
Customizing Manual

ADITO Software GmbH

Version 2024.1.4 | 2025-03-04

This document is subject to copyright protection. Therefore all contents may only be

used, saved or duplicated for designated purposes such as for ADITO workshops or

ADITO projects. It is mandatory to consult ADITO first before changing, publishing or

passing on contents to a third party, as well as any other possible purposes.

Version Changes

2024.1.4 ● Chapter Debugging vs. temporary logging improved and enhanced.

● Chapter Liquibase update: Updated screenshot and text, including an

additional remark, regarding option "example".

● Bugfix: Names of various libs updated.

● References to AID123 Modularization included.

● Various minor optimizations.

2024.1.3 ● New chapter Context filter (content search), describing the behavior of the

content search bar, which is available in various ViewTemplates.

● Chapter FilterExtensionSet improved by example that is easier to understand.

● Chapter IndexRecordContainer reduced to a short introduction, followed by a

reference to AID093 Indexsearch, where all required information is included

now.

● Chapter Add Dashlets improved by 2 screenshots showing configuration of

property "fragment".

● Appendix LoadEntity and WriteEntity: New chapter getRow vs. getRows

● Appendix System variables improved by additional explanations to $global

variables and other system variable types.

● Bugfix in chapter Adding an ATTRIBUTES tab: Attribute_lib → AttributeUtil_lib

● Various minor optimizations.

Version Changes

2024.1.2 ● New chapter Adding Tasks.

● New sub-chapter on Renderer MULTISELECTCOMBOBOX.

● New sub-chapter Export of a subordinated Entity.

● New sub-chapter on variable $local.lookupFieldName.

● New appendix LexoRank, with reference in chapter TreeTable.

● Chapter Structure of ADITO projects: Added info box about modularization.

● Improved description of automatisms in the Database Recordcontainer, e.g., at

the end of chapter Connecting EntityFields with database columns

(RecordContainer).

● Improved description of adding an Observation.

● Various minor optimizations.

Summaries of changes in previous versions of this document can be found in appendix Version history.

Character Formatting

The following signs will point you to specific sections:

 Hints and notes.

 Tips and tricks.

 This is important!

 Warning! These actions are dangerous and can result in data loss!

The following font formatting applies:

Font type Meaning

Mask The mask, table or button to which the section refers

"Mask" Terms that originate from the system and that need to be emphasized in

the reading flow

code(); Code and program parts

Index

Character Formatting ___ 3

Preface ___ 15

1. Introduction ___ 15

2. Overview__ 17

2.1. Structure of ADITO projects __ 17

2.2. Logical hierarchy __ 19

3. Prerequisites___ 21

3.1. Documentation ___ 21

3.2. ADITO Web Client__ 22

3.3. ADITO platform and xRM project__ 22

3.4. ADITO database ___ 23

3.5. ADITO server ___ 26

3.6. Instance configuration __ 29

3.7. Logging __ 30

3.7.1. Predefined logging ___ 31

3.7.2. Customized logging ___ 32

3.7.3. Logging in "catch" section__ 33

3.7.4. Debugging vs. temporary logging __ 34

4. JDito ___ 35

4.1. What is JDito? __ 35

4.2. How to use JDito __ 36

4.3. Further information __ 37

5. Core tables of the xRM project __ 40

6. Modelling the data structure__ 44

7. Creating Entities __ 47

7.1. Configuring Entities __ 50

7.2. Configuring EntityFields ___ 53

8. Creating database tables and columns __ 57

8.1. Creating a folder for your xml files __ 58

8.2. Creating an xml file for every table __ 58

8.3. Including xml files in changelog ___ 60

8.4. Liquibase update __ 61

8.5. Updating the Alias Definition___ 65

8.6. Connecting EntityFields with database columns (RecordContainer) ________________________ 67

8.7. Using database views___ 69

9. Making data visible ___ 73

© 2025 ADITO Software GmbH 4 / 472

9.1. Creating Contexts__ 73

9.2. Views ___ 73

9.2.1. Creating Views __ 74

9.2.2. Assigning layout and ViewTemplates ___ 74

9.2.3. Blueprints __ 77

9.3. Extend the Global Menu __ 79

9.3.1. Creating new project roles ___ 80

9.4. Deploy __ 81

9.4.1. Practically __ 81

9.4.2. Technically__ 83

9.5. A first test __ 84

9.5.1. Entering example data __ 85

9.6. Dashboard and Dashlet ___ 87

9.6.1. Add Dashlets __ 87

9.6.2. Configure Dashboard defaults __ 89

9.6.3. Resetting Dashboards ___ 91

9.6.3.1. Reset of a "public" Dashboard___ 91

9.6.3.2. Reset of a "private" Dashboard __ 91

9.6.4. Creating new Dashboards__ 93

10. Advanced functionality ___ 94

10.1. Consumer and Provider: Connecting Entities ___ 94

10.1.1. Example: Cars and car drivers in car reservations ____________________________________ 98

10.1.2. Example: Car drivers and Persons___ 99

10.1.3. Retrieving pending records___ 100

10.1.3.1. Basics __ 100

10.1.3.2. Example 1___ 101

10.1.3.3. Example 2___ 102

10.1.3.3.1. EntityConsumerRowsHelper___ 103

10.1.3.3.2. Implicit refreshing___ 103

10.1.3.4. Further information ___ 104

10.2. Using keywords (predefined values) ___ 104

10.2.1. Example: Car colors___ 106

10.2.2. Example: Manufacturers___ 111

10.2.3. Example: Currency ___ 112

10.3. Controlling the displayed value ___ 112

10.3.1. displayValue of a RecordContainer field___ 112

10.3.1.1. Example: Driver’s name __ 114

© 2025 ADITO Software GmbH 5 / 472

10.3.1.2. Example: Manufacturer __ 115

10.3.1.3. Example: Car color __ 115

10.3.1.4. Example: Currency __ 115

10.3.2. displayValueProcess of an EntityField___ 116

10.3.2.1. Example: Car Color__ 116

10.3.2.2. Example: Currency __ 117

10.4. Complex dependencies ___ 118

10.4.1. MasterDetailLayout___ 118

10.4.1.1. Example: Showing all reservations of a driver in the MainView _______________________ 120

10.4.1.2. Example: Showing all reservations of a car in the MainView _________________________ 123

10.5. Actions and ActionGroups ___ 124

10.5.1. Configuration ___ 124

10.5.2. Appearance ___ 124

10.5.3. Example: Reserve this car __ 131

10.5.4. Example: Reserve car for this driver __ 133

10.5.5. Multi Selection Action___ 134

10.6. Calculated fields___ 135

10.6.1. expression (RecordContainer) __ 135

10.6.2. valueProcess (EntityField)__ 136

10.6.2.1. Common use cases ___ 136

10.6.2.2. Warning __ 137

10.6.2.3. Conditional execution ___ 137

10.6.2.4. Trigger ___ 138

10.6.2.5. Examples ___ 139

10.6.2.5.1. Example: Driving experience __ 139

10.6.2.5.2. Example: Age __ 139

10.6.2.5.3. Example: Sum of fines__ 142

10.6.2.5.4. Example: Sum of damages __ 145

10.6.2.5.5. Example: Mileage ___ 146

10.6.2.5.6. Example: carValue___ 147

10.6.2.5.7. Example: Availability ___ 148

10.7. AggregateFields ___ 152

10.7.1. Appearance ___ 152

10.7.2. Configuration ___ 152

10.7.2.1. when using DbRecordContainer ___ 152

10.7.2.2. when using JDitoRecordContainer__ 153

10.7.3. displayValueProcess of an AggregateField ___ 154

© 2025 ADITO Software GmbH 6 / 472

10.7.4. Usage in filter ___ 154

10.7.5. Usage in Consumer ___ 155

10.7.6. Properties allowing AggregateFields ___ 155

10.8. Field Groups __ 157

10.9. Advanced filter options ___ 158

10.9.1. Dynamic filter values__ 159

10.9.2. Filter presets __ 160

10.9.2.1. FilterBuilder ___ 160

10.9.2.2. initFilterProcess __ 167

10.9.2.3. neon.setFilter__ 168

10.9.3. FilterExtension __ 169

10.9.3.1. General example ___ 169

10.9.3.1.1. Creating a new FilterExtension ___ 169

10.9.3.1.2. General properties __ 169

10.9.3.1.3. filterValuesProcess __ 170

10.9.3.1.4. useConsumer/consumer ___ 170

10.9.3.1.5. filterConditionProcess ___ 171

10.9.3.1.6. groupQueryProcess ___ 173

10.9.3.1.7. supportsFilterExtensionGrouping___ 175

10.9.3.2. Specific example task__ 175

10.9.3.2.1. Creating a new FilterExtension ___ 176

10.9.3.2.2. Setting the FilterExtension’s properties __ 176

10.9.4. FilterExtensionSet __ 177

10.9.4.1. Example __ 177

10.9.4.1.1. Creating Consumer for gender-related field_____________________________________ 178

10.9.4.1.2. filterFieldsProcess ___ 178

10.9.4.1.3. filterValuesProcess __ 179

10.9.4.1.4. filterConditionProcess ___ 180

10.9.4.1.5. groupQueryProcess ___ 182

10.9.4.2. Further examples ___ 183

10.9.4.3. Available local variables__ 183

10.9.4.4. useConsumer __ 183

10.9.4.5. groupQueryProcess ___ 184

10.9.5. EntityRecordsRecipe __ 185

10.9.5.1. Technical background ___ 185

10.9.5.2. General usage ___ 185

10.9.5.3. Usage in "openContextWithRecipe" __ 186

© 2025 ADITO Software GmbH 7 / 472

10.9.5.4. Usage in "LoadEntity" ___ 188

10.9.5.5. Usage in customized methods___ 188

10.9.5.6. $sys.selectionsRecordsRecipe ___ 189

10.9.5.7. Example: Notifications ___ 190

10.9.6. Context filter (content search) __ 192

10.9.6.1. Availability __ 193

10.9.6.2. Evaluation___ 194

10.10. RecordContainers___ 195

10.10.1. Database RecordContainer __ 195

10.10.1.1. COUNT queries__ 195

10.10.1.1.1. Purpose __ 195

10.10.1.1.2. minimizeCountQueries __ 196

10.10.1.1.3. Caching not required ___ 196

10.10.2. JDitoRecordContainer __ 196

10.10.2.1. Introduction __ 196

10.10.2.2. Advanced explanations ___ 197

10.10.2.3. Step-by-step example __ 201

10.10.2.4. Filtering a JDitoRecordContainer __ 205

10.10.3. IndexRecordContainer ___ 206

10.10.4. DatalessRecordContainer ___ 207

10.11. Tags__ 209

10.12. Notifications and observations __ 211

10.12.1. Basics___ 211

10.12.2. Setup ___ 211

10.12.2.1. Manually triggered notifications __ 212

10.12.2.2. Observation __ 212

10.12.2.2.1. Observation of selected datasets __ 213

10.12.2.2.2. Observation of filtered datasets ___ 214

10.12.3. Notifications with multiple ADITO servers __ 214

10.13. Adding an ATTRIBUTES tab ___ 219

10.14. Adding a LOGS tab __ 221

10.15. Adding Tasks___ 227

10.16. Auto-generated Primary Keys ___ 232

10.17. PreviewMultiple__ 233

10.18. Paging__ 235

10.18.1. Paging with a DbRecordContainer __ 235

10.18.2. Paging with a JDitoRecordContainer___ 235

© 2025 ADITO Software GmbH 8 / 472

10.18.3. Further information ___ 236

10.19. Storing user-specific data outside ASYS_USERS _____________________________________ 237

10.20. Lookup for translated values __ 237

10.21. Export__ 238

10.21.1. Export of a subordinated Entity __ 240

11. Controlling the design ___ 241

11.1. Themes__ 242

11.2. Layouts __ 243

11.2.1. NoneLayout___ 243

11.2.2. DrawerLayout ___ 243

11.2.3. BoxLayout __ 244

11.2.4. GroupLayout __ 244

11.2.5. HeaderFooterLayout __ 245

11.2.6. GridLayout__ 245

11.2.6.1. Properties___ 246

11.2.7. MasterDetailLayout___ 246

11.3. ViewTemplates__ 247

11.3.1. ActionList___ 247

11.3.2. Actions __ 248

11.3.3. Card ___ 248

11.3.4. CardTable __ 249

11.3.5. DragAndDrop ___ 249

11.3.6. DynamicForm ___ 249

11.3.7. DynamicMultiDataChart ___ 251

11.3.8. DynamicSingleDataChart __ 252

11.3.9. Favorite __ 253

11.3.10. Gantt ___ 256

11.3.11. Generic ___ 257

11.3.12. GenericMultiple __ 258

11.3.13. IndexSearch__ 261

11.3.14. Lookup__ 261

11.3.15. Map __ 262

11.3.15.1. MapTiler___ 265

11.3.15.2. General information on the required structure of map data sources__________________ 266

11.3.15.2.1. Requirements ___ 266

11.3.15.2.2. Property "configField" __ 266

11.3.15.2.3. URL ___ 267

© 2025 ADITO Software GmbH 9 / 472

11.3.15.2.4. Server flexibility ___ 268

11.3.16. SingleDataChart __ 269

11.3.16.1. Overview __ 269

11.3.16.2. Advanced explanations ___ 269

11.3.16.2.1. Properties __ 270

11.3.16.2.2. Example__ 271

11.3.17. MultiDataChart ___ 275

11.3.17.1. Overview __ 275

11.3.17.2. Advanced explanations ___ 276

11.3.17.2.1. Properties __ 276

11.3.17.2.2. Example__ 278

11.3.18. MultiEditTable__ 280

11.3.19. Picture __ 281

11.3.20. Report __ 282

11.3.21. ResourceTimeline ___ 283

11.3.21.1. Advanced explanations ___ 284

11.3.21.1.1. Important properties ___ 284

11.3.21.1.2. Outlining the Entities ___ 286

11.3.21.1.3. Example: Implementing the basic functions ___________________________________ 288

11.3.21.2. Specific color constants ___ 295

11.3.22. ScoreCard ___ 296

11.3.23. Signature __ 297

11.3.24. Stepper ___ 297

11.3.25. Table ___ 303

11.3.26. Timeline __ 304

11.3.27. Tiles __ 304

11.3.28. TitledList __ 305

11.3.29. Tree __ 305

11.3.30. TreeTable__ 306

11.3.31. Tree and TreeTable: Advanced explanations ______________________________________ 307

11.3.31.1. Important properties - Tree __ 308

11.3.31.2. Important properties - TreeTable__ 309

11.3.31.3. Building a Tree/TreeTable ___ 310

11.3.31.4. Examples __ 311

11.3.31.4.1. Simple Tree of organizations and their persons _________________________________ 311

11.3.32. WebContent (IFrame) __ 313

11.3.32.1. Advanced explanations ___ 313

© 2025 ADITO Software GmbH 10 / 472

11.3.32.2. Common mistakes ___ 314

11.3.33. Further ViewTemplate types___ 316

11.4. Renderers __ 317

11.4.1. NUMBERFIELD___ 317

11.4.2. BADGE ___ 318

11.4.3. MULTISELECTCOMBOBOX__ 319

11.4.3.1. Basics __ 319

11.4.3.2. Configuration __ 320

11.4.3.3. Value format __ 321

11.5. Device-specific designs ___ 322

11.6. Further design elements __ 323

11.6.1. Icons __ 323

11.6.1.1. Predefined icons ___ 323

11.6.1.2. Icons from user’s resources ___ 324

11.6.1.3. Variable icons__ 325

11.6.1.4. Avatars ___ 326

11.6.1.5. Using gif files __ 329

11.6.2. Client navigation helpers __ 330

11.6.2.1. QuickEntry __ 330

11.6.2.2. linkedContext __ 330

11.6.3. Color __ 331

11.6.4. Login web page __ 333

11.7. Automatisms ___ 334

11.7.1. Visibility of tabs__ 334

12. 360Degree Context__ 335

13. Internationalization ___ 336

13.1. Language files___ 336

13.1.1. Refresh __ 336

13.1.2. Extract keys ___ 336

13.1.3. Find unused keys___ 337

13.1.4. Export/import ___ 337

13.1.5. Translate all ___ 337

13.2. User help __ 340

13.3. Validation of address and communication data ______________________________________ 340

14. Further information ___ 343

15. Troubleshooting __ 344

15.1. Built-in Designer help___ 344

© 2025 ADITO Software GmbH 11 / 472

15.2. ScanServices__ 345

15.3. Bug tracking __ 346

15.4. Specific problems__ 353

15.4.1. Low performance __ 353

15.4.2. Changes are not visible in the client__ 353

15.4.3. New database structure is not accessible ___ 355

Appendix A: JDito system modules and variables __ 356

A.1. System modules__ 356

A.2. System variables ___ 360

Appendix B: Database Access __ 364

B.1. Basic SQL Statement __ 364

B.2. Commit after database changes ___ 365

B.3. SQL Helper Functions__ 365

B.3.1. Example: contentTitleProcess of CarDriver_entity____________________________________ 366

B.3.2. Example: valueProcess of EntityField availability _____________________________________ 368

B.3.3. Example: conditionProcess of CarReservation_entity’s RecordContainer__________________ 369

B.3.4. Example: Driver’s name __ 370

B.3.5. Example: Manufacturer __ 372

Appendix C: Order of execution of Entity processes ______________________________________ 373

C.1. Load ___ 373

C.2. Save ___ 375

Appendix D: Requirements for customized Theme _______________________________________ 378

Appendix E: Checklist for new fields ___ 379

Appendix F: Accessing the value of an EntityField __ 382

F.1. Synchronization __ 382

F.2. How does an EntityField value get set? __ 382

F.3. How does a "$field" variable get its value? ___ 382

F.4. $this.value___ 383

F.5. $this.value vs. $field.MYFIELD ___ 384

F.6. $this.value and $field.MYFIELD in valueProcess _______________________________________ 384

F.7. $local.value __ 386

F.8. $local.rowdata and $local.initialRowdata __ 387

Appendix G: Operating state vs. record state __ 388

Appendix H: LoadEntity and WriteEntity ___ 390

H.1. LoadEntity __ 391

H.1.1. Benefits___ 393

H.1.2. Example __ 394

© 2025 ADITO Software GmbH 12 / 472

H.1.3. getRow vs. getRows ___ 395

H.2. WriteEntity__ 396

H.2.1. Benefits___ 400

H.2.2. Examples__ 401

H.3. Usage in server processes __ 405

H.4. Skipping prevalidation ___ 405

Appendix I: RecordContainerCache__ 407

I.1. Basics___ 407

I.2. Setup ___ 408

I.2.1. cacheType ___ 408

I.2.2. cacheKeyProcess __ 408

I.2.2.1. Helper functions ___ 409

I.2.2.2. Examples in the xRM project ___ 410

I.2.2.3. Logged example ___ 411

I.2.3. Cache invalidation ___ 412

I.2.3.1. Automatic __ 413

I.2.3.1.1. RecordContainer-specific___ 413

I.2.3.1.2. Timespan-related___ 413

I.2.3.2. Manual __ 414

I.3. Shared caching with multiple ADITO servers __ 415

I.3.1. Alternative cache servers__ 418

Appendix J: EntityField/Keywords vs. Attributes ___ 419

J.1. EntityField/Keywords __ 419

J.2. Attributes ___ 420

Appendix K: $sys variables___ 421

Appendix L: $local variables ___ 426

L.1. $local.filter __ 427

L.2. $local.lookupFieldName__ 428

Appendix M: $property variables ___ 429

Appendix N: XML in JDito ___ 430

Appendix O: Car pool example: EntityFields___ 433

Appendix P: ResourceTimeline example: Liquibase and code _______________________________ 436

P.1. Liquibase__ 436

P.2. Code ___ 437

Appendix Q: Content types __ 439

Appendix R: Siblings vs. refreshParent ___ 442

Appendix S: LexoRank __ 443

© 2025 ADITO Software GmbH 13 / 472

S.1. Introduction ___ 443

S.2. Benefits __ 443

S.2.1. Performance ___ 444

S.2.2. Drag and drop __ 446

S.3. Further information ___ 446

S.4. Usage in ADITO___ 446

S.4.1. Format __ 447

S.4.2. Mainly used methods __ 447

S.4.3. Rebalancing __ 448

S.5. Example implementation ___ 448

S.5.1. Introduce new database column LEXORANK __ 448

S.5.2. Introduce new EntityField LEXORANK__ 449

S.5.3. Set valueProcess __ 449

S.5.4. Set sorting properties __ 450

S.5.5. enableDragAndDrop ___ 450

S.6. Further examples ___ 450

Appendix T: Trainee example___ 452

T.1. Extending the changelog.xml files __ 452

T.2. Creating the database table ___ 452

T.3. Executing a Liquibase update__ 453

T.4. Creating the Entity __ 453

T.5. Creating Context and FilterView__ 456

T.6. Adding the Context to the Global Menu ___ 458

Appendix U: Version history ___ 459

© 2025 ADITO Software GmbH 14 / 472

Preface

This document enables you to build and customize ADITO applications for multiple purposes. The first

part of this manual is designed like a schoolbook: On the basis of a plain example, you learn to handle

ADITO step-by-step. It is not recommended to skip one of these chapters, as each chapter implies that

you have read the previous ones.

The second part of this manual is more glossary-like: Additional knowledge is imparted using various

best-practice examples included in the ADITO xRM project. Further helpful details are available in the

appendices.

Happy reading!

The ADITO Academy

1. Introduction

ADITO is a comprehensive software framework that enables you to build powerful web-based xRM

solutions, with xRM standing for "any relationship", not only the relationships to customers (CRM). An

ADITO distribution includes the "ADITO Designer", which is ADITO’s IDE for customizing (creating new

applications and modifying existing ones). Furthermore, ADITO comes with a project called "ADITO

xRM", which includes the most important data structures to manage companies, contact persons,

activities, sales-related elements (offers etc.), marketing campaigns, and many more. Besides, the

ADITO xRM project also includes some example data, e.g., companies and contact persons.

The central programming paradigm of ADITO is the so-called "Neon Programming Model", which is

based on the "Entity model". This concept means a strict separation of how data is

● structured and calculated ("Entities")

● stored ("RecordContainer") and

● displayed ("Views", clustered in "Contexts").

The benefits of this approach are:

● The same data or logic can be displayed in various ways, using different Views.

● Views can be (re-)used in multiple Contexts.

