3.1. Automatic
	I.2.3.1.1. RecordContainer-specific
	I.2.3.1.2. Timespan-related

	I.2.3.2. Manual

	I.3. Shared caching with multiple ADITO servers
	I.3.1. Alternative cache servers

	Appendix J: EntityField/Keywords vs. Attributes
	J.1. EntityField/Keywords
	J.2. Attributes

	Appendix K: $sys variables
	Appendix L: $local variables
	L.1. $local.filter
	L.2. $local.lookupFieldName

	Appendix M: $property variables
	Appendix N: XML in JDito
	Appendix O: Car pool example: EntityFields
	Appendix P: ResourceTimeline example: Liquibase and code
	P.1. Liquibase
	P.2. Code

	Appendix Q: Content types
	Appendix R: Siblings vs. refreshParent
	Appendix S: LexoRank
	S.1. Introduction
	S.2. Benefits
	S.2.1. Performance
	S.2.2. Drag and drop

	S.3. Further information
	S.4. Usage in ADITO
	S.4.1. Format
	S.4.2. Mainly used methods
	S.4.3. Rebalancing

	S.5. Example implementation
	S.5.1. Introduce new database column LEXORANK
	S.5.2. Introduce new EntityField LEXORANK
	S.5.3. Set valueProcess
	S.5.4. Set sorting properties
	S.5.5. enableDragAndDrop

	S.6. Further examples

	Appendix T: Trainee example
	T.1. Extending the changelog.xml files
	T.2. Creating the database table
	T.3. Executing a Liquibase update
	T.4. Creating the Entity
	T.5. Creating Context and FilterView
	T.6. Adding the Context to the Global Menu

	Appendix U: Version history