● The obligatory usage of ViewTemplates ensures a uniform, consistent appearance of the ADITO

application. Still, users have some options to customize the presentation of data according to

their requirements, e.g., by arranging various Views on a Dashboard.

● If required, the data source can easily be replaced later.

© 2025 ADITO Software GmbH 15 / 472

● The web-based concept simplifies the usage: Once the ADITO server has been installed, the

users only need a chromium-based browser and a hyperlink to the server in order to run ADITO.

This also ensures an easy software maintenance: Updates of ADITO only need to be performed

on the server, not on the users' workstations.

● Development can easily be divided into "frontend" and "backend" programming.

In this manual, you will learn how to build ADITO applications on your own. The teaching approach is

process-oriented, i.e., after an overview you will be introduced to handling the ADITO Designer step-by-

step, following the usual development process.

© 2025 ADITO Software GmbH 16 / 472

2. Overview

2.1. Structure of ADITO projects

At first, you will structure your data into business objects, which have different features. This structure

will then be formed into Entities, which have different features, the so-called EntityFields - e.g. the

Entity "Person_entity" features the EntityFields "FIRSTNAME", "LASTNAME", and "DATEOFBIRTH".

The next step is to set up the data source, which usually is a database: Every Entity gets its data from a

specific data source. In most cases, this data source is a database table, with most of the EntityFields

each corresponding to one specific column of this table - except for fields that are calculated through

other fields or have other sources. The database tables and fields can either be created manually (via

SQL scripts, database managment systems, or via ADITO’s built-in database editor), or you can use a

third-party tool called Liquibase, in order to create database elements (tables, columns, etc.) as well as

database content, using xml configuration files.

After the database has been set up, its structure of tables and fields (but not their data content itself)

needs to be referenced in the ADITO project. This can be considered as a kind of "copy" of the database

structure and is therefore called "the database structure of the project" or "Alias Definition". This

construct enables you, if required, to augment the references to database tables and columns with

additional features, e.g., a description, a documentation, or specific properties.

The next step is to connect every field of the Data alias with its respective EntityField. This mapping is

configured in an ADITO model called "RecordContainer", which you can treat as a kind of "interface"

(or "adapter", to be more precise) between the ADITO project and its data source.

As Entities can have relations to each other (e.g., the "Organisation_entity" is related to the

"Person_entity", which represents persons, who may work in an organisation), we need to connect

them in order to make data exchange possible. In ADITO, these mechanisms are realized by configuring

so-called "Providers" (offering datasets to other Entities, partly based on specific "Parameters") and

"Consumers" (using the passed "Parameters" and processing the datasets offered via a Provider).

These steps all belong to the non-visible part of the ADITO application ("backend"). They are

prerequisites for building the visible part ("frontend"). This visible part mainly consists of so-called

"Views", which are visual components used to display data of one or more Entities in a structured way

(with "View" spelled with a capital letter, in order to distinguish it from "view" in general language

use.). The appearance of every View is determined by one or more ViewTemplates. Users do not need

to build ViewTemplates by themselves, but they can select suitable templates from a pool of several

ViewTemplateTypes predefined by ADITO (e.g., a table, a list, or a Gantt chart, and many more). This

restriction to a limited number of ViewTemplateTypes ensures a user-friendly, intuitive, and thus easy-

to-learn handling of ADITO applications as well as a uniform, consistent look-and-feel. Each

ViewTemplate references specific EntityFields.

© 2025 ADITO Software GmbH 17 / 472

Every View belongs to one specific Entity. One Entity can have zero to multiple Views. All Views of an

Entity are clustered in a so-called "Context". (Spelled with a capital letter in order to distinguish it from

"context" in general language use.) A Context usually contains at least the following standard Views:

● The FilterView is the entry point of a Context. It usually shows all data in a table or as a tree. To

the right of it, it has a filter component allowing to restrict the data according to specific filter

criteria.

● The PreviewView is shown to the right of the FilterView, when you click on one of its datasets.

The PreviewView shows specific detail features of the dataset selected in the FilterView.

● The MainView is reached by marking one dataset of the FilterView and clicking on the "open"

button. It shows the PreviewView as "master dataset" on the left, and a tabbed component on

the right ("detail" part), which represents referenced Views of other Contexts (e.g., a company is

displayed in the PreviewView, and the persons working in this company are displayed on the

right).

● The EditView is opened via the "Plus sign" button or "Pencil" button, respectively, allowing to

create new datasets or to modify existing datasets.

Furthermore, a View can be extended by adding references to other Views (of the same Context or of

other Contexts). Thus, Views are re-usable. For example, a View of the Context "Organisation" may

include references to Views of the Contexts "Person" (showing the employees of the organisation), or

"Activity" (showing activities referring to the organisation, e.g., a phone call or a visit).

Finally, the Contexts and their Views must be made selectable in a specific menu group of the Global

Menu of the ADITO frontend (web client). This can easily be done in a menu editor window of the

ADITO Designer, simply by dragging and dropping a Context from a pool of Contexts to a specific place

of the Global Menu.

Additionaly, you can define user roles and assign them to both the users and the different menu items.

This restricts the visible menu items to ADITO users with specific user roles.

Despite the usage of ViewTemplates, users can partly modify the ADITO application according to their

requirements. In particular, you can create an overview of the data most important to you by arranging

multiple Views from different Contexts on a Dashboard. Furthermore, e.g., in Views containing tables,

you can change the column width and the sorting of the datasets.

Last but not least, ADITO is perfectly suitable for being applied in an international context. Every

textual element in its components can automatically be translated into the user’s language.

From version 2024.2, the ADITO xRM project is structured in a modularized way.

Working with modules increases flexibility and reduces merging efforts for updates

© 2025 ADITO Software GmbH 18 / 472

of xRM in customer projects. However, to simplify matters, the example task in this

manual is not realized as a module. If you are interested in details about

modularization in ADITO, you may read the ADITO Information Document AID123

Modularization.

2.2. Logical hierarchy

To sum up, ADITO projects are structured by the following logical hierarchy:

● Each project has one Global Menu.

● The Global Menu consists of one or multiple menu groups.

● Each menu group consists of one or multiple Contexts.

● Each Context has

○ one Entity assigned, which has one or multiple EntityFields.

○ one or multiple Views.

● Each View consists of one or multiple ViewTemplates (or of references to other Views), with

each of it based on one specific ViewTemplateType.

● Each ViewTemplate references one or multiple EntityFields.

This logical hierarchy determines both the visual appearance of the web client and the structure of the

project source data, as visible in the ADITO Designer:

Figure 1. Hierarchy of elements in the ADITO web client

© 2025 ADITO Software GmbH 19 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

Figure 2. Structure of elements in the ADITO Designer

In the following chapters, we will go through the above outlined development steps in detail. For a

better visualization and for practice, each step is explained using the example of a company car pool

with several cars, several drivers, several reservations, and some more options.

© 2025 ADITO Software GmbH 20 / 472

3. Prerequisites

This manual is designed as a schoolbook, requiring active participation of the reader. After the

introductory chapters, you should reproduce the examples given in the following chapters with an

ADITO system running on your own computer. Thus, the prerequisites for reading on are as follows.

3.1. Documentation

Most of the ADITO documentation is available

● for download from the customer area of the ADITO website.

● via the overview page "Academy Documents", available via the ADITO Service Client. You can

open this page

○ directly via this link;

○ by adding the Dashlet "News in ADITO" and there clicking on button "Academy

Documents":

For a good understanding of the Customizing Manual, you should be familiar with the following

documents (or at least have them available on demand):

● Designer Manual

● ADITO Information Documents (AID), in particular the following:

○ Coding Styles | AID001-EN

○ Wording Guideline | AID002-DE

○ Design Guideline | AID003-EN

○ Performance Optimization | AID066-EN

Some ADITO documents, like this Customizing Manual, contain code snippets, which you can copy into

your own ADITO project or use to verify the correctness of your own code. We recommend

© 2025 ADITO Software GmbH 21 / 472

https://www.adito.de/login.html
https://service.adito.de/client/KnowledgeManagement/full?includedIds=42a481e3-b27d-446a-8a0b-fe5bffafc2ec&view=KnowledgeManagementMain_view&search=eyJ0eXBlIjoiZ3JvdXAiLCJvcGVyYXRvciI6IkFORCIsImNoaWxkcyI6W119&id=42a481e3-b27d-446a-8a0b-fe5bffafc2ec

● to use the latest version of Adobe Acrobat Reader DC in order to view this manual, because the

usage of other PDF readers can result in problems when copying code from PDF file into your

project (additional special characters or formatting characters may be inserted then, which

results in a failure of the code);

● to apply the automated code formatting (shortcut: SHIFT+ALT+F) after copying and inserting the

code;

● to remove additional line breaks, which might have been inserted by this manual’s PDF

generator (especially at long lines), as these can make the code invalid.

3.2. ADITO Web Client

To ensure an efficient customizing work, you should be familiar with the ADITO Web Client and know at

least the basic functionality of the ADITO xRM project from a client user’s perspective. You can learn

this

● in the "web client" part of the ADITO training course for developers (with even deeper client-

related training courses being available on request);

● by reading the presentations for client users, available via paragraph

"Anwendungspräsentationen" (user presentations) in the overview page "Academy Documents",

available via the ADITO Service Client;

● by simply browsing through the various menu groups and Contexts of the ADITO xRM project

included in the ADITO test system that ADITO has provided you with.

You need to use a Chromium-based browser, such as Google Chrome or Microsoft

Edge. Other types of browsers are not supported.

3.3. ADITO platform and xRM project

This manual assumes that you are working with an ADITO cloud system, including the project "ADITO

xRM", and with a local ADITO Designer (this is the name of ADITO’s IDE for customizing). Usually, ADITO

will provide you with

● an ADITO cloud system, including the ADITO xRM project

● all relevant access credentials

● a compressed file (zip), including the ADITO Designer, which you simply have to unpack at an

arbitrary place of your local hard disk/SSD

● an installation guide about how to prepare and start your local ADITO Designer and then open

("load") your ADITO xRM project in the Designer.

© 2025 ADITO Software GmbH 22 / 472

https://service.adito.de/client/KnowledgeManagement/full?includedIds=42a481e3-b27d-446a-8a0b-fe5bffafc2ec&view=KnowledgeManagementMain_view&search=eyJ0eXBlIjoiZ3JvdXAiLCJvcGVyYXRvciI6IkFORCIsImNoaWxkcyI6W119&id=42a481e3-b27d-446a-8a0b-fe5bffafc2ec

Once you have completed this setup, you can start with your productive customizing work, or with

configuring the "car pool" example in this manual, respectively.

Being familiar with the basic functionality of the ADITO Designer is prerequisite for reading this manual.

Find more information in the Designer Manual.

If required, ask your ADITO contact for further instructions.

3.4. ADITO database

This manual uses "MariaDB" for teaching purposes, as this is the default database in ADITO cloud

systems.

You can connect your ADITO Designer with the database of your cloud system via tunneling: In the

"Projects" window, right-click on "system" > "default" and choose "Open tunnels" from the context

menu.

After a few seconds, the tunnel icon to the left of "default" becomes green. If you then double-click on

"default" (under "system"), the Editor window will show a tab named "default", including, amongst

others, an entry for the system database ("____SYSTEMALIAS") and for the data database

("Data_alias"). (Sometimes, you need to click button "Reconnect" in tab "default" first).

© 2025 ADITO Software GmbH 23 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

You may double-click on the system database or the data database and open schema "ADITO", in order

to inspect the ADITO-related tables included in these databases. If you right-click on a table, you may,

e.g., choose "View Data…",

© 2025 ADITO Software GmbH 24 / 472

then an SQL "select" statement will automatically be generated and executed, showing you the

datasets of this table.

Find more information in the ADITO Designer Manual. If required, ask your ADITO contact for further

instructions.

© 2025 ADITO Software GmbH 25 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

3.5. ADITO server

The ADITO server manages the communication between the ADITO databases ("system database" and

"data database") and the client browser: It reads

● the data defining the visual elements (e.g., a table structure, or a chart’s layout) from the

"system database" - in particular, from table ASYS_SYSTEM;

● the productive data (i.e., the datasets to be shown in a table) from the "data database", e.g.,

from table ACTIVITY (see screenshot above)

In ADITO’s Self-Service Provider (SSP, see installation guide), you can see, if the server of your ADITO

system is running (status "RUNNING") or shut down (status "STOPPED"). Furthermore, in the MainView

of the SSP’s Context "System", you can see various details about an ADITO system’s server:

Figure 3. The SSP’s MainView of an ADITO system

If the server of your ADITO system is not running, start it now, via button "Start System":

© 2025 ADITO Software GmbH 26 / 472

Wait a few minutes, until the server’s startup is completed. (Press the "Refresh" button of your

browser, in order to update the display of the status.)

Once the server has status "RUNNING", you can login to your system’s ADITO xRM project, as shown in

the web client, by using the URL displayed in the SSP:

In the login mask, type in user name "admin" and the password available via the SSP:

© 2025 ADITO Software GmbH 27 / 472

After login, you are at first directed to the ADITO xRM project’s "Dashboard". You may now click on

"Home", in order to show the project’s global menu - and from there, you can browse through the

project’s menu groups and Contexts, in order to become familiar with the various functionalities:

© 2025 ADITO Software GmbH 28 / 472

Via menu group "Manager", you can monitor your ADITO system, in order to, e.g.

● inspect the open sessions and, e.g., end a session, or send messages to all session-related users

(Context "Session")

● monitor the server and, e.g., clear the server’s cache (Context "Server")

● view the currently running processes (Context "Process")

● view the number of open connections to the database (Context "Database")

3.6. Instance configuration

© 2025 ADITO Software GmbH 29 / 472

A successful database connection is also prerequisite for accessing the so-called instance configuration,

holding the configuration of the ADITO system instance (e.g., what system modules should be applied,

and what log levels should be effective): Double-click on system > default in the "Projects" window and

then double-click on "____CONFIGURATION". This will display a configuration tree in the "Navigator"

window (upper right part of the Designer). You may browse through this tree to inspect the various

parts of the instance configuration.

3.7. Logging

Besides the debugger (see Designer Manual), the ADITO server’s logging helps you to analyze how your

system is running and what errors occur, along with the source of these errors. If the server is running,

its log can be displayed via the run config named "Cloud Server - <system name>", which you can find

in the combo box below the ADITO Designer’s menu bar (maybe you need to scroll down in the combo

box, in order to see it):

Once you have started this run config, a tab named "Output" will be displayed in the lower middle part

of the Designer, which has a sub-tab named "Cloud Server: <system name>". This tab contains the log

of the server:

© 2025 ADITO Software GmbH 30 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

3.7.1. Predefined logging

By default, only errors and a few functions are being logged. Thus, we recommend you to activate the

logging for

● database access (to see, e.g., what SQL statements are executed)

● JDito processes (to see, e.g., how often the valueProcess of an EntityField is executed, which can

be a hint to performance problems - see

AID066 Performance Optimization)

In the instance configuration (see chapter Instance configuration), click on "Logging", which will show

the logging properties in the Editor (upper middle part of the Designer). Here,

● open the combo box of property "loggingDebugLevel" and additionally check "DB" and "JDITO"

● set properties "loggingJDitoThreshold" and "loggingDBThreshold" both to "0" (zero

milliseconds), meaning that all JDito processes and all database access will be logged, even very

short ones.

© 2025 ADITO Software GmbH 31 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

● make sure that property "loggingTelnetEnabled" is set to true (checked)

You can verify the success by opening any View in the client (e.g., of Context "Company", in menu

group "Contact Management") and watching if the server log (in Window "Output") shows log entries

for every SELECT statement and for every JDito process being executed.

 If you encounter problems, you may find a solution in chapter "Troubleshooting".

3.7.2. Customized logging

You can add further log entries to the server log, according to your requirements, by using methods of

module logging. Simple example:

import { logging } from "@aditosoftware/jdito-types";

logging.log("This is the text to be logged.");

The JSDoc of these methods shows what additional parameters you can pass - e.g., to specifiy a certain

log level. Furthermore, there are other logging methods available, e.g. logging.logCustom or

logging.debug, which have further parameters that help you to optimize the log message. Find

more information via the autocompletion of logging. or via menu Help > Show Documentation

(requires plugin "Help" to be installed).

If you want to log an object, you will get the best overview of it, if you use the JSON

library to "stringify" it first:

While JSON.stringify(object) returns the object’s content in one long line,

you get a better result, if you set the parameters as follows

© 2025 ADITO Software GmbH 32 / 472

JSON.stringify(object, null, " ")

→ Result (example): {

"entity": "Person_entity",

"object": {

"PERSON_ID": "0a611832-9476-481e-bde5-af3c3a98f1b4",

"CONTACTID": "a8a5f214-8165-4627-bee2-bceb3578147e",

"FIRSTNAME": "John",

"LASTNAME": "Smith"

}

}

3.7.3. Logging in "catch" section

In practice, logging is often used in the catch section of try…catch.

Here, a common mistake is to simply output the error itself:

Bad example of logging

try
{
 ()...)
}
catch(err)
{
 logging.log(err);
}

Often, this shows only a long stacktrace that is hard to analyze.

Instead, the log should include further information that helps to identify the problem.

Example from contentProcess of Duplicate_entity:

Good example of logging

(...)

 try

 {

 duplicates = duplicates.concat((new DuplicateUtils(pMappingObj)).execute());

 }

 catch (e)

 {

 logging.log(e, logging.ERROR, [

 "error while trying to load duplicates for " + vars.getString("$sys.currentcontextname") + " for user " + vars.get(

"$sys.user"),

 "Duplicate_entity.jdito.contentProcess()",

 e["rhinoException"] ? e["rhinoException"].toString() : (e.name + ": " + e.message + " " + e.stack)]);

 }

(...)

© 2025 ADITO Software GmbH 33 / 472

3.7.4. Debugging vs. temporary logging

Besides permanent logging (e.g., to log errors in the catch section, see above), temporary logging is

sometimes used in the development process. This raises the question when to use temporary logging

and when to use the ADITO Designer’s built-in debugger. Generally, the debugger provides you with a

lot of options that go beyond pure logging, e.g., you can

● quickly inspect the values of all variables being valid at a specific code line,

● dynamically step from code line to code line, in order to watch the variables' values change

● execute functions

● define conditions when to halt at certain code lines

● manipulate variables by setting certain values

● and many more (see the chapter "Debugger" in the Designer Manual).

Therefore, the debugger should be the instrument of your choice in most cases. On the other hand,

activating the debugger takes some time and decreases the system’s performance - thus, e.g., if you

only want to quickly inspect the value of a specific variable, adding a simple temporary logging might

be preferred:

logging.log("The value of myVariable at code line 173 is " + myVariable)

Of course, you can also combine this with a condition:

if (myVariable > 100) {
 logging.log("myVariable exceeds 100! Its value is " + myVariable);
}

Nevertheless, a common mistake is to overload your code with temporary log entries and later

forgetting to remove them again. At least, you should add an inline comment that marks the logging as

temporary:

// TODO remove again
logging.log("My temporary logging text.");

In order to see the log of your cloud server in the Designer’s window "Output",

1. set the system property "loggingTelnetEnabled" to true (system > default >

____CONFIGURATION > Logging > Telnet)

© 2025 ADITO Software GmbH 34 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

2. choose "Cloud Server - <system name>" (e.g., "Cloud Server - default") from

the combobox in middle of the Designer’s button bar and press the green

"triangle" button to the right of it.

After a few seconds, you can read the confirmation "Connected to server" in a sub-

window of the Designer’s window "Output", e.g., entitled "Cloud Server: default". In

this sub-window, all further log entries will appear.

Besides this customized logging, all JDito processes and database access (SQL

statements) can be logged, if you activate the corresponding log level via the system

preferences:

Navigate to system > default > ____CONFIGURATION > Logging > Logging >

loggingDebugLevel: Here, then check "DB" or "JDITO", respectively, and save your

changes.

After a few seconds you should see various log entries in the output window, when

working with your client. (Due to a bug, the logger might automatically be

connected with the wrong web server pod and thus show no output. In this case, as

a workaround, close and re-open the tunnels again and again, until it works. There

will be a replacement for this workaround in future ADITO versions.)

4. JDito

4.1. What is JDito?

JDito is the programming language used for customizing ADITO. Everything that requires more than the

basic functionality offered by components is done in so-called processes, which are basically scripts

© 2025 ADITO Software GmbH 35 / 472

written in JDito.

At its core, JDito is based on the programming language JavaScript, but it doesn’t have the DOM

controlling methods like the normal JavaScript used in web development; instead, JDito extends the

core of JavaScript with its own system modules that provide a big array of methods to interface with

and control the environment within ADITO - e.g., executing SQL queries, interfacing with telephone

systems as well as reading and returning values from/to components.

System-reserved names must not be used as names of variables. For example, a

variable must not be named "result", "tools", or "test". Besides, we recommend not

to use variables names matching names of system components, such as ADITO

models or their properties ("Activity", "title", "contentType", "state", etc.). This

could have unexpected side-effects. You may uses the usual prefixes, such as "my" or

"a", in order to avoid these kind of problems ("myTitle", "aState", etc.).

Here is an example of how a variable irregularly named "test" is marked in the

ADITO Designer’s code editor:

4.2. How to use JDito

The lexical structure of JDito is identical to JavaScript. Basic information on JavaScript can be found

online, e.g., here:

https://www.w3schools.com/js/

JDito is used in so-called processes. There are basically two kinds of processes in ADITO:

1. Component specific processes

These are JDito scripts used for a specific purpose in a component, e.g., processes to calculate

display values, font colors, data validation, etc. These processes are specified directly in the

corresponding properties and are executed whenever the system needs the value of the

properties.

2. Project-wide processes

These processes are located in the "process" node of the project tree of the ADITO Designer. You

find them sorted into four sub-nodes (the sorting is done according to the processes' property

"variants", i.e., the sub-nodes ("folders") are virtual):

a. authentication: All processes responsible for authentication - see the ADITO document

© 2025 ADITO Software GmbH 36 / 472

https://www.w3schools.com/js/

AID032 Authentication Methods

b. executable

Executable processes are used to automate specific tasks and can be used manually or for

regular timed tasks, e.g., nightly imports of data or mass data manipulation.

c. internal

These are processes called by the ADITO application’s core and used to define custom

behaviour for specific tasks. For example, the process "autostartNeon" is called every

time a user logs on to the web client. Within this process, several client-wide variables are

set, like access rights.

d. library

Processes of this kind are used to group collections of JDito function that share a common

topic, like handling calendar access, writing letters, or SQL helper functions. These

libraries can be imported into other processes, so you can access the functions there.

There are 2 types of libraries:

■ Entity-specific libraries, including helper functions restricted to (or mainly used by)

single Entitys, e.g., Organisation_lib.

■ multi-purpose libraries, providing functionality that is used by more than one

Entity. Examples: Neon_lib, Date_lib, Money_lib.

e. webservice

These processes are designed to be used as web services. Other systems can call these to

get data from ADITO, write data to ADITO, or to trigger actions within ADITO. Find more

information in the ADITO document AID059 Web services with ADITO.

f. workflow

All processes related to workflows - see the ADITO document AID110 Workflow

Management

In principle, these system-wide processes can also be customized according to the

project’s requirements. However, this can lead to update/merge problems whenever

ADITO releases a new xRM version. Therefore, we recommend you to create new

processes for any customized functionality, e.g., KeywordRegistry_custom or

MyNewContext_lib.

4.3. Further information

Further information on JDito functionality is available as JSDoc, accessible via the programming help

function while coding. For example, if you have imported the library "Person_lib" (import {

PersUtils } from "Person_lib";), you can view a list of all functions provided by class

"PersUtils" simply by typing PersUtils. and then CTRL+SPACE. (If you do this for the first time, you

© 2025 ADITO Software GmbH 37 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID032_Authentication_Methods.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID059_Webservices.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf

need to wait a few minutes, until the ADITO Designer has completed the task "Initializing JS features",

see notification in the bottom line of the Designer). Through this function list, you can navigate with

the arrow keys: Whenever a function is marked, you can read its JSDoc below, structured in Summary

(basic description of the function), Parameters (description of the function’s parameters), and Returns

(information about the function’s return value).

Figure 4. Example of the JSDoc of method getResolvingDisplaySubSql of class PersUtils

© 2025 ADITO Software GmbH 38 / 472

A glossary giving information about JDito system modules and JDito system variables is available in

appendix JDito system modules and variables.

Information about how to use XML in JDito is available in appendix XML in JDito.

© 2025 ADITO Software GmbH 39 / 472

5. Core tables of the xRM project

As already mentioned, we will build our ADITO example application based on the xRM project. This is a

comprehensive project, which already includes several Entities, e.g., for managing contact persons,

companies, activities, products, offers, and administrative tasks.

Every database table has got a primary key column, which is named <table name>ID

(e.g., ORGANISATIONID), according to ADITO’s spelling guidelines (see ADITO

Information Document AID001, chapter "Spelling & Wording" > "ADITO models").

Whenever a primary key column is referenced in other tables ("foreign key"), it is

named <table name>_ID (e.g., ORGANISATION_ID). This simplifies the orientation in

the ADITO data model, as you can quickly recognize the relations between specific

tables. In most cases, the primary key value is a UID (a 36-digit universally unique

identifier that is generated using random numbers).

In the xRM project, database columns holding foreign keys usually do not have a

foreign key constraint. This has multiple reasons (e.g., it simplifies the task to drop

and re-create database tables, and it grants more flexibility when creating

interdependent datasets), but nevertheless it’s up to your own programming style

whether or not you do it alike when adding your custom database tables.

As an xRM system particularly focusses on relationships between persons or organisations, the core

database tables of the ADITO xRM project are (cf. illustration below):

● PERSON: Holds data of persons, like name, date of birth, etc.

● ORGANISATION: Holds data of organisations, which are, in most cases, companies: Name, type,

info, etc.

● CONTACT:

○ Connects persons and organisations, as well as corresponding addresses, communication

data, and activities. In ADITO, a PERSON or ORGANISATION dataset never exists alone, but

it is always connected to at least one CONTACT dataset. This is, because a person is

usually seen as a "person in an organisation". And an organisation usually features one or

more persons working in it. The connection is realized via CONTACT’s fields PERSON_ID

and ORGANISATION_ID.

○ Also for private persons, a related CONTACT dataset is created - in this case, the field

referencing the organisation (ORGANISATION_ID) has the value 0 (not "null"!).

○ Likewise, an organisation without relation to a person is nevertheless represented also as

CONTACT dataset - in this case, the field referencing the person (PERSON_ID) is null (not

© 2025 ADITO Software GmbH 40 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

"0"!).

○ Whenever we reference a person or an organisation in ADITO logic, we always use the

corresponding CONTACT_ID, not the PERSON_ID or ORGANISATION_ID. However, of

course, the tables PERSON and ORGANISATION may be joined in SQL statements, e.g., to

retrieve the name of a person/organisation.

○ The standard address of a contact (cf. ADITO User’s Manual) is referenced in column

CONTACT.ADDRESS_ID. This is no mandatory field, but as soon as at least 1 address of a

contact exists, one of these adresses must be assigned as standard address.

● ADDRESS: Holds address data, along with a CONTACT_ID, referencing the contact (person or

organisation) to which the address belongs.

● COMMUNICATION: Holds information about communication ways (telephone number, email

address, etc.), along with a CONTACT_ID, referencing the contact (person or organisation) to

which the communication data belongs.

● ACTIVITY: Holds information about activities. This term summarizes information about all kinds

of events belonging to specific ADITO Contexts, e.g., a meeting or a telephone call and its result.

As one contact (person or organisation) can be related to multiple activities, table ACTIVITYLINK

connects the tables ACTIVITY and CONTACT, via its columns ACTIVITY_ID and OBJECT_ROWID.

The latter can hold a CONTACTID, but is named universally, as activities can also refer to other

ADITO Contexts, such as "Opportunity" or "Contract".

© 2025 ADITO Software GmbH 41 / 472

Figure 5. ER diagram of the ADITO xRM project’s core tables (along with their former names, until

ADITO 5)

However, unlike normally, the ADITO Entities corresponding to these core database tables are not 1:1

representations, although they are named similarly:

● Person_entity represents contact persons and is related to both database tables PERSON and

CONTACT. In the web client, the data held by Person_entity appears under the title "Contact".

● Organisation_entity represents organisations and is related to database tables ORGANISATION

and CONTACT. In the web client, the data held by Organisation_entity appears under the title

"Company".

● Contact_entity represents a special case and is not a 1:1 representation of the data of database

table CONTACT. The data held by Contact_entity does not appear 1:1 in the web client. Do not

confuse it with the data held by Person_entity, which is titled "Contact" in the web client. In this

manual, we can ignore Contact_entity, until further notice.

© 2025 ADITO Software GmbH 42 / 472

● AnyContact_entity is a kind of mixture between Person_entity and Organisation_entity: Both

persons (private and company-related) and organisations (without persons assigned) are

displayed. It also represents a special case and can be ignored in this manual, until further

notice.

© 2025 ADITO Software GmbH 43 / 472

6. Modelling the data structure

The first step of the ADITO customizing work basically requires nothing more than a pencil and a sheet

of paper:

Collect a list of all data you want to manage via ADITO, and then structure it carefully into logical units

with certain features.

Do not underestimate this step: The more complete and the better structured this

collection is, the more efficient the following development process will be. Carefully

consider structural principles like normalization, consistency, and avoidance of

redundancy. Later extensions or modification of data structure and logic are, of

course, possible with ADITO, but - as in every engineering process - they require

additional effort that is probably larger than if you had considered it more carefully

right from the beginning. To put it bluntly, you should not touch the ADITO Designer

unless you are very sure that your data feature collection is both complete and

optimally structured.

In this manual, we will use the administration of a company car pool as example. Our list of data

features will therefore contain, e.g., the basic features of the car (manufacturer, type, manufacturing

date, color…), the personal data of the drivers (their name, the IDs of their driving licenses, etc.), and

reservation data (start date, end date, corresponding car, corresponding driver, etc.).

As soon as we are sure that our data list is complete, we cluster the data into business objects, each

having several features. If a feature is related to another feature, or if it can be deduced from other

features or somehow be calculated, we mark it accordingly.

Every business object features am ID, in order to ensure a unique identification.

In our car pool example, the business objects could be modelled like this:

CAR:

● ID

● Manufacturer

● Type

● Color

● Date of Manufacture

● Picture

© 2025 ADITO Software GmbH 44 / 472

● Price

● Currency

● License plate number

● Mileage (calculated from car reservation)

● Value (calculated from mileage)

● Availability ("available"/"lent", dependent on car reservation)

● Damages (calculated from reservations)

CAR DRIVER:

● Car driver ID

● Contact ID (related to xRM Entity "Person_entity")

● Last name (retrieved via Contact ID)

● First name (retrieved via Contact ID)

● Age (calculated from date of birth via Contact ID)

● Number of driving license

● issue date of driving license

● Driving experience (calculated from issue date)

● Sum of parking ticket fines (calculated from car reservations)

● Sum of speeding fines (calculated from car reservations)

CAR RESERVATION:

● Car reservation ID

● Car driver ID (related to business object "Car driver")

● Car ID (related to business object "Car")

● Start date

● End date

● Mileage at start (calculated from car reservation)

● Mileage at return

● Damage

© 2025 ADITO Software GmbH 45 / 472

● Parking ticket fine

● Speeding fine

● Currency

© 2025 ADITO Software GmbH 46 / 472

7. Creating Entities

This chapter explains how to create Entities and their EntityFields manually, step-by-

step. The connection to the database will be done subsequently. This approach takes

some time, but you will learn to understand the details. However, ADITO includes

automatisms called "Blueprints" that simplify the creation of Contexts, Entities, and

Views. Find more information in chapter Blueprints.

Once we have designed our business objects, we are ready to start the development of the actual

ADITO application. Our central development tool is the ADITO Designer, which you can download as

compressed (zip) file from area "Aktuelle Releases" (current releases) in the customer area of ADITO’s

website.

Now, start the ADITO Designer and open your project.

In ADITO, all business objects are represented by so-called Entities. They are the basic elements to

model the data’s structure and type. For every business object, we create one Entity, and for every

feature of the business object, we create one EntityField. As the spelling of an Entity name follows the

convention "<Name in camel case>_entity", we call our Entities

● Car_entity

● CarDriver_entity

● CarReservation_entity

(By letting all names start with "Car", we make them being displayed close together in various ADITO

folders, because of the alphabetical sorting.)

To create new Entities, we navigate to node "entity" in the project tree (see "Projects" window to the

left) and call option "New" in the context menu of "entity". In the model creation dialog, we enter the

name of the Entity and leave "entity" selected as type. This step must be repeated until all Entities are

created.

In case you mistype a name or want to delete an element of the project, please

note: In some cases, particularly when deleting or renaming, a tab "Refactoring" will

appear in the lower middle part of the Designer (it can very easily be overlooked!),

which requires you to confirm the refactoring by clicking on button "Do

Refactoring". Here you see all models affected by the refactoring, and on demand,

you can uncheck part of them (not recommended!). If you miss to react to the

refactoring prompt (or repeat the action that caused it) and continue working, your

XML project source code might become confused and you will have to repair it

© 2025 ADITO Software GmbH 47 / 472

https://www.adito.de/login/kundenbereich/releases.html
https://www.adito.de/login/kundenbereich/releases.html

manually.

Figure 6. Example of content of tab "Refactoring"

To create new EntityFields, we double-click on an Entity name (under node "entity" in the "Projects"

window) and then call option "New Field" in the context menu of the Entity’s name shown in the

Navigator (!) window. (This is the window in the upper right part of the Designer.) According to ADITO’s

spelling guidelines (see ADITO Information Document AID001, chapter "Spelling & Wording" > "ADITO

models")

● the names of EntityFields that directly refer to the value of a database column, are written in

uppercase letters (same name as the corresponding database column);

● all other EntityField names (calculated fields, etc.) are written in camelCase, starting with a

lowercase letter.

In practice, the names of Entities, Contexts, Views etc. include a suitable project-

related prefix, e.g., "MyProject_CarReservation_entity". This helps you to easily

distinguish original ADITO models (= models of the xRM project) from your own

ADITO models that you have created for your customized project. However, in this

manual, we do not use a project prefix, for purposes of simplification.

As the correct spelling of the EntityFields' names is essential for the function of the

following code examples, you can find tables with the names (and

contentTypes/data types - see later chapters) of all car pool related EntityFields also

in appendix Car pool example: EntityFields - ready for "copy & paste".

After creating all Entities with all of their fields, the Entities should appear in the Navigator window as

follows:

© 2025 ADITO Software GmbH 48 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

Figure 7. The carpool-related Entities and their fields

© 2025 ADITO Software GmbH 49 / 472

Make sure that you named Entities and Entity fields exactly as shown above.

Otherwise, some code snippets of this manual might not work.

Every Entity and every EntityField (as well as many other elements of the ADITO project) have several

features, which are called properties. Generally, there are two ways how properties can be displayed

and edited:

● Click on an Entity name (in the "Projects" windows or in the "Navigator" window) or on a field

name (in the "Navigator" window): The properties are visible and (partly) editable in the

"Properties" window, which is by default located in the lower left part of the ADITO Designer.

● Right-click on an Entity name (in the "Projects" windows or in the "Navigator" window) or on a

field name (in the "Navigator" window): Choose option "Properties" in the context menu. Then,

a popup window will appear, showing the same content as the "Properties" window mentioned

above.

In both cases, the lower part of the property field is a text area showing a short documentation: If you

click on a property, a summary of the property’s purpose or usage will be displayed.

7.1. Configuring Entities

For every Entity, we set the following properties:

● title: A general title summarizing the content of the whole Entity. In many cases, this title is

simply the first part of the Entity’s name as specified when creating it: Car, Car driver, and Car

reservation. The title will be shown in various parts of the client, e.g., as headline on the top of a

Context.

● titlePlural: The plural form of the title (see above); will be used, e.g.,

○ in the FilterView of the Entity’s Context: before the number of datasets

○ in the MainView including the Entity’s data as reference: as tab title

● contentTitleProcess: A piece of code for retrieving a suitable title summarizing the

content of a single dataset. This "contentTitle" will be used in different parts of the ADITO logic -

in particular, on the top of the MainView and for creating the list items of a combo box of an

EntityField that gets its values via a Consumer (this term will be explained further below).

In the MainView, the contentTitle will only be visible, if at least one

ViewTemplate is assigned to the "Detail" area of the MainView’s

MasterDetailLayout. (This will be done in a later step of the car pool example,

along with an explanation of these terms.)

© 2025 ADITO Software GmbH 50 / 472

Usually, a contentTitle consists of the values of a column or a combination of multiple columns.

In our carpool example, we define the contentTitleProcess of our Entities as follows:

○ Car_entity: We use a combination of the columns MANUFACTURER and TYPE, separated

by a whitespace.

Car_entity.contentTitleProcess

import { result, vars } from "@aditosoftware/jdito-types";

result.string(vars.get("$field.MANUFACTURER") + " " + vars.get("$field.TYPE"));

In ADITO, the leading code lines, which start with import, make all

required system modules (e.g. "result" or "vars") available for being

called in the code (e.g., via result.string or vars.get). For

reasons of simplification, most of the following code fragments in this

manual will not include these "import" lines. You can easily add them,

if you save your code and wait a few seconds, until a "lightbulb" icon

appears to the left of the respective code line. (At first, the process

"Initializing JS features" will automatically run - see the waiting bar in

the lower part of the Designer.) Then click on this light bulb and choose

"Import '…' from module @aditosoftware..."" (or "Add…",

respectively), which automatically adds/extends the required import

line.

○ CarDriver_entity: We display the driver’s name in cleartext, which must be retrieved from

table PERSON, using a prepared SQL statement via the class SqlBuilder. If you are

interested to know what SQL code this helper function returns, please refer to appendix

Database Access, chapter "SQL Helper Functions".

© 2025 ADITO Software GmbH 51 / 472

CarDriver_entity.contentTitleProcess

var contactId = vars.get("$field.CONTACT_ID");

if (contactId) {

 var displayData = newSelect("SALUTATION, FIRSTNAME, LASTNAME")
 .from("PERSON")
 .join("CONTACT","CONTACT.PERSON_ID = PERSON.PERSONID")
 .where("CONTACT.CONTACTID", contactId)
 .arrayRow();

 if(displayData) {

 var salutation = displayData[0];
 var firstname = displayData[1];
 var lastname = displayData[2];

 result.string(salutation + " " + firstname + " " + lastname);
 }
}

○ CarReservation_entity: In addition to the CARRESERVATIONID, we also display the driver’s

name in cleartext, which must be retrieved from table PERSON, using a prepared SQL

statement with helper functions. If you are interested to know what SQL code this helper

function returns, please refer to appendix Database Access, chapter "SQL Helper

Functions".

CarReservation_entity.contentTitleProcess

var carReservationId = vars.get("$field.CARRESERVATIONID");

var carDriverId = vars.get("$field.CARDRIVER_ID");

if (carReservationId && carDriverId) {

 var displayData = newSelect("FIRSTNAME, LASTNAME")

 .from("PERSON")

 .join("CONTACT", "CONTACT.PERSON_ID = PERSON.PERSONID")

 .join("CARDRIVER", "CARDRIVER.CONTACT_ID = CONTACT.CONTACTID")

 .where("CARDRIVER.CARDRIVERID", carDriverId)

 .arrayRow();

 if(displayData) {

 var firstname = displayData[0];

 var lastname = displayData[1];

 result.string(carReservationId + ", for " + firstname + " " + lastname);

 }

}

 In the Editor window (upper middle part of the Designer), you can scale (zoom) the

© 2025 ADITO Software GmbH 52 / 472

font size of the code lines up and down by pressing the mouse wheel and then

turning it back and forth.

Loading and writing datasets via SqlBuilder (or via the older methods db.xxx)

ignores the permissions (access rights) configured by the client administrator! To

load or write data respecting these permissions,

● set property "usePermissions" of the respective Entity/EntityFields to "true"

(checkbox checked) and

● use the functionality of "LoadEntity" and "Write Entity" instead - see

appendix LoadEntity and WriteEntity. However, please note: Using

"LoadEntity" causes a considerable overhead when executed often, as all

required Entity processes are executed as well. The contentTitleProcess is a

very good example in which it will cause performance issues, because it is

executed for every record loaded and in turn executes all processes of each

record it loads.

● For further information on setting permissions please refer to the ADITO

documentation for client administrators.

You should use the same loading principle for all other processes quoted in this

manual, whenever you want access rights to be respected. For purposes of

simplification, the further code examples do not respect access rights.

7.2. Configuring EntityFields

For all EntityFields, we set the property title: Insert a term or short text suitable for this EntityField.

This text will be shown in various Views in the client (e.g., as column title or field label). Furthermore, in

the EditView (create mask), the title will also be shown as placeholder in an input field, as long as it is

empty. If you want to use a specific placeholder instead, you can set this in property placeholder.

Some EntityFields require the setting of specific properties:

● contentType: You can find tables with the content types of all car pool related EntityFields in the

appendix Car pool example: EntityFields. The default state of this property is "TEXT", as this is

the most common content type. Still it is recommended not to leave the default state, but to set

"TEXT" manually (simply change the value to any other content type and then set it back to

"TEXT" - then the default state is left, which you can recognize by the white font color of the

property name - see Designer Manual.) This makes sure that the value of property contentType

will remain "TEXT", even if the default state is changed to any other content type in future ADITO

versions. In appendix Content types you can find an overview of all available content types and

© 2025 ADITO Software GmbH 53 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

their features.

● As the content of the field PICTURE (of Car_entity) is an image, select "IMAGE" in the combo box

of the field’s property contentType. (NOTE: To avoid long loading and rendering times,

images in ADITO should not exceed a certain limit as for resolution and size. Find more

information in document AID066 Performance Optimization.)

● For all fields holding a date

○ set property contentType to "DATE"

○ set property resolution to a suitable resolution type (e.g., "DAY"). This value

determines how precise the date is saved (and displayed, if property "outputFormat" is

not set).

○ optionally, change the default date format by inserting a format pattern (e.g., "yyyy-MM-

dd" or "EEE, d MMM yyyy HH:mm:ss") in the property outputFormat or

inputFormat. But CAUTION:

■ Property "resolution" is still valid, as far as the saving of the data is concerned, i.e.,

the data might, e.g., be stored less precise than entered.

■ If property outputFormat or inputFormat is set, the format will be used for all

languages. This means that, e.g., users from the USA will see the German date

format.

● For all fields that must not be let empty, set property mandatory to true (usually, this should

be true at least for all fields that correspond to a "not null" database column, see below).

● For all fields that should act as grouping criteria (see FilterView, section "Grouping > Group by",

in combination with ViewTemplate type "TreeTable"), set property groupable to true - e.g.,

for MANUFACTURER, TYPE, or COLOR.

● For all fields that must not be edited (in particular, calculated fields and primary key fields), set

property state to READONLY (copy of value possible) or DISABLED (copy of value not possible,

font grayed).

The property description, which is included in many ADITO models (Entity,

EntityField, View, etc.), has no effect in the client and can be ignored. (This might

change in future ADITO versions.) You can add descriptive content in other

properties:

● documentation: Here, you can describe whatever you want other

programmers to know about the respective model. This text has no effect in

the client.

● tooltip: The text entered here will appear in the client, whenever you

© 2025 ADITO Software GmbH 54 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

hover with the mouse pointer over the name/title of the respective model.

(This is not implemented for all models.)

● placeholder: This is a property of an EntityField. The text entered here

will appear in the client in the respective input fields of the EditView (create

mask), as long as nothing has been entered. As soon as you start to fill in the

input field, the placeholder text will disappear. If this property is not set, the

value of property title will be used as default.

● There are properties restricting the length of an EntityField: maxFieldSize, maxIntegerDigits, and

maxFractionDigits. These 3 properties are not always present, but they differ according to the

EntityField’s contentType (see below). If property contentTypeProcess is set, all 3 properties are

shown, but only those properties are evaluated that are suiting the contentType given in the

result of the contentTypeProcess.

If the specified length is exceeded, the "save" button is disabled, and beside it, a corresponding

message is shown. On the server side (e.g., when using WriteEntity) an exception is thrown,

including information about the EntityFields causing the error.

By default, the properties have the value "<unlimited>" (= no restriction). The method

project.getEntityStructure also includes the 3 properties.

Special cases can be handled via the onValidationProcess.

Further information about the length-restricting properties:

○ maxFieldSize: This property is available for EntityFields of contentType TEXT, LONG_TEXT,

HTML, TELEPHONE, EMAIL, LINK, and PASSWORD. It limits the number of characters that

can be entered.

○ maxIntegerDigits: This property is only available for EntityFields of contentType NUMBER.

It limits the integer digits of a number (= the number of numbers before the decimal

point).

○ maxFractionDigits: This property is only available for EntityFields of contentType

NUMBER. It limits the number of decimal places (= the number of numbers after the

decimal point). If required, you can enter "0" here, in order to limit the input to integers;

however, in this case, you should also set a suitable input format, that restricts the input

accordingly.

○ Please note that for EntityFields of contentType NUMBER, there are also the properties

maxValue(Process) and minValue(Process) available.

Mass edit support:

The ADITO Designer includes a function that enables you to set the same value for

the same property of multiple objects at once. This is especially helpful when

configuring the properties of EntityFields: Just mark 2 or more fields, consequently

© 2025 ADITO Software GmbH 55 / 472

clicking on them while the "CTRL" key is being held. Then, the title bar of the

property window changes to "Multiple Objects - Properties". If you then set a

property value, e.g. "tooltip" or "mandatory", it will be set for all marked fields

simultaneously.

If you have marked multiple EntityFields, you can read "<Different Value>" for all

properties whose values are different. If you set a value here, all existing values are

overwritten.

This mass edit function is not available for properties whose values are set via a tab

in the Editor area (upper middle part of the Designer), i.e., it works, e.g., for

property "tooltip", but not for "tooltipProcess".

Be aware that all fields carrying data are subject to your project’s access rights

management as well as aspects of data security. Therefore, make sure that

● your ADITO client administrator knows about every EntityField (even if it is

currently not displayed!), in order to make sure that its access rights are

configured correctly.

● your data security official in charge with your project (e.g., in Germany, the

"Datenschutzbeauftragter") gives you, for every EntityField, all information

you need in order to make sure that possible concerns will be included in the

further configurations and programming (e.g., the implementation of a dialog

pointing to the "impact on the data privacy information (GDPR)" - see, e.g.,

method DataPrivacyUtils.notifyNeedDataPrivacyUpdate in DataPrivacy_lib).

© 2025 ADITO Software GmbH 56 / 472

8. Creating database tables and columns

Like the Entities, also the database’s structure is based on the data structure we had modeled before

(therefore, in principle, the steps of this chapter can be performed independently from the generation

of the Entities).

Please remind that, for every database table, an appropriate setting of database

indices is required, in order to ensure an optimal performance of database access.

Find further information about performance optimization in AID066.

Figure 8. Carpool-related database tables with primary keys (PK) and foreign keys (FK)

Please note: The database tables CONTACT and PERSON already exist, as they are part of the xRM

project.

The easiest way to create new tables and columns is to use ADITO’s database editor: In the "Projects"

window, navigate to "system" and double-click on the your system’s name, e.g., "default" (ADITO cloud

server must be running, and a tunnel connection must be established). This will display your system

configuration in an editor window, usually in the upper middle of the Designer. Here, double-click on

"Data_alias". Then, your database content will appear as a tree structure, and you can view tables and

columns as well as add/edit/delete columns via the context menu when right-clicking on table names

or column names.

© 2025 ADITO Software GmbH 57 / 472

However, ADITO offers a second way of creating database tables and columns: You define the tables

and their columns in an xml file, and then a tool called Liquibase can create the tables and columns

automatically, based on the xml file.

Liquibase is an open source tool for database schema change management. It has

not been developed by ADITO, but it is integrated into the ADITO Designer via a

plugin (see option "Plugins" in the "Tools" menu). You can find a detailed

documentation of Liquibase on the developer’s web site, see

https://www.liquibase.org/. Further information can be found in chapter "Create

Liquibase files automatically" of the Designer Manual.

8.1. Creating a folder for your xml files

The xml files that Liquibase needs all reside under alias > Data_alias (visible in the "Projects" window).

The xml files referring to the xRM project are assigned to a folder called "basic". On the same level as

this folder, we now create a new folder reserved for xml files that refer to our project:

Right-click on "Data_alias" and choose New > New folder. Name the new folder "example_carpool".

8.2. Creating an xml file for every table

For every database table we need, create a separate xml file.

● Right-click on the "example_carpool" folder and choose "New" > "New Changeset".

● Changeset name: see below (extension ".xml" will be added automatically)

● Copy the following code into the respective xml file.

create_car.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="23533445-0d3d-499c-aa98-cf37ca4798c1">

 <createTable tableName="CAR">

 <column name="CARID" type="CHAR(36)">

 <constraints primaryKey="true" primaryKeyName="PK_CAR_CARID"/>

 </column>

 <column name="COLOR" type="VARCHAR(36)"/>

 <column name="LICENSEPLATENUMBER" type="NVARCHAR(20)"/>

 <column name="MANUFACTUREDATE" type="DATE"/>

 <column name="MANUFACTURER" type="VARCHAR(36)"/>

 <column name="PICTURE" type="LONGBLOB"/>

 <column name="PRICE" type="DECIMAL(10,2)"/>

 <column name="CURRENCY" type="VARCHAR(36)"/>

 <column name="TYPE" type="NVARCHAR(30)"/>

 </createTable>

 </changeSet>

</databaseChangeLog>

© 2025 ADITO Software GmbH 58 / 472

https://www.liquibase.org/
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

create_cardriver.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="64fd2d43-8c77-42d4-b349-4ebcd3a45037">

 <createTable tableName="CARDRIVER">

 <column name="CARDRIVERID" type="CHAR(36)">

 <constraints primaryKey="true" primaryKeyName="PK_CARDRIVER_CARDRIVERID"/>

 </column>

 <column name="CONTACT_ID" type="CHAR(36)"/>

 <column name="DRIVINGLICENSENUMBER" type="NVARCHAR(30)"/>

 <column name="DRIVINGLICENSEISSUEDATE" type="DATE"/>

 </createTable>

 </changeSet>

</databaseChangeLog>

create_carreservation.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="45e21347-53cd-48e1-9667-591f3506e9e5">

 <createTable tableName="CARRESERVATION">

 <column name="CARRESERVATIONID" type="CHAR(36)">

 <constraints primaryKey="true" primaryKeyName="PK_CARRESERVATION_CARRESERVATIONID"/>

 </column>

 <column name="CAR_ID" type="CHAR(36)"/>

 <column name="CARDRIVER_ID" type="CHAR(36)"/>

 <column name="STARTDATE" type="DATETIME"/>

 <column name="ENDDATE" type="DATETIME"/>

 <column name="MILEAGERETURN" type="INT"/>

 <column name="PARKINGTICKETFINE" type="DECIMAL(7,2)"/>

 <column name="SPEEDINGFINE" type="DECIMAL(7,2)"/>

 <column name="CURRENCY" type="VARCHAR(36)"/>

 <column name="DAMAGE" type="NVARCHAR(300)"/>

 </createTable>

 <!--Index for speeding up searches / join for CAR_ID, e.g. when searching data by a specific car -->

 <createIndex indexName="IDX_CAR_ID" tableName="CARRESERVATION">

 <column name="CAR_ID"/>

 </createIndex>

 <!--Index for speeding up searches / join for CARDRIVER_ID, e.g. when searching for a spcific driver -->

 <createIndex indexName="IDX_CARDRIVER_ID" tableName="CARRESERVATION">

 <column name="CARDRIVER_ID"/>

 </createIndex>

 <!--Compound index for speeding up joins over CAR_ID and CARDRIVER_ID -->

 <createIndex indexName="IDX_CAR_ID_CARDRIVER_ID" tableName="CARRESERVATION">

 <column name="CAR_ID"/>

 <column name="CARDRIVER_ID"/>

 </createIndex>

 </changeSet>

</databaseChangeLog>

Please note that this Liquibase file also includes 3 indices: One for each foreign key

(speeding up searches for the respective UID), as well as a compound index, which

speeds up SQL JOINs over CAR_ID and CARDRIVER_ID.

The previous Liquibase files (those for tables CAR and CARDRIVER) do not require

the explicit configuration of an index, as columns CARID and CARDRIVERID are

declared as primary keys, which automatically results in the creation of an index on

those columns.

Setting appropriate indices is very important for the system’s performance - find

© 2025 ADITO Software GmbH 59 / 472

further information in the document AID066 Performance Optimization.

You may change "author" and "id" in tag "changeSet", by inserting your own name and an arbitrary 36-

digit UUID, which you can easily generate in the Designer, via option "Tools" > "Generate UUID". (The

generated UUID will then be copied to the clipboard, from which you can, as usual, get it via CTRL+V.)

As you can see, we use the data type CHAR(36) in some cases. These columns can be

● the database table’s primary key column, which in ADITO is always named with "ID" as suffix,

e.g., "CARID" (mind that there is no underscore before "ID"). This ID column always holds a 36-

digit UID.

● a column referencing the primary key of another table. In ADITO, these "foreign key columns"

are named like the corresponding primary key column, except for an underscore before the "ID"

suffix, e.g. "CAR_ID".

You can find tables with the data types of the database columns corresponding to all

car pool related EntityFields in the appendix Car pool example: EntityFields

When Liquibase is executed, Liquibase’s data types (as included in the xml files) are

mapped to data types proper to the specific database engine connected to the

ADITO project. For example, Liquibase’s data type NCLOB (used for very large text

fields) remains a NCLOB for Apache Derby databases, but is mapped to a LONGTEXT

for MariaDB and MySQL, while in MicrosoftSQL it will be a NVARCHAR(MAX).

When customizing ADITO, you should always prefer the target data types of these

Liquibase mappings, even if you do not use Liquibase itself.

You can find a list of the preferable data types, according to database system, in the

article "Preferable data types", available in this article in ADITO Knowledge Base. (To

read this article, you need access to the ADITO Service Client.)

In the database of the ADITO xRM project, constraints are usually only set for the

primary key, and in very few further cases (e.g., a "not null" constraints for all

columns refering to an EntityField of contentType "Boolean"). In particular, there are

no foreign key constraints on database level. If you want to make sure that a specific

EntityField is not empty, you usually set its property "mandatory" to true (rather

than setting a "not null" constraint on its corresponding database column).

This has multiple reasons, e.g., it simplifies the task of dropping and re-creating

database tables, and it grants more flexibility when creating interdependent

datasets.

8.3. Including xml files in changelog

© 2025 ADITO Software GmbH 60 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf
https://service.adito.de/client/KnowledgeManagement/full?view=KnowledgeManagementMain_view&id=66ebaac0-7bb3-49b1-9f4e-c4509d51885d

Now we must include the new create_xxx.xml files in ADITO’s automatic database management, which

is based on Liquibase. This tool executes all tasks defined in the file changelog.xml, which resides in the

folder alias > Data_alias (see "Projects" window). This "main" changelog.xml file, in turn, references

● further files with the same name changelog.xml, on lower folder levels (mostly containing the

definition of tables and their columns)

● files named init.xml or init_xxx.xml (mostly containing data to be inserted into tables, e.g.,

configuration data or example data)

In the case of our new create_xxx.xml required for the car pool management, we first create a new

changelog.xml file, and then reference it in the main changelog.xml file:

In folder example_carpool (i.e., in parallel to the new create_xxx.xml files), create an empty xml file

named changelog.xml (file type: "changelog.xml") and insert the following code:

changelog.xml (under alias > Data_alias > example_carpool)

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <include relativeToChangelogFile="true" file="create_car.xml"/>

 <include relativeToChangelogFile="true" file="create_cardriver.xml"/>

 <include relativeToChangelogFile="true" file="create_carreservation.xml"/>

</databaseChangeLog>

This new changelog.xml file must now be referenced in the main changelog.xml (under alias >

Data_alias) by adding the following additional code line:

changelog.xml (under alias > Data_alias)

...
<include relativeToChangelogFile="true" file="example_carpool/changelog.xml"/>
...

Make sure you do not confuse the multiple changelog.xml files due to their equal

name.

8.4. Liquibase update

Now you can execute a command that will update the database structure on the basis of the xml files

we have just added:

alias > Data_alias > (context menu:) Liquibase > Update…

(This option will only be available, if a database connection exists.)

© 2025 ADITO Software GmbH 61 / 472

This will open a dialog, in which you select your database connection (it is named

"…cloud_data_alias"), check option "example" (it can take a while until it appears) and confirm by

"OK".

As you can see in the above screenshot, you can decide, whether or not example

data (contacts, companies, Activities, etc.) should be inserted in your application.

Please be aware: If you have not inserted this example data earlier, checking

checkbox "example" will now result in a complete loss of any productive data - even

if you only choose option "Liquibase - update" (without "drop all"). Therefore,

checkbox "example" should NEVER be checked in a productive system or whenever

you have entered your own data that must not be deleted. (However, for working

with the carpool project, "example" should be checked, because, e.g., demo data of

Context "Contact" (PERSON) are required for being referenced in Context

"CarDriver".)

If everything has been configured correctly, you will, after a few seconds, read "Update successful!" in a

small message window (called "Balloon") in the lower right corner of the Designer. In rare cases, you

might get an error message, if you select "Update…". If so, choose "Drop All & Update…" instead. This

will - in addition to the creation of the CAR-related tables - delete (drop) all tables of the xRM project

and build them again, including the example data.

If one of the liquibase xml files (also called "changesets") contains an error (e.g., a

typo), the update process stops at this file, and the following liquibase files are not

being executed. There is no rollback in this case. If you choose "Drop All & Update…

", then "Drop All" and "Update" are separate commands, which are executed

subsequently. If, e.g., "Drop All" has been executed, but the first "Update" xml file

fails, then the database is empty. A single changeset is always executed as database

transaction, i.e., if, e.g., in a table creation file, the third column has been

© 2025 ADITO Software GmbH 62 / 472

misconfigured, then the whole table is not created.

You can now check, if all tables have been created correctly, using ADITO’s database editor: Make sure

that there is a database connection. In the "Projects" window, double-click on system > default. As next

step, you sometimes have to click the "Connect" or "Reconnect" button in the editor window (upper

middle part of the Designer). Double-click on "Data_alias". Then you will see the database structure in

a tree. Navigate to Data_alias > adito_data > Tables to view all tables of your ADITO project (except the

system tables, see below).

The car pool related database tables and columns should appear as follows:

© 2025 ADITO Software GmbH 63 / 472

Figure 9. The carpool-related database tables and their columns

© 2025 ADITO Software GmbH 64 / 472

Make sure that you named database tables and columns exactly as shown above.

Otherwise, some code snippets of this manual might not work.

Furthermore, the demo data of the ADITO xRM project has been inserted by the Liquibase update (e.g.,

data of persons and companies).

8.5. Updating the Alias Definition

The Liquibase update we have just executed only affected the database itself. In order to adapt an

ADITO project to these database changes, we must execute a second update:

In the "Projects" window, under "alias", double-click on "Data_alias". Now, in the "Navigator" window,

you see the so-called "Alias Definition", which, so far, does not include the new tables:

The "Alias Definition", also called "Database structure of the project" is, in principle,

a kind of copy of the database structure, augmented with additional features, i.e.,

you can optionally assign additional properties to a table or to a column (properties,

which cannot be assigned in the database itself, e.g. a title or a description).

In the "Navigator" (!) window, right-click on "Data_alias" and select "Diff Alias <> DB Table":

© 2025 ADITO Software GmbH 65 / 472

In the following dialog, select your project and your database alias (e.g., "default"), and then "OK". A

larger dialog will open, showing all differences between the database structure ("Data_alias [remote]",

right part) and the Alias Definition ("Data_alias [local]", left part).

If you hover with the mouse pointer over the little "i" icon in the upper right corner

of this dialog, a legend will pop up, explaining the meaning of the colors of the little

bars shown in front of each table name.

As our Liquibase update has made the database’s structure "newer" than the Alias Definition, we now

need to perform an update from "remote" (right part) to "local" (left part): Mark all 3 carpool-related

table names shown on the right (click on them subsequently, holding the CTRL key). Click on the button

showing 2 arrows pointing to the left (<<), followed by "OK".

The update process might take some time. After it has finished, look at the "Navigator" window: The

new tables and their columns have been added to the Alias Definition.

If you want to create or modify your database structure without using Liquibase, you

can always choose between both ways:

© 2025 ADITO Software GmbH 66 / 472

● Either you start with the database editor (system > default > Data_alias >

ADITO), create your tables and columns (or you create it directly via SQL - see

"Execute SQL" function via the button to the left of the combo box in the

button bar), and then update the Alias Definition via "Diff Alias <> DB Table"

from "remote" to "local".

● Or you do it the other way round: You first create your tables and columns in

the Alias Definition: Double-click on alias > Data_alias and then choose

"Create Table" from the context menu when right-clicking on "Data_alias" in

the Navigator window. Then right-click on the new table and choose "New

Column". Afterwards, click on the new column and edit its properties

according to your specification. Finally, update the database via "Diff Alias <>

DB Table" from "local" to "remote".

In both cases, it might be useful to auto-generate Liquibase files afterwards, because

then, e.g., you can reset your database via the Liquibase-related function "Drop all &

Update…" (see above). Please refer to chapter "Create Liquibase files automatically"

of the Designer Manual.

8.6. Connecting EntityFields with database columns (RecordContainer)

Now that both the Entities and the database structure exist, we have got to "tell" ADITO, how specific

EntityFields are corresponding with specific database columns, acting as data source.

For general information about how to specify what data is to be loaded, please refer

to appendix Database Access, chapter "Basic SQL Statement".

The "connection" between EntityFields and database columns is configured in a so-called

RecordContainer, which must once be created for every Entity:

Double-click on an Entity (under "entity" in the "Projects" window), e.g., on Car_entity. Then the Entity

appears in the Navigator window. Here, right-click on the Entity’s name and choose option "New

RecordContainer" from the context menu. In the following dialog, select "dbRecordContainer" as type

and enter any name, e.g. "db" (for database), followed by "OK". This creates a RecordContainer for

connecting EntityFields with database columns as data source. (As you could see in the "Type" combo

box, there are also RecordContainers having jDito code as data source. Their usage will be explained

later.)

This new RecordContainer’s name is automatically inserted in the Entities' property "recordContainer".

At first, we handle those EntityFields which simply show the value of a specific database column. These

fields can easily be recognized, as we had written their names in uppercase letters, and the name is the

© 2025 ADITO Software GmbH 67 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

same as the name of the corresponding database column. To "connect" these kinds of EntityFields with

a database column, we initially specify the respective database table: Click on the RecordContainer’s

name "db" (under Car_entity > RecordContainers in the Navigator window) and set the property "alias"

to "Data_alias". Now, ADITO knows which database to access.

Then edit the property "linkInformation" by clicking on the three-dotted button to the right of the

property line: A dialog appears, in which you click on the plus sign ("+") and select "CAR" in column

"Table". The next column "Primary key" is filled automatically. Leave the checkbox in column "UID

Table" checked. (This will automatically insert a new UID in the primary key field, whenever a new

dataset is created - besides some other effects, which will be explained later.) Leave the checkbox in

column "Read only" unchecked. Confirm with "OK".

Now, ADITO knows that the data of Car_entity is to be accessed via the database table CAR and its

columns. In SQL terms: "CAR" is to be used in the "from" clause.

If you open the node "db", you see two nodes for every EntityField: One named "…value" (to be saved

in the database, and to be used for calculation purposes), one named "…displayValue" (to be used

exclusively for displaying purposes). These nodes are called "RecordFieldMappings", sometimes

abbreviated as only "RecordFields". For now, we only need the "values", not the "displayValues". (If the

displayValues are not set, ADITO uses the values also as displayValues.)

In order to configure a RecordFieldMapping, you first need to initialize it, by double-

clicking on it or by right-clicking on it and choosing option "Initialize" from the

context menu. Its font color will change from grey to white. (If you want to undo the

initialization, right-click on the RecordFieldMapping again and then choose option

"Restore Default Value". This will reset its font color from white to grey again,

indicating that it is not initialized.)

Please make sure that you initialize only those RecordFieldMappings whose

corresponding EntityFields need to be connected to the database. If you initialize

RecordFieldMappings unnecessarily (e.g., for calculated fields), the performance of

ADITO will be decreased.

Click on RecordFieldMapping, e.g., CARID.value, and set the corresponding database column in

property "recordField" (CAR.CARID, CAR.COLOR, etc.). Repeat this step for all other "value"

RecordFieldMappings showing EntityField names in uppercase letters. Now, ADITO knows what

database columns to access. In SQL terms: "CARID", "COLOR", etc. are to be used in the "select" clause.

Furthermore, check property "isFilterable", if you want the EntityField to be available as filter criteria in

the filter component of the FilterView (remember to repeat this, in case you later set a displayValue).

Then, ADITO automatically adds the corresponding "where" clause to the SQL statement.

© 2025 ADITO Software GmbH 68 / 472

Repeat the previous steps also for the other tables.

The above property configuration is the basic way in ADITO to establish an

automated database access. This means, depending on the requirement, ADITO

automatically creates the suitable SQL statement, be it SELECT, INSERT, UPDATE, or

DELETE including the required "from" clause and (if a filter has been set) the

"where" clause. Optionally, this basic automatism can be modified by an advanced

configuration, using various additional properties, e.g., for setting an arbitrary

"where" clause (property "whereClauseProcess" of the dbRecordContainer). Find

further information in chapter Database RecordContainer and in the appendix

Database Access.

EntityFields not simply showing the value of a database column (e.g., because their value is calculated

from other fields) will be handled later, in chapter [Calculated Fields].

8.7. Using database views

(Excursus)

 This chapter is about database views, not about the ADITO model named "View".

Besides database tables, an Entity can also be related to a database view. To explain how to establish

this, we will use a simple example of testing purposes: We want to connect TestEntity_entity to a

database view named TESTVIEW, which shows every PERSON dataset along with the related company

name (ORGANISATION.NAME).

To realize this, proceed as follows:

● Create the database view, e.g., in the Designer’s in-built database editor:

○ Navigate to system > default > Data_alias. In the database tree, open node ADITO, right-

click on sub-node "Views" and choose "Create View…" from the context menu.

○ Enter the view’s name TESTVIEW and the SQL select to create it

select CONTACTID, LASTNAME, FIRSTNAME, NAME as companyname
from PERSON
join CONTACT on PERSONID = PERSON_ID
join ORGANISATION on ORGANISATION_ID = ORGANISATIONID
order by LASTNAME, FIRSTNAME

© 2025 ADITO Software GmbH 69 / 472

● Update the AliasDefinition via option "Diff Alias <> DB Table", as explained in the previous

chapter.

© 2025 ADITO Software GmbH 70 / 472

In the case of database views, an update is only possible in this direction. The other

direction - creating a view in the AliasDefinition and then updating it into the

database - is not possible (this is only possibly for "real" database tables, as

explained in the previous chapter).

● In the AliasDefinition, mark the primary key column of the database view, by setting its property

"primaryKey" to true.

● Create TestEntity_entity with EntityFields according to the database view’s columns and with a

DbRecordContainer. After setting the RecordContainer’s property "alias" to "Data_alias", you will

be able to select the new database view in property "linkInformation". If you do not find the

view there, you have either forgot to update the AliasDefinition or to set its primary key (see

previous steps).

© 2025 ADITO Software GmbH 71 / 472

● Now you can open the sub-nodes of the RecordContainer (RecordFieldMappings) and assign the

EntityFields to the corresponding columns of the database view.

© 2025 ADITO Software GmbH 72 / 472

9. Making data visible

The preceding chapters have covered exclusively the data structure and its representation in the

project. The previously created elements (database tables and their columns, Entities and their

EntityFields, RecordContainers and their RecordFieldMappings) can all be considered as part of a

"backend", i.e., they alone do not yet appear in the browser ("frontend"). To make them and their data

visible, we use so-called Views (not to be confused with database views), which in turn are clustered in

so-called Contexts. Every Context is related to one Entity and usually contains different Views for

different purposes, e.g., for displaying, filtering, and editing data.

As no View can exist alone, but needs a Context to be assigned to, we first create Contexts for every

Entity, and afterwards we create Views "inside" Contexts.

9.1. Creating Contexts

In the "Projects" window, right-click on "context" and select option "New" in the context menu. This

will open a dialog, in which you select your project, enter a suitable name (Context names are written

in CamelCase, starting with an uppercase letter - here, we write Car, CarDriver, and CarReservation),

and select "Context" as type. Confirm with "OK". Perform this step for creating the Contexts Car,

CarDriver, and CarReservation. Then, connect the new Contexts with the corresponding Entities, by

setting each Context’s property "entity" accordingly (e.g., select "Car_entity" for Context Car, etc.) . This

assignment will immediately be shown by a sub-node showing the Entity name, under the Context

name.

The normal workflow for creating ADITO applications is that you first create a new

Entity and then a Context. However, in some cases it may be helpful to know that

you can do it also the other way round: You can first create a Context and then,

directly "in" the Context, a new Entity (right-click on the Context, select "New" from

the context menu, and then - in the "Create New Model" dialog - select "entity" in

combo box "Type"); the Context’s property "entity" will then be set automatically.

In an ADITO project, every Entity belongs to exactly one Context. Do never assign

one Entity to more than one Context (although, in earlier ADITO versions, this was

technically possible), as this will confuse the logic and cause exceptions.

9.2. Views

Each Context usually contains at least the following basic Views:

● "FilterView", for displaying an Entity’s data in a table structure, along with the option to filter the

data according to specific criteria

© 2025 ADITO Software GmbH 73 / 472

● "PreviewView", for showing details of the dataset marked in the FilterView

● "MainView", for displaying one single set of an Entity’s data, often along with reference data

from other Contexts

● "EditView", for editing the EntityFields of one single dataset

Depending on the purpose of the Context, there may be more or less Views.

9.2.1. Creating Views

To create a new View, right-click on a Context and choose option "New" in the context menu. This will

open a dialog, in which you select your project, a suitable name, and "view" as type. According to the

conventions given in ADITO’s spelling guidelines (see ADITO Information Document AID001, chapter

"Spelling & Wording" > "ADITO models"), the name of the View starts with the name of the Context,

followed by its purpose in CamelCase, and ending with the suffix "_view".

Now, create the above mentioned basic Views for each Context, naming them according to the

convention. Thus, e.g., in case of the Context Car, the names are "CarFilter_view", "CarPreview_view",

"CarMain_view", and "CarEdit_view".

Once all Views are created, they must be assigned to the Contexts' properties "mainview", "filterview",

"editview", and "preview".

9.2.2. Assigning layout and ViewTemplates

The appearance of a View cannot be designed arbitrarily. Rather, its visible structure is determined by

● a predefined layout, selectable in the combo box of the View’s property "layout";

● one or more predefined ViewTemplates.

This chapter gives only a rough introduction to the topic, along with a few examples.

Find detailed information on layouts and ViewTemplates in the sub-chapters of

chapter Controlling the design.

First, a layout is set, by selecting from the combo box in the View’s property "layout". Some Views

require that additional properties are set. E.g., a FilterView needs its property "filterable" to be set to

true. See table below.

To assign a ViewTemplate, double-click on the View in the "Projects" window and then right-click on

the View in the Navigator window. Select option "Add ViewTemplate…" in the context menu. A dialog

will open, in which you select a suitable template type on the left (see table below), leave the field

"Assign to" empty, enter a name for the ViewTemplate, and confirm with "OK". After you have assigned

© 2025 ADITO Software GmbH 74 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

the template, it appears as sub-node under the View (in the Navigator window). You can click on it to

see its properties.

Layouts and ViewTemplates can be combined in various ways. However, in the first approach, the

following standard configuration of ViewTemplates, layouts, and further properties is suitable in many

cases, so we will use it for our car pool example:

Table 1. Example configuration for Views and ViewTemplates of Car_entity

View View properties Template type Template properties

FilterView Layout: GroupLayout

filterable: true

Table, TreeTable entityField: #ENTITY

columns: e.g., CARID,

MANUFACTURER, TYPE, COLOR

PreviewView Layout:

HeaderFooterLayout

header: Card

footer: Generic

(values can be set as

soon as these

ViewTemplates are

generated)

Card (assign to

header)

Generic

ScoreCard (assign to

footer)

entityField: #ENTITY

iconField: PICTURE

titleField: e.g., MANUFACTURER

subtitleField: e.g., TYPE

descriptionField: e.g., COLOR

informationField: e.g., mileage

entityField: #ENTITY

fields: e.g., MANUFACTUREDATE,

PRICE, etc.

showDrawer: true

drawerCaption: Details

hideEmptyFields: false (checkbox

unchecked)

entityField: #ENTITY

fields: e.g., LICENSEPLATENUMBER

EditView Layout: BoxLayout Generic entityField: #ENTITY

editMode: true

fields: all fields in uppercase letters

(or part of them), except the

primary key (e.g., CARID)

© 2025 ADITO Software GmbH 75 / 472

View View properties Template type Template properties

MainView Layout:

MasterDetailLayout

master:

PreviewView (see

below)

not required

(reference to

PreviewView)

Setting a ViewTemplate’s property "entityField" to "#ENTITY" means that all fields of the Entity can be

loaded and are therefore available in all EntityField-related properties, e.g., "columns" or "fields". If you

actually need only one single EntityField, you should select it in property "entityField" accordingly,

because this will restrict the loading process and therefore result in a better performance.

As you can see that it is common to assign at least 2 different ViewTemplates to a PreviewView, so it

appears with a "header" area ("Card", showing the main EntityFields and often a picture) and an

"footer" area ("Generic", showing further EntityFields). That is why this View layout is called

"HeaderFooterLayout". All further ViewTemplates that you might add to the View would be displayed

in the middle, i.e., between "header" and "footer".

Additional information on ViewTemplate "Generic":

● Property hideEmptyFields controls whether or not a line with the label (title) of an EntityField is

still to be displayed, even if the EntityField has no value (= if it is "empty"). For PreviewViews, we

choose to set this property to false, as this ensures a uniform layout that is independent from

the dataset marked in the FilterView. But, of course, the setting of this property is ultimately up

to your customer’s requirements.

● Property isLabelPositionTob controls if the label is to be shown above the value (true) or to the

left of it (false). Default value is false, which fits in most cases.

In many cases, the footer of a PreviewView is a ScoreCardViewTemplate, see chapter

ScoreCard. In our car pool example, we will configure this later, for the EntityField

"availability" (see chapter Example: Availability).

Furthermore, you see that a MainView usually has no own View, but it references other Views. Its

layout is usually a "MasterDetailLayout", with the Context’s PreviewView acting as "Master" and Views

of other Contexts acting as "Details" (in order to display data dependent from the data shown in the

"Master"). To add a reference to other Views, right-click on the View in the Navigator window, and

select "Add reference to existing View…". A dialog will open, in which you select "#ENTITY" as

EntityField (this spelling means, that all Views of the current Entity will be selectable in the next line),

the PreviewView as View, and "master" in line "Assign to". This will automatically set the MainView’s

© 2025 ADITO Software GmbH 76 / 472

property "master" to the respective PreviewView. How to add the "Detail" part of the

"MasterDetailLayout" will be explained in a later chapter ("Complex dependencies").

As for the ViewTemplate "Table", there is a property named "linkedColumns": Here you can set an

arbitrary number of columns that are to be provided with a hyperlink to the MainView. The hyperlink

functionality will be displayed by a blue font color. If "linkedColumns" is not set, the hyperlink will

automatically be assigned to the first column set in property "columns".

Furthermore, the ViewTemplate "Table" has a property named hideContentSearch. If you set this

property to false, a lookup bar will appear on the top of the table. This bar is named content search

(Context filter). If you start typing in this bar, the datasets are filtered accordingly. This only works, if

you have checked property "isLookupFilter" of every RecordFieldMapping whose related EntityField

should be included in the filtering. (It does not work EntityFields of all content types, e.g., it does not

work for date values, but it works for text values.)

Now, repeat the above steps in order to create and configure the Views of the Entities CarDriver_entity

and CarReservation_entity. In the ViewTemplates, you may set arbitrary fields/columns, but, in this first

approach, we recommend to use only those EntityFields that written in uppercase letters.

9.2.3. Blueprints

(Excursus)

"Blueprint" is a functionality to simplify the creation of ADITO models, e.g., Entities, EntityFields,

Contexts, and Views. You can execute Blueprints in the "Projects" window, via the context menu of the

nodes "context" or "entity", respectively:

© 2025 ADITO Software GmbH 77 / 472

Figure 10. Blueprint available for node "entity"

Figure 11. Blueprints available for node "context"

The Blueprints displayed in the above screenshots work as follows:

● entity > New with Blueprint > Generate Entity from database: Generates a new Entity with

EntityFields (including correct contentType) and RecordContainer connection, based on an

existing database table.

● context > New with Blueprint > Create Context with default Views: Generates a new Context

with selectable default Views (PreviewView, MainView, etc.), based on an existing Entity.

© 2025 ADITO Software GmbH 78 / 472

● * context > New with Blueprint > Create Context with default Views and Entity: Generates a new

Context with an Entity and selectable default Views (PreviewView, MainView, etc.). In this case,

an existing database table is not required, and you need to create the RecordContainer by

yourself.

Thus, in most cases, your usual approach will not be to create Context, Entity, EntityFields, and

RecordContainer manually step-by-step, as explained in previous chapters; but you will simplify your

work by first creating a database table and then executing the Blueprints "Generate Entity from

database" and "Create Context with default Views" subsequently. Nevertheless, this automation still

requires some subsequent work, e.g., configuring ViewTemplates for the Views.

Find further information about available Blueprints in ADITO Information Document

AID114 "Blueprints". This document also explains how to create additional

Blueprints, according to your own requirements.

9.3. Extend the Global Menu

The last step to make our data visible, is to extend our frontend’s "Global Menu" by a new menu group,

including 3 new menu item, one for each Context: Double-click on _SYSTEM_APPLICATION_NEON (in

the "Projects" menu, under "application"). This will open an editor window in the upper middle part of

the Designer, showing the current menu items (on the left) and all existing ADITO elements (on the

right) that, in principle, are suitable for being connected via a menu entry. As you can see, a menu item

never stands alone, but all menu items belong to a menu group, e.g., "Contact Management", or

"Sales".

You can filter the elements to be shown by setting the checkboxes in the Navigator window. In our case,

we set the checkbox at "NeonContext", in order to restrict the displayed elements to Contexts.

Let’s start with the Context Car: Place the Context Car somewhere on an empty space, e.g., under the

group "Contact Management", by simply dragging it from the right to the left, and dropping it in a dark

grey area. Automatically, a new menu group named "Group" will be created, with an (unnamed) sub-

group in it, which in turn includes the menu item "Car". Click on the default name "Group" and change

its property "title" to a suitable term, e.g., "Car Pool". Now, also add menu items for the Contexts

CarDriver and CarReservation, by dragging and dropping the Contexts inside (!) the new Carpool sub(!)-

group.

As you can see, the Contexts' menu items receive the Contexts' names by default. If required, you could

overwrite this name by setting the menu item’s property "title".

A menu item is generally not visible unless a project role has been assigned to the sub-group it’s

residing in. This allows you to restrict specific menu items to specific user groups. As the test user

"Admin" (included in the ADITO xRM project) already has the project role

© 2025 ADITO Software GmbH 79 / 472

"INTERNAL_ADMINISTRATOR", we will assign this role to the sub-group including the new menu items:

In the Navigator window, set the checkbox "Role"; this restricts the display in the editor window to the

user roles. Then, drag the role "INTERNAL_ADMINISTRATOR" and drop it inside the sub-group. A small

orange square is shown in the upper right corner of the sub-group’s title bar, indicating that the role is

assigned. If you click on this orange square, all assigned roles are shown.

The role "INTERNAL_ADMINISTRATOR" as well as further roles with prefix "INTERNAL_" are internal

roles that can neither be extended nor deleted. Nevertheless you can create your own project roles

(see sub-chapter below).

Please always be aware that the only purpose of this kind of role assignment is to

control the Global Menu, in a user-specific way. BUT if a user knows the URL of a

Context, he can open it even if he does not see it in the Global Menu. If you want to

restrict specific Contexts, tabs etc. to specific user groups, you can do this via custom

roles, to be defined in the client, in menu group "User Administration". Find more

information in the ADITO Information Document Roles and Access Rights.

9.3.1. Creating new project roles

To create a new project role,

● navigate to folder "role" in the "Projects" window (project tree).

● Right-click on the folder and choose "New" from the context menu.

● Enter a name in CamelCase, with the prefix "PROJECT_", i.e., "PROJECT_CarPoolAdministrator".

● The role will immediately be visible in the role assignment menu (application >

____SYSTEM_APPLICATION_NEON)

Now we can assign the new role "PROJECT_CarPoolAdministrator" to the menu sub-group that holds

the Carpool-related Contexts (by drag-and-drop, see above). For testing purposes, we can remove the

role assignment INTERNAL_ADMINISTRATOR, by clicking on the small orange square and then on the

cross icon to the right of INTERNAL_ADMINISTRATOR.

When we now deploy, logout and login again, our Carpool-related Contexts have vanished from the

Global Menu. The reason is that, so far, we have not yet assigned the new role to a user. This can be

done quite quickly:

● In the project tree, double-click on system > default.

● Click on tab "Users" in the middle part of the Designer.

● Click on line "Admin" (because this is our test user, with whom we log into the client)

© 2025 ADITO Software GmbH 80 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID007_DE_Berechtigung.pdf

● Check the new role in property "roleNames"

● Save

If you now deploy (see chapter below), logout and login again, you should see the carpool-related

Contexts again in the Global Menu.

9.4. Deploy

To convert our additions and changes into a form and structure that can be "understood" by the ADITO

server, we need to execute a deploy process (commonly only called "deploy")

9.4.1. Practically

Make sure that the ADITO server is running and there is a tunneled database connection (see above).

Then, click on the "Deploy Project" button. This button, which shows a burger-like icon (with a blue

arrow from the left), is located in the middle of the Designer’s button bar:

Figure 12. The "Deploy project" button

© 2025 ADITO Software GmbH 81 / 472

When this button has been clicked, a deploy dialog will open, in which you select your project (e.g.,

"dev-mycloudsystem-c2-adito-cloud") and your database alias (e.g., "default"). As for the checkboxes,

you can leave the default settings. Confirm with "OK".

Then, at first, so-called "Transpile" is executed. This may take some time, especially if you deploy for

the first time. The technical term "transpiling" derives from modularization, which is explained in the

ADITO Information Document AID123 Modularization.

After the transpile is finished, the actual deploy starts with a comparison between the code in the

Designer and the state of the cloud system. (This also may take some time, especially if you deploy for

the first time.)

Then, a dialog will open subsequently, showing all models of the project that include changes,

preceded by the following "SQL-like" abbreviations:

* "I" stands for "Insert", meaning models that you have recently created/added to your project.

* "U" stands for "Update", meaning existing models that you have recently changed (e.g., you added a

new menu group in the Global Menu, as we have just done it - see above).

* "D" stands for "Delete", meaning existing models that you have recently deleted.

If you execute the very first deploy to a cloud system, a large number of changed

models might be shown. This has technical reasons, which are not explained here.

Just deploy all of them, then they will not appear again with the next deploy.

If you want to deploy these changes, you can leave all checkboxes checked and confirm with "OK".

After a few seconds, a dialog stating "n model(s) were updated" appears in the lower right corner of

the Designer.

Every development and configurations you perform with the Designer will only be

visible in the client if you deploy them first. Please consider this when reading the

following chapters, as usually there will not always be reminders to deploy. After the

deploy is completed, you need to refresh the view in the browser. As clicking the

browser’s "refresh" button is sometimes not enough, we recommend to click on the

respective menu item instead. In cases when menu items have been changed, you

need to log out and log into the client again, in order to see the changes. In rare

cases, and depending on the browser you use, it can also be necessary to empty the

browser’s cache - in Google chrome, e.g., via the shortcuts CTRL+F5 ("deep refresh"

of the current web page) or CTRL+SHIFT+DEL > "Clear data" (deleting selected cache

data) - in order to see the changes effected by the deploy. Last but not least,

changes of a few system-related properties require a restart of the server. Please

find more information in chapter Troubleshooting.

© 2025 ADITO Software GmbH 82 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

Always make sure you had actually executed a deploy, whenever you wonder why a change is not

visible in the client.

Deploy of a single model

If you have changed only one single ADITO model (e.g., its property "title"), you can save time if you do

not execute the deploy for the complete project, but restrict it to only the respective ADITO model

(e.g., the Context, the Entity, or the View). You have the following options:

● In the project tree, right-click on the model that you have changed (e.g., the Context, the Entity,

or the View), and choose "Deploy" from the context menu.

● If you have opened the model as tab in the Editor (upper middle part of the Designer), you can

also right-click on the tab and choose "Deploy". If the tab shows a process, the deploy will

nevertheless be performed for the complete model related to the process. Thus, for example, if

you have changed 2 processes of the same Entity, a deploy performed via the tab of one process

will also deploy the other process.

● If you deploy a single Context, all elements that appear subordinated to it in the project tree (its

Entity and Views) will NOT automatically be deployed, too.

9.4.2. Technically

To understand what happens technically, if you deploy, you first have to understand how an ADITO

project is stored:

All configuration and code of an ADITO project is stored in, basically, 3 types of files:

● .aod files include the configuration of an ADITO model (e.g., an Entity) in XML form. For example,

if you double-click on an Entity in the "Projects" window, you can inspect its XML data by clicking

on tab "Source" in the Editor (upper middle part of the Designer). If you hover over the tab title

with your mouse pointer, a tooltip is displayed, indicating the file name (e.g., Activity_entity.aod)

and its directory path.

● .js files include the JavaScript/JDito code entered in properties or libraries (e.g., a valueProcess).

● Files named documentation.adoc include the content of a property "documentation", which has

"AsciiDoc" format, see https://asciidoc.org/

Now, technically, a "deploy" means that the ADITO project’s source data (.aod and .js files) are written

into the system database, in particular, into the table ASYS_SYSTEM. The ADITO web server then reads

this table’s content in order to create web pages. If you choose option "Force deploy" when executing a

deploy, then all datasets of table ASYS_SYSTEM are deleted, and the complete project data is inserted

anew. This can be necessary in rare cases, when the Designer fails to recognize certain changes you had

performed in your project.

© 2025 ADITO Software GmbH 83 / 472

https://asciidoc.org/

If you want to inspect the content of table ASYS_SYSTEM, you can proceed as follows:

● In the "Projects" window, double-click on system > default.

● In the Editor (upper middle part of the designer), double-click on "____SYSTEMALIAS".

● A database tree appears. Here, navigate to "adito_system" > "Tables" > "Tables" > ASYS_SYSTEM.

● Right-click on ASYS_SYSTEM and choose "View Data …" from the context menu.

● Now you see all (or the first 100) datasets of this table. In particular, look at the following

columns:

○ NAME indicates the name of the corresponding ADITO model.

○ XMLDATA includes the ADITO model’s XML or JavaScript/JDito content. You can inspect

this content by double-clicking on one XMLDATA cell: A menu appears, in which you

choose option "Open as text". Then you see the same content that you can see in the

"Source" tab of the Editor, after double-clicking on an ADTIO model in the "Projects"

window (e.g., an Entity).

Figure 13. Inspecting the content of the system table ASYS_SYSTEM

9.5. A first test

Now it’s time to watch our interim results in the web client, i.e., in the browser: Make sure that

© 2025 ADITO Software GmbH 84 / 472

1. the ADITO server is running,

2. the tunnels have been established,

3. you have deployed all changes (see above),

and then call the URL of your cloud system. Instead of doing this manually, you can also select "Web

Client (Neon) Cloud - default" in the combo box of the Designer’s button bar, and click on the green

triangle to the right of the combo box. (Due to a bug, the URL that is now generated includes the port

number, which leads to an error message. Please remove the port manually, including the colon (e.g.

":8080") and call the URL again.) Then, a login mask appears, where you enter "admin" as username

and the admin password, and confirm by "Login". The admin password is available in the SSP (see

chapter ADITO server).

After a few seconds, the Dashboard appears (we will deal with the handling of Dashboards later). Click

on the little blue text in the upper middle (usually the word "Home", along with a "house" icon), which

will show you all menu items, including the items we have just added.

If you click on menu item "Car", the FilterView of the Context Car is displayed (this is due to ADITO

convention). Here, you see only an empty table.

As you will have noticed, menu group "Car Pool" is currently displayed with a

question mark to the left of it. If you click on this menu group, you will see further

questions marks in the vertical button bar on the left (available via "burger button"

in the left upper corner of the client). The placeholder "?" indicates, that there is no

icon specified yet. You can find information about how to search and integrate a

suitable icon in chapter "Icons", subchapter of Controlling the design.

9.5.1. Entering example data

For testing purposes, it can be helpful to have some example data available. As we have not configured

all EntityFields yet, we cannot enter data via the client. Thus, you must either enter data directly, using

ADITO’s database editor (system > default > Data_alias > ADITO), or you can again use Liquibase. The

latter works as follows:

In folder example_carpool (under alias > Data_alias), create an empty xml file and name it

"init_car.xml". Open it in ADITO and fill in the following code:

init_car.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="9bb1c6b9-430a-4ba4-90ad-cbde9ae38660">

 <insert tableName="CAR">

© 2025 ADITO Software GmbH 85 / 472

 <column name="CARID" value="405de82e-4324-47d7-a643-d66ed1b4ea77"/>

 <column name="COLOR" value="RED"/>

 <column name="LICENSEPLATENUMBER" value="LA-AD 123"/>

 <column name="MANUFACTURER" value="BMW"/>

 <column name="MANUFACTUREDATE" valueDate="2022-11-21"/>

 <column name="TYPE" value="320i"/>

 <column name="PRICE" valueNumeric="34532.52"/>

 <column name="CURRENCY" value="EUR"/>

 </insert>

 <insert tableName="CAR">

 <column name="CARID" value="324445c7-57e0-4e26-b83f-beece3b42a2d"/>

 <column name="COLOR" value="GREEN"/>

 <column name="LICENSEPLATENUMBER" value="M-CX 9876"/>

 <column name="MANUFACTURER" value="MERCEDES"/>

 <column name="MANUFACTUREDATE" valueDate="2020-03-09"/>

 <column name="TYPE" value="C220"/>

 <column name="PRICE" valueNumeric="42934.16"/>

 <column name="CURRENCY" value="USD"/>

 </insert>

 <insert tableName="CAR">

 <column name="CARID" value="84b5ac0a-f490-4537-b4a9-273279f01319"/>

 <column name="COLOR" value="YELLOW "/>

 <column name="LICENSEPLATENUMBER" value="H-LK 597"/>

 <column name="MANUFACTURER" value="FORD"/>

 <column name="MANUFACTUREDATE" valueDate="2021-01-11"/>

 <column name="TYPE" value="Focus"/>

 <column name="PRICE" valueNumeric="23934.16"/>

 <column name="CURRENCY" value="USD"/>

 </insert>

 </changeSet>

</databaseChangeLog>

The "column name" tags include different data types, such as "value",

"valueNumeric", and "valueDate". Make sure you are always using a data type fitting

to the data type of the corresponding database column. Find further information in

the chapter on Liquibase in the Designer Manual.

This new init_car.xml file must now be referenced in the changelog.xml of our car pool project (under

alias > Data_alias > example_carpool) by adding the following additional code line:

changelog.xml (under alias > Data_alias > example_carpool)

...
<include relativeToChangelogFile="true" file="init_car.xml"/>
...

Now, execute a Liquibase update (see previous chapter) and refresh the display by clicking again on the

globe icon and selecting the menu item "Car" (for technical reasons, using the browser’s refresh button

is not enough). Then, the inserted example datasets should be displayed.

Of course, our application is still far from being completed. E.g., you see the 36-digit ID of a color (e.g.,

"RED ") instead of the name of the color (e.g., "red"), you cannot select a car driver from a list of

employees, and there is no relation between the Contexts Car, CarDriver, and CarReservation. But, for

example, you can already create a new dataset (including part of the fields) or edit an existing dataset.

Or you can load and save an image of the car: Click on the "pencil" icon to the right of the image’s

placeholder icon (upper left part of the PreviewView), then on the placehoder itself, select an image

stored on your computer, and save the selection by clicking on the blue hooklet.

© 2025 ADITO Software GmbH 86 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

If you want to have your own example data available in your system, there are 2

alternatives to the above procedure:

● You fill your database tables directly via SQL "INSERT" scripts: Press the

"Execute SQL" button to the left of the combo box in the button bar, select

your connection, insert your SQL code, and run it (F6 or button "Run SQL" to

the right of the "Connection" combo box).

● You enter example data via the EditViews in the ADITO client.

In both cases, it might be useful to auto-generate Liquibase "init" files afterwards,

because then, e.g., you can reset your database via the Liquibase function "Drop all

& Update…" and still have the example data present. Please refer to chapter "Create

Liquibase files automatically" of the Designer Manual.

9.6. Dashboard and Dashlet

After you have logged in to the client or whenever you click the "Home" button, a Dashboard appears.

This is called the "Home" Dashboard.

A Dashboard basicly consists of one or more View components, the so-called Dashlets. Via the

"Dashlets" button (lower right part of a Dashboard), you can open the so-called DashletStore: Here,

you can add further Dashlets by selecting them from a category list. To remove a Dashlet, click on its

"x" button (upper right corner of the Dashlet).

9.6.1. Add Dashlets

To make a specific View available as Dashlet in the DashletStore, we first create a so-called

DashletConfiguration (a kind of template) and assign it to the View:

Open the View in the Navigator window (let’s use CarReservationFilter_view as example) and choose

"Add Dashlet Config" from its context menu.

 This option is not available for Views having a "MasterDetailLayout".

Enter the name of the DashletConfiguration according to the ADITO spelling guidelines (see ADITO

Information Document AID001, chapter "Spelling & Wording" > "ADITO models"), e.g.,

"AllCarReservations". The new DashletConfiguration’s name appears under the node "DashletConfigs".

Edit the DashletConfiguration’s properties:

● title: Title of the Dashlet, to be visible in the client, when the Dashlet has been added to the

Dashboard, e.g., "Car reservations"

© 2025 ADITO Software GmbH 87 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

● description: Description of the Dashlet, e.g. "Show all car reservations". This text will be visible in

the DashletStore, below the Dashlet’s title.

● icon: Mandatory property. Every Dashlet needs an icon to be set, in order to ensure a good

identification. If no icon is set, you get an error message.

 The icon must be set, otherwise the DashletStore won’t work properly.

● fragment: The last part of the View’s URL (when opened via a Context, not via a Dashboard),

following "/client/"). E.g., if the View’s URL is

https://myProject.dev.c2.adito.cloud/client/CarReservation/filter, you must enter

"CarReservation/filter", if you want to see all reservations, unfiltered.

If you want to apply a filter, you can simply extend this fragment by "?search=…": Just configure

the filter in the FilterView, apply it, and then copy the last part of the URL into the property

"fragment" (it will be a long cryptic URL):

→

Then, log out and log into the client. Result: Included in the Dashboard, the Dashlet immediately

shows the filtered data.

● singleton: Defines, whether or not the Dashlet can be added multiple times to the Dashboard. If

true, the Dashlet can only be added once. As soon as is is added, it disappears from the category

list for adding new Dashlets. If false, you may add the Dashlet as often as you like.

● categories: In a configuration table, you can define, in which category in the DashletStore the

Dashlet appears, when you press the "Add" button. Click the plus button ("+") to define the

name and the title of a category, e.g. name = "carReservation", title = "Car reservation". The title

will be visible as category in the DashletStore, the name is only for internal organisation.

Now try to create 2 DashletConfigurations: one showing all reservations (see example configuration

© 2025 ADITO Software GmbH 88 / 472

above), and the other showing only cars with license plate numbers starting with "M" (name it

"CarsLicensePlateStartingWithM"). Then, add them to the "Home" Dashboard in the client.

Note that you need to logout and re-login in order to make new or modified

Dashboards/Dashlets visible in the DashletStore of the client.

9.6.2. Configure Dashboard defaults

You may have noticed that in the "Projects" window, there is a node named "dashboard", including

several Dashboards, e.g.

● "Home": This is the main Dashboard shown after logging in to the client or whenever you press

the "Home" button. Never rename it.

● "SalesDashboard": This is a Dashboard showing figures of sales topics. In the Global Menu of the

client, it appears like a Context: You can select it in the menu group "Sales".

The main properties of a Dashboard are:

● title: Title of the Dashboard, to be visible in the client.

● icon: The icon of the Dashlet, which will be shown

○ above the Dashlet’s title in the DashletStore;

○ on the left of the Dashlet’s title bar.

● DashboardType:

○ PRIVATE: The Dashboard’s appearance is user-specific. Any changes (e.g., moving

Dashlets) a user makes, are not visible for other users. Example: the "Home" Dashboard.

○ PUBLIC:

■ All users see the same number of Dashlets.

■ Every user can change the order of the Dashlets, i.e., move Dashlets or change

their size, but not close them. These individual changes are not visible to other

users.

■ However:

If a PUBLIC Dashboard has its property "fixedDashlets" set to

true, then Dashlets can only be changed by a user having one of

the roles specified in the Dashboard’s property "editRoles" (see

below), and the position and the size of all Dashlets are the

same for every user.

© 2025 ADITO Software GmbH 89 / 472

(Note that property "fixedDashlets" has currently only an effect

on PUBLIC Dashboards.)

● editRoles: Roles of users who are entitled to edit the Dashboard (move Dashlets, add new

Dashlets, close Dashlets etc.). If no role is assigned, every user can edit.

The Dashboard administrator (= a user having the role "INTERNAL_DASHBOARDSTOREADMIN") can

publish, edit, and delete elements (DashletConfigurations) in the DashletStore.

In the "Projects" window, double-click on a Dashboard to view its default configuration:

In the Editor window (upper middle window of the Designer) you can see a sketch of the arrangement

of the default Dashlets, i.e., their size and position.

In the Navigator window (upper right window of the Designer) you can see 2 nodes:

● Under "Dashlets" you see the default Dashlets included in the selected Dashboard (if you click

on one of it, it is marked with a surrounding blue line in the Editor). You can re-order and re-size

them by changing their properties (which are based on an invisble grid of columns and rows)

○ "xPos": the number of the column of the left upper corner of the Dashlet)

○ "yPos": the number of the row of the left upper corner of the Dashlet)

○ "colspan": the width of the Dashlet (= the number of rows it ranges over)

○ "rowspan": the height of the Dashlet (= the number of rows it ranges over)

● Under "Available Configs", you see all DashletConfigs of the project. To add a new Dashlet based

on a specific DashletConfig, right-click on it and choose "Add to Dashboard".

Figure 14. The configuration of the "Home" Dashboard

© 2025 ADITO Software GmbH 90 / 472

According to the ADITO spelling guidelines (see ADITO Information Document AID001, chapter "Spelling

& Wording" > "ADITO models"), the name of a Dashlet starts with the name of the assigned

DashletConfiguration, followed by the suffix "Dashlet", e.g. AllContactsDashlet.

Be aware that the above configurations are only default settings. These are only

applied once, when starting the client after a new ADITO installation.

Whenever the user modifies the Dashboard in the client, the default settings visible

in the Designer remain unchanged.

9.6.3. Resetting Dashboards

If users want their Dashboard to be re-setted to its initial state (as configured in the Designer), the

procedure is different depending on whether it is a "public" Dashboard or a "private" Dashboard:

9.6.3.1. Reset of a "public" Dashboard

To reset a "public" Dashboard (e.g., the "Sales Dashboard" of ADITO xRM), there are 2 ways:

● In the client: Remove all Dashlets manually.

● On database level: Remove all Dashlet datasets referring to the respective Dashboard, from the

table ASYS_DASHLETS.

Afterwards, in both cases, re-open the Dashboard by choosing it from the Global Menu or clicking on

its icon (pressing the "refresh" button of the browser is not enough). The Dashboard is now resetted.

9.6.3.2. Reset of a "private" Dashboard

To reset a "private" Dashboard (e.g., the "Home" Dashboard of ADITO xRM), there are 2 ways:

● In the client (currently only available for the Home Dashboard):

○ Open the DashletStore (blue button "Dashlets").

○ Click on the button Reset Dashboard

● In all other cases, a "private" Dashboard cannot be resetted in the client. In this case, you can

reset a "private" Dashboard only in the Designer:

○ Open the property sheet of the respective user in the Designer:

■ In the "Projects" window, double-click on system > default

■ In the Editor window, choose tab "Users"

■ Click on the user whose Dashboard is to be resetted

© 2025 ADITO Software GmbH 91 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

○ In the "Properties" window,

■ choose tab "Dynamic" (this tab exists only for users who had logged-in at least

once before); a key-value list appears.

■ completely delete the content of the value field of key "#<name of Dashboard>",

e.g., "#Home" for the "Home" Dashboard;

■ set the value of key "#<name of Dashboard>Loaded" (e.g., "#HomeLoaded"), to

"false" (type the word false as value).

○ Click the "Save all" button in the button bar of the Designer

○ In the client, log out and log in again, and re-open the Dashboard: The Dashboard is now

resetted.

Figure 15. Resetting the "private" Dashboard of a specific user

© 2025 ADITO Software GmbH 92 / 472

9.6.4. Creating new Dashboards

To create a new Dashboard, right-click on node "dashboard" in the Projects window and then choose

"New" from the context menu. Enter the Dashboard’s name, according to the ADITO spelling guidelines

(see ADITO Information Document AID001, chapter "Spelling & Wording" > "ADITO models"), e.g.

"CarDashboard". Configure the Dashboard’s properties (see previous chapter).

Now, add Dashlets to the Dashboard form:

● In the Projects window, Double-click on your new Dashboard.

● In the Navigator Window, search for your Dashlet under the node "Available Configs", e.g.,

"AllCarReservations"

● Right-click on this Dashlet and choose "Add to Dashboard" from the context menu. In the

Designer’s Editor, the Dashlet now appears in the Dashboard form and in the Navigator window,

under the node "Dashlets".

● In the Navigator window, rename the new Dashlet’s default name, e.g., to

"AllCarReservationsDashlet" (right-click on it and choose "Rename" from the context menu).

● Configure the Dashlet’s properties (see previous chapter).

● Repeat this step for the second Dashlet, e.g., "CarsLicensePlateStartingWithM"

If, in the Dashboard form, the second Dashlet is not visible after adding it, it

has been added "under" the previous Dashlet. Then simply click on the

second Dashlet in the Navigator window (under "Dashlets") and change its

properties "xPos"/"yPos"; then it will change its position and be visible beside

the first Dashlet.

Afterwards, in the "Projects" window, double-click on application > _SYSTEM_APPLICATION_NEON to

open the menu editor. Check "NeonDashboard" in the Navigator window, which will reduce the

components visible in the middle window to only Dashboards. Drag the new Dashboard and drop it on

a suitable place in the menu, e.g., directly above the menu entry "Car".

After deploying and logout/login you can open the new Dashboard via the Global Menu of the client.

© 2025 ADITO Software GmbH 93 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

10. Advanced functionality

In principle, you have now learned how to set up an ADITO application with the option to create, view,

and edit datasets with simple fields of different data types. However, of course, we need some

advanced functionality in order to build a professional application. This will be explained in the next

chapters.

10.1. Consumer and Provider: Connecting Entities

According to the data model we have built before, there is a relationship between the Entities

representing cars, drivers, and reservations: One car reservation is related to one car and one car

driver. In terms of database structure, this means that the primary keys CAR.CARID and

CARDRIVER.CARDRIVERID appear as foreign keys in the table CARRESERVATION (columns CAR_ID and

CARDRIVER_ID).

Figure 16. Carpool-related database tables with primary keys (PK) and foreign keys (FK)

Now, if we are viewing the CarReservation Context and want to create a new CARRESERVATION dataset,

we must select one of the existing CARDRIVER datasets and one of the existing CAR datasets. To have

all drivers and all cars available in the CarReservation Context, we need to establish dependencies

between the corresponding Entities. In ADITO, this can be achieved by generating objects named

Consumers and Providers, which fit to each other by specific properties and by an optional parameter.

© 2025 ADITO Software GmbH 94 / 472

● The Provider is a configuration model created at the side of an Entity providing ("sending") data

requested by another Entity. (Colloquially, Designer users sometimes speak of the providing

Entity itself as "the Provider" - do not mistake these terms.).

● The Consumer is a configuration model created at the side of an Entity consuming ("requesting")

data of another Entity. (Colloquially, Designer users sometimes speak of the consuming Entity

itself as "the Consumer" - do not mistake these terms.)

● The Parameter basically contains the criteria the Provider needs to select the required data. It is

created on the Provider’s side and assigned both to Provider and Consumer. If all datasets of an

Entity are to be provided, a Parameter is not required.

The ADITO-specific terms "Consumer", "Provider", and "Parameter" are spelled with

a capital letter, in order to distinguish them from the colloquial terms "consumer",

"provider", and "parameter". The same wording also applies for other ADITO-

specific terms that have equivalents in colloquial language, such as "Entity" or

"Context". Find more information on ADITO-specific wording in the ADITO

Wording_Guideline (AID002), available in the customer area of the ADITO web site.

The following sketch illustrates this mechanism, using an existing dependency of the xRM project as

example: All persons related to a specific organisation (company, club, etc.) are to be displayed in the

Context named "Organisation" (in the Global Menu of the web client, it is visible as "Company").

Figure 17. Example of a dependency created by Consumer and Provider

Explanations:

1. The Provider exposes one or more Parameters from its Entity to the Consumer.

2. The Consumer writes the respective value(s) (controlled by a valueProcess) into the

Parameter(s).

3. The Parameters’ values are now available in the Entity of the Provider.

4. The Consumer requests the records from the Provider. As a result the recordContainer selects

the new record set with the Parameter(s) being evaluated by a conditionProcess.

© 2025 ADITO Software GmbH 95 / 472

https://www.adito.de/login

5. The Provider delivers the requested records to the Consumer.

© 2025 ADITO Software GmbH 96 / 472

This to-do list summarizes the workflow:

Table 2. Configuration of dependency via Provider and Consumer (workflow up to down)

Records

required

<Provider>_entity <Consumer>_entity

All datasets Create new Provider:

Navigator > <Provider_entity> New

Provider:

name: <ProviderName>

Create new Consumer:

Navigator > <Consumer_entity> New

Consumer:

name: <ConsumerName>

entityName: <Provider>_entity

fieldName: <ProviderName>

<ConsumingField>.consumer:

<ConsumerName>

Selected

datasets

Perform above steps.

Create new Parameter:

Navigator > <Provider>_entity > New

Parameter:

name: <ConsumingField_param>

expose: true

<ConsumingField_param>.valueProcess:

result.string(<selection criteria>

);

<recordContainer>.conditionProcess:

result.string(<WHERE condition,

using

"$param.<ConsumingField_param>

");

The application of this to-do list in the following chapters will make it even clearer how to create

© 2025 ADITO Software GmbH 97 / 472

dependencies using the Provider-Consumer mechanism.

10.1.1. Example: Cars and car drivers in car reservations

In our case, in order to create a new CARRESERVATION dataset, Car_entity needs to provide all car data

to CarReservation_entity, and CarDriver_entity needs to provide all car driver data to

CarReservation_entity.

Figure 18. Dependencies in carpool example

To achieve this, we proceed as follows:

First, make sure that you have created the fields CAR_ID and CARDRIVER_ID for CarReservation_entity.

Then, in the "Projects" window, double-click on Car_entity. In the Navigator window, right-click on

Car_entity and select option "New Provider" from the context menu. This will open the dialog "Create

New Provider". Here, name the new Provider "Cars" (Providers are always spelled in CamelCase; if they

provide multiple datasets (which is mostly the case), they are marked with plural names, see ADITO

Information Document AID001, chapter "Spelling & Wording" > "ADITO models") and confirm with

"OK". The new Provider will appear under the node "Providers" (Navigator window).

Next, open CarReservation_entity in the Navigator window and select option "New Consumer" from

the context menu. Name the new Consumer also "Cars". Next, edit the Consumer’s properties: Select

"Car_entity" as "entityName", and "Cars" as "fieldName" (= name of the Provider). By this, Provider

and Consumer have been connected: If you now view the properties of the Provider "Cars", you will see

that the property "dependencies" has automatically been set to "CarReservation_entity" (you cannot

edit it on this side).

© 2025 ADITO Software GmbH 98 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

Finally, we need to specifiy that the new Consumer Cars is to be used for the EntityField CAR_ID (in

order to get a list of all cars in the edit/create mode): Open CarReservation_entity in the Navigator

window, click on the EntityField CAR_ID and edit its property "consumer" by selecting "Cars". Done!

Dependencies between Entities are illustrated in an Entity-relationship diagram in

the Editor window (upper middle part of the Designer, when you double-click on an

Entity). You can rearrange, extend ("All dependencies"), save and print an Entity-

relationship diagram via the respective buttons at the top of the Editor window.

Now, repeat the previous steps in order to create a dependency between CarDriver_entity and

CarReservation_entity. Consistently, name both Provider and Consumer "CarDrivers".

That’s all: If you now open the CarReservation Context (menu item "car reservation") and click on the

"plus" button, the EditView opens in edit mode, and you can make a selection both from all car

datasets as well as from all driver datasets. The respective combo boxes' entries are generated

according to the Entities' property "contentTitleProcess". (If the combo boxes shows empty lines

instead, you have forgotten to set the contentTitleProcess of the providing Entity (see chapter

"Configuring Entities" further above).

This is the simplest form of a dependency created by the Consumer-Provider

mechanism. You will have noticed that no Parameter is involved here. This is

because we need all car datasets and all driver datasets, i.e., we do not need a

Parameter as criteria for selecting only a part of the datasets.

You will find more complete examples of dependencies in later chapters, especially

in chapter "Complex dependencies".

Remember that you must always first deploy in order to make changes visible in the

client.

10.1.2. Example: Car drivers and Persons

In the xRM project, a number of example persons are organised in the Entity "Person_entity" and

displayed in the various Views of Context "Person". In terms of data modelling, it would mean data

redundancy, if we created car driver datasets independently from person datasets: Features like name

or date of birth already exist in a person dataset. We do not need to enter them again in driver

datasets. Instead, we connect Driver_entity with Person_entity. To achieve this, we again use the

Provider/Consumer mechanism. However, in this case, we can simply use the Person_entity’s existing

Provider "Contacts":

Create a new Consumer for CarDriver_entity and name it "Persons". Set its Property "entityName" to

"Person_entity", and "fieldName" to "Contacts" (this is a predefined Provider of the xRM project).

© 2025 ADITO Software GmbH 99 / 472

Then, set property "consumer" of CarDriver_entity’s field CONTACT_ID to "Persons".

In most cases, it makes sense to give Provider and Consumer the same name.

However, technically, this is not obligatory. You are free to name both Provider and

Consumer according to your preferences.

After deploying, you will see in the client that in Context Car driver’s create dialog (click on blue "plus"

button) a lookup table has automatically been added for field "Person". The reason for this automatism

is that there is a View named PersonLookup_view, which is referenced in Context "Person"'s property

"lookupview". This LookupView will automatically be used, whenever Person’s Provider "Contacts" is

referenced in the Consumer configuration of another Context.

As LookupViews often contain a high number of datasets, it is recommended to

make sure that its content can be filtered. In the above example

(PersonLookup_view) you can, e.g., enter the text "Smith" and press Enter, in order

to see only datasets of persons named "Smith". This filter functionality is set in the

RecordContainer of the Entity acting as Provider, by setting the respective

RecordFieldMapping’s property "isLookupFilter" to true. (Note that this has only an

effect, if property "isFilterable" is also set to true; the functionality is not available

for EntityFields of contentType DATE). In the RecordContainer of Person_entity, the

RecordFieldMappings "FIRSTNAME.value" and "LASTNAME.value" have properties

"isFilterable" and "isLookupFilter" both set to true; therefore, you can filter persons

in PersonLookup_view according to their first name as well as according to their last

name.

In the LookupView, you can select - in cleartext - the person who acts as driver. Although the value of

the related column CONTACT.CONTACTID is invisible, it is stored in field CONTACT_ID, as soon as you

select a person and press "Save".

If an EntityField gets its value via a Consumer, the LookupView of the Entity acting as

Provider will always be used in the EditView, for selecting a value of this EntityField.

If the providing Entity has no LookupView, then its contentTitleProcess will be used

instead. And if there is also no contentTitleProcess set, then empty lines are shown

in the combo box.

10.1.3. Retrieving pending records

(This is a little excursus, helpful to know in the context of dependencies, but not related to the carpool

example project.)

© 2025 ADITO Software GmbH 100 / 472

10.1.3.1. Basics

"Pending records" are datasets ("records", "rows") that the user has entered in a View, but which have

not been saved in the database yet. You can access them via the variables

● insertedRows

● changedRows

● deletedRows

to be read via, e.g., vars.get("$field.MyConsumerName.insertedRows")

Each of these variables returns a (often large) array of objects, with the Consumer field’s name as

property. Here is an example of changedRows in Context OfferItem:

In most cases, you do not need the complete variable content, therefore here is an example of reading

a consumed field’s value (in the context of the "Attribute" logic)

var changedRows = vars.get("$field.MyConsumerField.changedRows");
var myFieldValue = changedRows[0]["AB_ATTRIBUTE_ID"];

The field’s value is always returned as String. If a field is not set, you will get an empty String. Thus, a

check for null or undefined is not required. But, if required, you still need to check for an empty string,

e.g.

● via if (myFieldValue === "") { … } or

● via "TRUEish test", i.e., using JavaScript’s implicit type conversion:

if (myFieldValue) { … }

10.1.3.2. Example 1

In the xRM project, if you use OrganisationEdit_view to enter or edit a company dataset, it is possible

to assign multiple Attributes (e.g., target group, delivery terms) and communication channels (e.g.,

email, phone, website) to this company. These links are established via consumers.

© 2025 ADITO Software GmbH 101 / 472

Here, you can use the above variables in order to check

● if all mandatory Attributes are set

● if specific attributes have been assigned not more than once

● if a mandatory Attribute has been deleted

● if a change of an Attribute has violated a min/max rule

● etc.

Then, the above variables are useful:

● insertedRows: These are the rows (here: attribute/value pairs) the user has entered, but not

saved yet. As soon as they are saved, the rows will be removed from the variable.

● changedRows: These are rows (here: attribute/value pairs) that have already been saved in

the database earlier, and now the user has changed (edited) them, but not saved the changes.

As soon as the changes are saved, the rows will be removed from the variable. If the user enters

a new row, without saving, and then changes it, the row will remain in variable

insertedRows, and not be transferred to changedRows.

● deletedRows: These are the rows (here: attribute/value pairs) that are already in the

database and that now have been marked by the user as "to be deleted" (e.g., by clicking the

"minus" icon to the right of the attribute/value pair). As soon as the user clicks the save button,

the row will be removed from the variable.

If the user enters a new row, without saving, and then deletes it, the row will not appear in any

of the 3 variables.

10.1.3.3. Example 2

Here is another example, which is also included in the xRM project and is similar to the above example:

In PersonEditView, the client user can insert multiple communication channels related to a contact

© 2025 ADITO Software GmbH 102 / 472

person (email address, mobile phone number, etc.):

Technically, this is realized via Person_entity’s Consumer "Communications", which relates to Provider

"AllCommunications" of "Communication_entity".

If, e.g., the user has entered the 2 "Communication" datasets as shown above, but has not yet pressed

the "Save" button, you can nevertheless already retrieve them via variable insertedRows. In the

xRM project, this is done, e.g., in the context of the logic that finds duplicates.

Example of variable insertedRows in

Person_entity.DuplicatesPerson.DuplicateObject_param.valueProcess.js

var communications = vars.get("$field.Communications.insertedRows");

10.1.3.3.1. EntityConsumerRowsHelper

In Entity_lib (see process > libraries) you can find the "EntityConsumerRowsHelper", which simplifies

the usage of the above 3 variables. For example, by calling

EntityConsumerRowsHelper.getCurrentConsumerRows

you can load all datasets that are currently visible to the user (including all possible changes that the

user might have done, with or without saving them). Instead, when reading the 3 variables directly via

vars.get(…) you will only get the changed datasets, not all of them.

10.1.3.3.2. Implicit refreshing

Calling the above variables is also used for marking a specific process as being implicitly dependent of

one or all of these variables and thus establishing an efficient auto-refresh. Here is an example included

in the xRM project:

© 2025 ADITO Software GmbH 103 / 472

The advantages of these implicit dependencies are:

● Avoiding an explicit refresh, which would always trigger a re-calculation, even if this is not

necessary in every case (which, in turn, decreases the system’s performance - see AID066

Performance Optimization).

● Restricting refreshes to cases that actually include changes.

You can think of this kind of refresh definition as being similar to the "meta information" commonly

used in various frameworks (in Java mostly defined via annotations).

10.1.3.4. Further information

Find more information on these variables via

● their JSDoc: Type, e.g.,

EntityConsumerRowsHelper. or

vars.get("$field.MyConsumerField.

and press CTRL+SPACE, then you will see the available methods/variables; and if you select one

of them, you their documentation will be displayed as JSDoc.

● performing a full-text search over the complete xRM project, using the methods'/variables'

names as search term: You will find various implementation examples that will help you to

understand the functionality even better.

10.2. Using keywords (predefined values)

Now we proceed to another task, which can be performed by using the Provider-Consumer principle,

and this time also a Parameter is required:

In some cases it is useful to restrict the field values that can be entered to a limited number of

predefined values. E.g., we want to avoid that the same manufacturer is spelled in different ways for

different cars, e.g. "Mercedes" and "Daimler Benz", or, as for colors, "Red" and "red". This would lead

to inconsistencies and disturb data filtering.

© 2025 ADITO Software GmbH 104 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

In ADITO, sets of predefined values are called "keywords". A single keyword consists of

● one "keyword category", see KeywordCategory_entity and the corresponding database table

AB_KEYWORD_CATEGORY. In the client, you can create a keyword category via Administration >

Keyword Category. In our example, the category is "CarColor". Each category is identified by its

AB_KEYWORD_CATEGORY_ID, which is a UID. It has further fields in order to define, e.g.,

○ the sorting: SORTINGBY (0 = "manual", see below; 1 = by title; 2 = by translated title)

● one or multiple "keyword entries", see KeywordEntry_entity and the corresponding database

table AB_KEYWORD_ENTRY. In the client, you can create a keyword entry via Administration >

Keyword Entry. Keyword entries are the selectable values of a keyword, e.g., "green", "red", and

"blue". Each keyword entry has

○ a unique identifier AB_KEYWORD_ENTRYID, which holds a UID

○ an additional, non-unique identifier KEYID, whose value is cleartext, e.g. "GREEN"

○ a TITLE, which is used in the selection components (combo boxes, etc.) of the client, e.g.

"green"

○ further fields for defining, e.g., the position in a selection list (when "manual" sorting is

set in the keyword category), or the system relevance ([ISESSENTIAL]), meaning whether

or not a keyword entry is used in the code.

● one or multiple "keyword attributes", see KeywordAttribute_entity and

KeywordAttributeRelation_entity and the corresponding database tables

AB_KEYWORD_ATTRIBUTE and AB_KEYWORD_ATTRIBUTERELATION. In the client, you can create

a keyword attribute via Administration > Keyword Attribute. Each keyword attribute is created

for one specific keyword category and has a specific data type (e.g., Boolean). The effect is, that

for every keyword entry of this keyword category the client administrator can then assign this

attribute and set an attribute value.

We will not use keyword attributes for our carpool example, but you may look at an example in

the xRM project: COMMOBIL is one of several keyword entries of category

CommunicationMedium. "contentType" is the name of one of several keyword attributes

defined for the category CommunicationMedium; "contentType" has the data type "String". This

allows the client administrator to assign this keyword attribute "contentType" to keyword entry

COMMOBIL and set a free text value for it, namely "TELEPHONE". This in turn is then used for

postprocessing logic, e.g., for formatting purposes (see, e.g., valueProcess of

Communication_entity’s EntityField ADDR).

NOTE: Do not mix up datasets of "keyword attributes" (KeywordAttribute_entity) with datasets

of "attributes" (Attribute_entity). These are 2 completely separate parts of the xRM project, and

they have completely different purpose and handling.

Further on, you will learn how to make the values (entries) of a keyword selectable for a specific

© 2025 ADITO Software GmbH 105 / 472

EntityField. In the EntityField, only a reference to the keyword entry (the so-called KEYID) is stored, but

an automatism makes sure that, in the client, the keyword entry’s TITLE is displayed.

Thus, the first step is to insert some new datasets in the database tables AB_KEYWORD_CATEGORY and

AB_KEYWORD_ENTRY. Again, we use Liquibase. Let’s start with the colors.

Any keyword that is used in the code (process, library, etc.) of an ADITO project,

must be marked as "essential", by setting the corresponding database field

AB_KEYWORD_ENTRY.ISESSENTIAL to value "1", which correspondents to "Yes"

("true"). This makes sure that even the client administrator cannot delete the

keyword in the web client ("Delete" button/option is not active/shown in the Views

of Context KeywordEntry), because otherwise errors could occur.

If you want to add flexible features to the datasets of an Entity (e.g., like in this case,

the color of a car, along with selectable values "green", "red", "blue", etc.) you have,

in principle, at least the following 2 options:

● Add an additional EntityField, which is related to Keywords Entries (like we

will do it in our carpool example).

● Make the client-side setting of Attributes available.

Each approach shows notable advantages and disadvantages, in particular, as

performance and usability are concerned. Therefore, we strongly recommend you

to read appendix "EntityField/Keywords vs. Attributes", after you are finished with

the carpool example project..

10.2.1. Example: Car colors

In the "Projects" window, open the folder alias > Data_alias > "example_carpool". In this folder create a

new changeset XML file and name it "init_carcolor" (the extension "xml" will remain/be added

automatically).Replace the default code by the following code:

init_carcolor.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="aaa90096-2a99-4e64-9a5c-9d0a18211cf3">

 <insert tableName="AB_KEYWORD_CATEGORY">

 <column name="AB_KEYWORD_CATEGORYID" value="2aa33f21-6aad-4bea-9106-7265db39e052"/>

 <column name="NAME" value="CarColor"/>

 <column name="SORTINGBY" valueNumeric="0"/>

 <column name="SORTINGDIRECTION" value="ASC"/>

 </insert>

 </changeSet>

 <changeSet author="j.smith" id="075f14fa-67a6-4841-8d6b-c85b7b576e82">

 <insert tableName="AB_KEYWORD_ENTRY">

© 2025 ADITO Software GmbH 106 / 472

 <column name="AB_KEYWORD_ENTRYID" value="2324a950-6767-4366-abf5-a343b7fd11f3"/>

 <column name="KEYID" value="RED"/>

 <column name="TITLE" value="red"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="2aa33f21-6aad-4bea-9106-7265db39e052"/>

 <column name="SORTING" valueNumeric="0"/>

 <column name="ISACTIVE" valueNumeric="1"/>

 <column name="ISESSENTIAL" valueNumeric="1"/>

 </insert>

 <insert tableName="AB_KEYWORD_ENTRY">

 <column name="AB_KEYWORD_ENTRYID" value="0c89fdc7-63cb-4e2b-a65a-ad77d3e58cc2"/>

 <column name="KEYID" value="YELLOW"/>

 <column name="TITLE" value="yellow"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="2aa33f21-6aad-4bea-9106-7265db39e052"/>

 <column name="SORTING" valueNumeric="1"/>

 <column name="ISACTIVE" valueNumeric="1"/>

 <column name="ISESSENTIAL" valueNumeric="1"/>

 </insert>

 <insert tableName="AB_KEYWORD_ENTRY">

 <column name="AB_KEYWORD_ENTRYID" value="0544cce6-170b-43c2-b9bc-17c89a42c15f"/>

 <column name="KEYID" value="GREEN"/>

 <column name="TITLE" value="green"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="2aa33f21-6aad-4bea-9106-7265db39e052"/>

 <column name="SORTING" valueNumeric="2"/>

 <column name="ISACTIVE" valueNumeric="1"/>

 <column name="ISESSENTIAL" valueNumeric="1"/>

 </insert>

 </changeSet>

</databaseChangeLog>

(Remove possible line breaks after copying the code.)

Explanations:

At first, a keyword category is created and named "CarColor". Afterwards, the keyword entries are

created: Column AB_KEYWORD_ENTRYID holds the primary key (mostly a UID), while the values of

column KEYID are not unique, i.e., they can (in principle) be used for multiple AB_KEYWORD_ENTRY

datasets. The column AB_KEYWORD_CATEGORY_ID holds the UID of the category of the keyword;

therefore, its value is the same for all keyword entries referring to the same keyword, here, "CarColor".

TITLE is the cleartext name of a single keyword entry, identified by KEYID. As we might use these

keywords in our ADITO project’s code (processes, etc.), we set AB_KEYWORD_ENTRY.ISESSENTIAL to

value "1", which correspondents to "Yes" ("true") - see note above. The sorting is set to "manual"

(meaning "arbitrarily defined for each keyword entry):

● in the keyword category dataset, SORTINGBY gets value 0 (= "manual", meaning that the value of

the keyword entry’s field SORTING is to be respected (see below)

● in the keyword entry datasets, the values of field SORTING are set arbitrarily: "0" for RED, "1" for

YELLOW, and "2" for GREEN.

This will have the effect that, in the client, the corresponding selection list of TITLEs will be

shown in the defined order

red

yellow

green

NOTE: "Manual" sorting also means that this order will not change even in case the titles are

submitted to automatic translation (see below). (If you prefer the latter option, you need to set

SORTINGBY to value 2, which means "select by translated TITLE").

© 2025 ADITO Software GmbH 107 / 472

As mentioned before, usually, the KEYID is saved in the database, while specific configurations and

processes (see below) make sure that, in the client, the TITLE is displayed instead of the KEYID. And it’s

the TITLE that can be submitted to translation logic (see language files in the project’s folder

"language").

In order to include the above xml file in the Liquibase logic, proceed as usual: In the "Projects" window,

in the "example_carpool" (!) folder (alias > Data_alias > example_carpool), extend the code of

changelog.xml by the following line:

(...)
<include relativeToChangelogFile="true" file="init_carcolor.xml"/>

Remember that there are multiple XML files named "changelog.xml". Do not

mistake them.

Perform a Liquibase update via the context menu of "Data_alias". If required, clear the server cache in

order to see the new entries.

In principle we could, in our project’s code, relate to the new keyword in cleartext ("CarColor").

However, for multiple reasons (e.g., consistency in the case of renaming), it is better to define all

keywords' names in a central location. For ADITO xRM, this is the library KeywordRegistry_basic (in the

"Projects" window, under process > libraries).

System-wide processes like KeywordRegistry_basic can, in principle, be customized

according to the project’s requirements. However, this can lead to update/merge

problems whenever ADITO releases a new xRM version. Therefore, we strongly

recommend to leave all ADITO xRM processes/libraries unchanged and create new

processes for any customized functionality, using project-specific prefixes for the

naming.

Therefore, for handling our carpool keywords, we create a new library named KeywordRegistry_carPool

(process > new …; set process property "variants" to "libraries"). Then, we open the new library

KeywordRegistry_carPool and insert the following code:

KeywordRegistry_carPool

/* Keywords for car pool example */

export function $KeywordRegistryCarPool(){}

// Keyword category

© 2025 ADITO Software GmbH 108 / 472

$KeywordRegistryCarPool.carColor = function(){return "CarColor";};

This logic works similar to what you might know as "Enumeration" or "Constant": Instead of using the

keyword’s cleartext directly, we can now call the function $KeywordRegistryCarPool.carColor which

returns the keyword’s cleartext.

Beside a keyword category, you can also specify code to retrieve the entries of this

keyword (KEYID), i.e., in our case, the names of the colors. The syntax is as follows:

KeywordRegistry_carPool

// Keyword entry names (KEYID)
$KeywordRegistryCarPool.carColor$red = function(){return "RED";};
$KeywordRegistryCarPool.carColor$yellow = function(){return "YELLOW";};
$KeywordRegistryCarPool.carColor$green = function(){return "GREEN";};

However, you should reference a KEYID here only if it is actually used in the code. To

prevent exceptions (e.g., after deletion by mistake), these kind of KEYIDs must also

be stored with column ISESSENTIAL set to value 1 (= "true"), which has been already

done for the colors (see above Liquibase file), because we will need it for an

example in chapter "Color", subchapter of Controlling the design.

Under process > libraries you can find libraries including helper methods. If the

name is simply MyContextName_lib, e.g. Organisation_lib, the purpose of the

methods is mainly restricted to the Context. However, if the name includes "Util",

then the library includes helper methods that are of general use, e.g. FileUtil_lib or

Util_lib. Most of the methods included in these libraries have a JSDoc explaining

details of how to use them. Furthermore, also the ADITO platform ("core") provides

helper methods - see the overview given in the documentation that you can access

via menu Help > Show Documentation.

Now that this preparatory work is done, we can go on with connecting the COLOR field with the

corresponding keyword entries, using the Consumer-Provider principle, along with a specific

Parameter:

First, look at the existing configuration of the Entity KeywordEntry_entity: Double-click on it in the

"Projects" window and look at the Navigator window: You see that there already exists a Provider

named "SpecificContainerKeywords", which shows the following properties:

● dependencies: a readonly property showing all Entities that have a Consumer related to this

Provider (see Consumer’s property "fieldName")

© 2025 ADITO Software GmbH 109 / 472

● lookupIdField: KEYID (= the field containing the keyword entries to be shown)

● recordContainer: db and jDito (= the RecordContainers of KeywordEntry_entity)

Furthermore, you will recognize that the Provider "SpecificContainerKeywords" has a Parameter named

"ContainerName_param" assigned. This Parameter has its property "expose" set to true.

You can create a new Parameter in the Navigator window, if you right-click on an

Entity and choose option "New Parameter" in the context menu. After you have

named it, it appears in the folder "Parameters". If you set its property "expose" to

true, the Parameter will also appear (in grey font color) under every Provider of the

same Entity, as well as under every Consumer of other Entities, if the Consumer

references the Provider. The grey font color means that the Parameter is not yet

initialized; to set its parameters (especially, its valueProcess), right-click on the grey-

fonted Parameter and choose "Initialize" from the context menu. (If you want to

undo the initialization, right-click on the Parameter again and then choose option

"Restore Default Value". This will reset its font color from white to grey again,

indicating that it is not initialized.)

We will use this existing Parameter in the Consumer logic of Car_entity:

Create a new Consumer for Car_entity and name it "KeywordCarColors". Edit the new Consumer’s

properties as follows:

● EntityName: select "KeywordEntry_entity"

● fieldName: select "SpecificContainerKeywords"

Specify this new Consumer "KeywordCarColors" in the "consumer" property of Car_entity’s field

"COLOR".

Automatically, in the Navigator window, the above mentioned Parameter "ContainerName_param" will

appear under the Consumer "KeywordCarColors". In the Parameter’s property "valueProcess", we

enter the following code:

ContainerName_param.valueProcess

result.string($KeywordRegistryCarPool.carColor());

These are the steps to create a relation (dependency) between two Entities, here, between

KeywordEntry_entity and Car_entity.

If we test our changes in the client (don’t forget to deploy first), we see that in the create dialog (click

© 2025 ADITO Software GmbH 110 / 472

on blue "plus" button), the field "Color" shows a combo box, in which you can select the colors in clear

text. However, if you create a new car dataset (including the selection of a color) and save it, all Views

do not display the color as cleartext, but instead they display the KEYID (here: a UID) corresponding to

the color. This will be explained later.

10.2.2. Example: Manufacturers

Now, repeat the steps of the previous chapter in order to turn the field MANUFACTURER from a free

text field into a field restricted to a number of predefined manufacturers' names. Again, you can use

Liquibase to create the required keyword entries - which remains the preferred way, as in the case of,

e.g., a database change, you can easily re-create the keyword entries.

Alternatively - e.g., for testing purposes - you can also generate new keyword entries via the client:

● In the "Administration" group of the Global Menu, choose Context "Keyword Category". Click on

the "Create new" button (blue "plus") and look to the right: Instead of the PreviewView, a so-

called "SmallEditView" appears (Note: In this case, the EditView does not pop up as separate

window, but it appears directly to the right of the FilterView; these options are controlled by the

View property "size", which is by default set to NORMAL, but in this case is set to SMALL). Now,

create a new KeywordCategory and name it, e.g., "CarManufacturer".

● Then, again in the "Administration" group of the Global Menu and choose Context "Keyword

Entry".

○ Click on the "Create new" button (blue "plus") and select the Keyword Category that you

have just created in the previous step (e.g., "CarManufacturer")** Then, create a first

Keyword (= "Keyword Entry"):

■ Keyword Category: the KeywordCategory that you have just created (e.g.,

"CarManufacturer"):

■ Title: The title of the Keyword to be used for selecting it in the client. To be more

precise, this is the respective "Key" in the language files (see chapter Language

files), enabling the Keyword to appear in the respective login language. It will be

saved in the database column AB_KEYWORD_CATEGORY.NAME.

Example: "Mercedes".

■ Key: The identificator of the Keyword, to be used in code/processes to be

configured via the Designer. It will be saved in the database column

AB_KEYWORD_ENTRY.KEYID.

Example: "MERCEDES".

■ Leave the flag "Active" to true.

○ Create further Keywords for the same KeywordCategory, e.g., "BMW", "FORD", etc.

© 2025 ADITO Software GmbH 111 / 472

Now that you have integrated keyword logic for Car_entity fields MANUFACTURER

and COLOR, you should also adapt property contentTitleProcess of Car_entity

(otherwise, UIDs are displayed instead of the names of the manufacturers/colors in

cleartext):

Car_entity.contentTitleProcess

import { result, vars } from "@aditosoftware/jdito-types";

import { $KeywordRegistryCarPool } from "KeywordRegistry_carPool";

import { KeywordUtils } from "KeywordUtils_lib";

var carManufacturer = KeywordUtils.getViewValue($KeywordRegistryCarPool.carManufacturer(), vars.get(

"$field.MANUFACTURER"));

var type = vars.get("$field.TYPE");

var color = KeywordUtils.getViewValue($KeywordRegistryCarPool.carColor(), vars.get("$field.COLOR"));

result.string(carManufacturer + " " + type + " " + color);

10.2.3. Example: Currency

To implement predefined currency names is even easier, because the ADITO xRM project already

includes a keyword named "Currency", with several entries, e.g., "Euro". Furthermore, the library

"KeywordRegistry_basic", already includes a function returning "Currency", and KeywordEntry_entity

includes a Provider named "SpecificContainerKeywords", which you can reference as Consumer.

You can easily extend the list of available currencies in the client, via Context "Keyword Entry" (see

menu group "Administration").

Now, try to make currencies selectable both in Context Car and in Context CarReservation.

10.3. Controlling the displayed value

In some cases, we do not want to see exactly the database value referring to the EntityField, but a value

derived or calculated from it. As for keywords, e.g., instead of the KEYID, the TITLE of the keyword entry

is to be displayed. Likewise, the user wants to read the drivers' names rather than their CARDRIVERID

or CONTACT_ID.

This transformation of an ID value into a displayed value can, in principle, be done at 2 different

locations:

● in the <field name>.displayValue field of a RecordContainer

● in the displayValueProcess of an EntityField

10.3.1. displayValue of a RecordContainer field

For every EntityField, 2 automatically prepared so-called RecordFieldMappings exist in the

© 2025 ADITO Software GmbH 112 / 472

RecordContainer (sometimes simply called "RecordFields"):

● <field name>.value: In property "recordfield", you specify the database field to be used for

saving (persisting) the corresponding value. We have already applied this in previous chapters.

● <field name>.displayValue: In property "recordfield", you specify the database field whose value

is to be displayed. If you leave it empty, property "recordfield" of the "…value" field is also used

for displaying purposes. NOTE: The displayValue is not formatted automatically (unlike the

value).

Both fields have a process property named "expression": Here, you can enter any SQL code valid in the

"select" part of the SQL statement - for example a fix value, a fully-qualified database column name, or

(a common use case) an SQL subselect that returns the preferred value/displayValue. Technically, the

result of the "expression" process is simply inserted in the SQL’s "select" part - with a leading comma,

an opening parenthesis and a closing parenthesis automatically added (so you do not need to include

outer parantheses again in the "expression").

If you have activated database logging (see chapter Logging), you can inspect the SQL generated by

ADITO on the basis of the configuration of the RecordContainer, e.g. something like this:

Generic example of SQL (DB logging output) when property "expression" has been configured

SELECT MYTABLE1.MYCOLUMN1 , MYTABLE1.MYCOLUMN2 , MYTABLE1.MYCOLUMN3 , (select MYTABLE2.MYCOLUMN4 from MYTABLE2 where MYTABLE2

.MYTABLE2ID = MYTABLE1.MYTABLE2_ID)

FROM MYTABLE1

ORDER BY <...> LIMIT 400

In many cases, it is not necessary to write these subselects by yourself, but you can use existing helper

functions that return SQL code (see, e.g., the functions included in project folder process > libraries).

In a RecordFieldMapping, properties "recordField" and "expression" should never be

set both at the same time, because "recordField" will then always be preferred by

the ADITO logic, meaning that the code entered in "expression" will always be

ignored in this case.

Be aware that using the displayValueProcess of an EntityField can be a performance

killer:

Whenever you want to control the display of a feature, using the displayValue’s

"expression" property usually enables a higher performance than other ways, in

particular, than using property displayValueProcess of the EntityField (see below):

The technical background is that the former simply extends the SQL statement of

the loading process, while the latter initiates an additional loading process, which is

executed separately for every single dataset.

© 2025 ADITO Software GmbH 113 / 472

However, if you want to create a new dataset that includes a predefined value for a

specific field (or a combo box for selecting from a list of values), then setting

"expression" is not enough, but you additionally need to set the displayValueProcess

for this field.

To sum it up: Using the displayValueProcess of an EntityField can be a performance

killer. Thus, as a rule of thumb, you should always try to retrieve the display value

via SQL in the RecordContainer, using the "expression" property. If you need a

display value at creation time, you can additionally (not alternatively!) program a

displayValueProcess. If both "expression" and displayValueProcess are filled, the

ADITO system automatically ignores the displayValueProcess (but not the

valueProcess!), whenever a display value can be retrieved via "expression".

Find related information in appendix "Accessing the value of an EntityField".

A displayValue cannot be deactivated at runtime. If, for one and the same

EntityField, in some ViewTemplates the displayValue is to be shown and in other

ViewTemplates only the value (not the displayValue), then you can realize this by

simply creating 2 separate EntityFields that load the same value, with a displayValue

only being set for one of them.

10.3.1.1. Example: Driver’s name

CarDriver_entity.db.CONTACT_ID.displayValue.expression

result.string(PersUtils.getResolvingDisplaySubSql("CONTACT_ID"));

The effect of this code is that not the CONTACT_ID is displayed, but the full name and salutation of the

corresponding person. This is achieved via a helper function, included in the library Person_lib (under

process > libraries). If you are interested to know what SQL code this helper function returns, please

refer to appendix "Database Access", chapter "SQL Helper Functions".

Now that you have added this displayValue, you can refer to it and thus simplify the

code of other processes, e.g., of the Entity’s contentTitleProcess:

CarDriver_entity.contentTitleProcess

result.string(vars.get("$field.CONTACT_ID.displayValue"));

© 2025 ADITO Software GmbH 114 / 472

10.3.1.2. Example: Manufacturer

Car_entity.db.MANUFACTURER.displayValue.expression

var sql = KeywordUtils.getResolvedTitleSqlPart($KeywordRegistryCarPool.carManufacturer(), "CAR.MANUFACTURER");

result.string(sql);

The effect of this code is that, as for the keyword "Manufacturer", not the KEYID is displayed, but the

TITLE (cleartext, e.g., "Mercedes"). The helper function getResolvedTitleSqlPart returns the

required subselect for a given keyword ("Manufacturer", returned by

$KeywordRegistryCarPool.carManufacturer()) and a given database column

("CAR.MANUFACTURER"). (If you are interested to know what SQL code this helper function returns,

please refer to appendix "Database Access", chapter "SQL Helper Functions".)

Before, you must add the line

$KeywordRegistryCarPool.carManufacturer = function(){return "Manufacturer";};

at the end of the existing code of library KeywordRegistry_carPool (under process > libraries).

10.3.1.3. Example: Car color

Now, try the same for car colors, on your own. Again, we do not want to see the KEYID, but the TITLE

(cleartext, e.g., "red").

Here is the solution:

Car_entity.db.COLOR.displayValue.expression

var sql = KeywordUtils.getResolvedTitleSqlPart($KeywordRegistryCarPool.carColor(), "CAR.COLOR");

result.string(sql);

The effect of this code is that, as for the keyword "CarColor", not the KEYID is displayed, but the TITLE

(cleartext). Function getResolvedTitleSqlPart returns the required subselect for a given

keyword ("CarColor", returned by $KeywordRegistryCarPool.carColor()) and a given

database column ("CAR.COLOR").

Please note that the color might not be visible in cleartext in the EditView, unless

you have entered a displayValueProcess of the EntityField COLOR. This will be

explained in a later chapter.

10.3.1.4. Example: Currency

If you view the entries of keyword "Currency" (with the database editor or in the client, choosing

© 2025 ADITO Software GmbH 115 / 472

Administration > Keyword Entry), you will recognize that the KEYID is not a UID, but the (also unique)

ISO 4217 Currency Codes, e.g. "EUR" or "USD". This makes it easier, as we want to use these codes for

display purposes, rather than the long versions "Euro" or "United States dollar". However, the latter is

automatically displayed when creating or editing a dataset; this is due to an automatism on the

Provider Entity for keywords (see KeywordEntry_entity.contentTitleProcess), because in most cases

TITLE is to be displayed instead of KEYID.

10.3.2. displayValueProcess of an EntityField

Another way to control the display of a field is the EntityField’s property "displayValueProcess".

If the displayValue field of a RecordContainer (e.g., "expression") is set, then the

displayValueProcess of the EntityField is automatically ignored in most cases. It is

only executed, if a display via the RecordContainer (which mostly shows the higher

performance) is not possible. The latter, e.g., happens when creating an new dataset

and, in the EditView, a specific value is to be shown (e.g., the car color in cleartext

instead of its KEYID) or preselected. This is because the displayValue field of a

RecordContainer is related to existing datasets, which means, it has no effect when

entering a new dataset (which does not exist in the database unless the "Save"

button is clicked); therefore, in this case, you need the displayValueProcess of the

EntityField.

There might be improvements in later ADITO releases, but currently it is

recommended always to fill in both the "displayValue.expression" process of the

RecordContainer and the displayValueProcess of the EntityField, whenever you want

to control the display of a field.

10.3.2.1. Example: Car Color

To view, e.g., the color in cleartext, enter the following code in the property displayValueProcess of

Car_entity’s field COLOR:

Car_entity.COLOR.displayValueProcess

result.string(KeywordUtils.getViewValue($KeywordRegistryCarPool.carColor(), vars.get("$field.COLOR")));

Explanations:

● $field.COLOR specifies the field, whose value (here: the KEYID) is to be "translated"

● $KeywordRegistry.carColor() returns the category of the keyword, whose keyword

entries hold the "translation" (i.e., KEYID and TITLE)

© 2025 ADITO Software GmbH 116 / 472

● KeywordUtils.getViewValue returns the "translated" value (TITLE) of the given KEYID

Now that you know how to "translate" a keyword entry, you can optimize other

parts of the client, e.g., add a similar displayValueProcess for Car_entity’s field

MANUFACTURER.

10.3.2.2. Example: Currency

Here is an example how to display the price of the car along with the currency, in one single field

(PRICE).

Car_entity.PRICE.displayValueProcess

if (vars.get("$this.value") !== null) {

 var myPrice = vars.get("$this.value");

 result.string(text.formatDouble(myPrice, "#,##0.00") + " " + vars.get("$field.CURRENCY"))

}

Explanations:

● vars.get("$this.value") returns the current value of the corresponding EntityField

(here: field PRICE). Find more information in appendix "Accessing the value of an EntityField".

● if (vars.exists("$this.value")) is required to avoid exceptions in case a value of

PRICE does not yet exist (e.g., when creating a new car dataset)

● text.formatDouble(myPrice, ",#0.00") formats the car’s price according to the

given pattern. The pattern is always to be specified the English way, i.e., a comma as thousands

separator, and a point as decimal separator. This format will be adapted automatically,

depending on your browser’s language settings.

© 2025 ADITO Software GmbH 117 / 472

10.4. Complex dependencies

ADITO enables you to combine almost arbitrary Views and establish arbitrary dependencies between

them. And, in principle, the dependencies can be arbitrarily nested - i.e., you can define that a View

depends on another View, which in turn depends on a third View etc. Using these combinations,

powerful applications can be built. We will give you a few examples.

10.4.1. MasterDetailLayout

The MasterDetailLayout enables you to specify one View as "master", on which one or more other

Views ("details") depend.

For example, if you open the Context "Company" (in the client, in menu group "Contact Management"),

you select a company dataset and then press the "Open" button. This will open the Context’s

MainView, which has a MasterDetailLayout: On the left, you see the "master", which is the

PreviewView of the company. On the right, you see the "details", which are several Views, sorted in

tabs, e.g., activities, contacts, or attributes. These "detail" Views belong to other Contexts, e.g., Activity,

Person, or AttributeRelation.

Thus, a View having a "MasterDetailLayout" often has no own View elements, but is used as a kind of

frame connecting one View (with one dataset) with one or more dependent Views (each showing one

or multiple datasets).

In most cases, an Entity’s MainView has a "MasterDetailLayout",

● with the PreviewView of the same Entity being the "master" and

● various Views of the same or of other Entities - often in table form - being the

"details".

Note that DashletConfigs cannot be added to Views having a MasterDetailLayout.

Now, how to configure such a combination of dependent Views via a MasterDetailLayout?

At first (after creating Context and Entity), in the "Projects" window, we create a View (usually this will

be the MainView) and set its property "layout" to "MasterDetailLayout". Consequently, a property

named "master" will appear below. This will be set later.

Now we define both the "master" View and all "detail" Views:

Double-click on the View having the "MasterDetailLayout" in the "Projects" window. Then, in the

Navigator window, right-click on the name of this View and choose "Add reference to existing View…".

A dialog with the following lines will appear:

© 2025 ADITO Software GmbH 118 / 472

● EntityField: In this combo box there are one or more options to select:

○ "#ENTITY": Choose this option, if you want to add a View of the same Entity (i.e., of the

Entity related to the View having the "MasterDetailLayout")

○ (if existing:) All Consumers of the Entity related to the View having the

"MasterDetailLayout". Choose a Consumer if you want to add a View of another Entity,

i.e., of the Entity related to the Consumer. In many cases you must first create this

Consumer (and possibly also the related Provider), which is explained below.

● View: All Views related to the selection in the above line "entityField".

● Assign to: Leave empty.

Now, we edit the property "master" of the View having the MasterDetailLayout and set it to the View

that should act as "master". All other referenced Views will automatically be treated as "detail" Views.

In the Navigator window, the "detail" View appears on the same level as the "master" View, however,

without a prefix in the name.

In the client, the "master" View usually appears on the left, while the "detail" related Views appear on

the right, sorted in tabs.

The dependency between the "master" View and a "detail" View is established using the Provider-

Consumer mechanism: The Provider provides (delivers) "detail" data selected according to a Parameter

specified by the Consumer, which here is the "master" View. (The Provider "exposes" a Parameter,

whose value process is set on Consumer side and works as selection criteria of what data is to be

provided). Technically, this works as follows:

● The Provider side is the Entity (!) of the "detail" View. Here,

○ a Parameter must be created, whose name usually refers to the selection criteria

specified by the "master". If, e.g., the Provider provides data of contact persons working

in a specific organisation, the Parameter could be named "OrgId_param". Furthermore,

this Parameter must be exposed (property "expose" = true), i.e. "offered" to the

Consumer.

○ a new Provider object must be created, whose name usually refers to the provided data.

If, e.g., the Provider provides data of contact persons, it could be named "Contacts".

○ the conditionProcess of the RecordContainer must process the Parameter by including it

as data selection criteria. Here is an example how this piece of code usually looks like:

XXX_entity.RecordContainers.db.conditionProcess

var cond = newWhereIfSet("CONTACT.ORGANISATION_ID", "$param.OrgId_param");

© 2025 ADITO Software GmbH 119 / 472

result.string(cond);

In short, this code means: "If Parameter OrgId_param exists (= is "filled"), then return only

CONTACT datasets showing the ORGANISATION_ID handed over in the Parameter. If the

Parameter OrgId_param does not exist (= is not "filled"), then no condition is built, so all

CONTACT datasets are returned.

● The Consumer side is the Entity (!) of the "master" View. Here,

○ a Consumer object must be created, whose name is often identical with the name of the

Provider. If, e.g., the Provider provides data of contact persons, the Consumer could also

be named "Contacts". The new Consumer gets a reference to the Provider, by setting its

properties "entityName" and "fieldName" (i.e., Provider name) accordingly, e.g.

"Person_entity" and "Contacts". Consequently, all Parameters exposed by the specified

Provider will be visible "under" the Consumer, in grey font color.

The grey font color means that the Parameter is not yet initialized; to

set its parameters (especially, its valueProcess), right-click on the grey

fonted parameter and choose "Initialize" from the context menu. (If

you want to undo the initialization, right-click on the Parameter again

and then choose option "Restore Default Value". This will reset its font

color from white to grey again, indicating that it is not initialized.)

○ set the respective Parameter’s property "valueProcess" accordingly. E.g., the

valueProcess' code for Parameter "OrgId_param" could look like this:

XXX_entity.Consumers.XXX.XXXId_param.valueProcess

result.string(vars.get("$field.ORGANISATIONID"));

This will change the font color of the Parameter name from grey to white.

● The dependency configured on the Consumer side is now also visible in the property

"dependencies" of the Provider object.

Now that the dependency has been established, all Views of the Consumer side are also available for

selection in the dialog "Add reference to existing View…" of the View having the MasterDetailLayout.

E.g., for OrganisationMain_view we could now add a reference to CarDriverFilter_view, by selecting the

Consumer "Contacts" in the dialog’s combo box "EntityField" and then selecting "CarDriverFilter_view"

in the combo box "View" (leave field "Assign To" empty).

10.4.1.1. Example: Showing all reservations of a driver in the MainView

© 2025 ADITO Software GmbH 120 / 472

Let’s extend Context driver by a View showing all reservations of a specific driver in the

CarDriverMain_view. As soon as the user opens a driver in the MainView (by selecting a driver and

then pressing the "Open" button), all the driver’s reservations should be displayed.

To achieve this, we use the functionality of the "MasterDetailLayout". In an earlier chapter, we had

already assigned this layout to all MainViews of our application. However, at that time we had only

specified that the respective Entity’s PreviewView is the "master" of the layout. Now we come to the

"detail" part of the MasterDetailLayout: We would like to specify CarReservationFilter_view as detail

View, depending on CarDriverPreview_view ("master").

If you try to do this immediately, by choosing "Add reference to existing View…" in the context menu of

CarDriverMain_view (Navigator window), you will notice that here we cannot select

CarReservationFilter_view yet. To make it available for selection, we first need to establish a

dependency between CarDriver_entity and CarReservation_entity, using the Provider-Consumer

mechanism.

At first, we handle the Provider side:

In the "Projects" windows, double-click on CarReservation_entity, so it will be opened in the Navigator

window. Here, right-click on CarReservation_entity and choose "New Parameter" from the context

menu. Name the Parameter "CarDriverId_param" and set its property "expose" to "true".

Again, right-click on CarReservation_entity and choose "New Provider". Name the Provider

"CarReservations".

Click on the RecordContainer "db" and edit its property "conditionProcess" by inserting the following

code:

CarReservation_entity.RecordContainers.db.conditionProcess

import { result } from "@aditosoftware/jdito-types";
import { newWhereIfSet } from "SqlBuilder_lib";

var cond = newWhereIfSet("CARRESERVATION.CARDRIVER_ID", "$param.CarDriverId_param");
result.string(cond.toString());

This code means: If Parameter CarDriverId_param is "filled" (as it is in the Context CarDriver) then

variable cond is, e.g., "CARRESERVATION.CARDRIVER_ID = '22fe825d-3899-4f1e-873f-f5d65b88e8b2'".

(In the conditionProcess, the word "WHERE" is automatically added.) Then only those

CARRESERVATION datasets are returned that show the CARDRIVER_ID handed over in the Parameter. If

the Parameter is not filled (as it is in the Context CarReservation), then variable cond is empty, and no

condition will be applied. In this case, all CARRESERVATION datasets are shown. (If you are interested to

know in what SQL code this helper function results, simply log cond.toString().)

© 2025 ADITO Software GmbH 121 / 472

You can log any value by using the methods of library system.logging:

Example code for using logging methods

var myVariable = "testValue";

// output in the Server log,
// see "Output" window of the Designer
logging.log(myVariable);

// output in the Client, via popup window
logging.show(myVariable);

Furthermore you can inspect variable values as well as the code processing via the

Designer’s debugging functions. This is explained in the ADITO Designer Manual.

Now we can handle the Consumer side:

In the "Projects" windows, double-click on CarDriver_entity, so it will be opened in the Navigator

window. Here, right-click on CarDriver_entity and choose "New Consumer". Name the Consumer

"CarReservations". The Consumer will consequently appear under the node "Consumers". Set the

connection to the Provider by editing the new Consumer’s properties:

● EntityName: Select CarReservation_entity.

● fieldName: Select the name of the Provider, i.e., "CarReservations".

Now, the Provider’s Parameter CarDriverId_param appears as sub-node of the Consumer. Click on this

Parameter and edit its property "valueProcess" by inserting the following code:

CarDriver_entity.Consumers.CarReservations.CarDriverId_param.valueProcess

result.string(vars.get("$field.CARDRIVERID"));

The font color of the Parameter’s name will change from grey to white.

Now that we have established a dependency between CarDriver_entity and CarReservation_entity, we

can select CarReservationFilter_view as a detail View of CarDriverMain_view: In the "Projects" window,

double-click on CarDriverMain_view to open it in the Navigator window. Here, right-click on

CarDriverMain_view and choose "Add reference to existing View…" in the context menu:

● EntityField: CarReservations (now available, due to the dependency!)

● View: CarReservationFilter_view

© 2025 ADITO Software GmbH 122 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

● Assign To: leave empty

Deploy, and open the CarDriver Context in the client. If you now select a driver and then press the

"open" button, the CarDriverMain_view will open, with the CarDriverPreview_view to the left (a box,

showing driver data) and the CarReservationFilter_view on the right, showing all reservations of this

driver, in table form. (You will be able to test this once you have processed chapter "Example: Reserve

this car", further below in this manual.)

10.4.1.2. Example: Showing all reservations of a car in the MainView

Now, with the knowledge obtained in the previous chapter, try it on your own: The task is to extend

Context "Car" by a View showing all reservations of a specific car in the CarMain_view.

First, create a new Parameter for CarReservation_entity (Navigator window: right-click on

CarReservation_entity > New Parameter), name it "CarId_param" (the Parameter name usually refers

to the consuming EntityField) and set its property "expose" to true (this will make it accessible from

outside CarReservation_entity). We need this Parameter in order to "hand over" the CARID of the

selected car from the Context "Car" to the Context "CarReservation" (see later paragraph). Therefore,

fill the valueProcess of this Parameter accordingly.

Establish a dependency via Provider/Consumer, as we had done in the previous example. Then, add

CarReservationFilter_view as a reference to CarMain_view.

In the conditionProcess of the RecordContainer of CarReservation_entity, you can simply add a second

condition for the Parameter referring to CARRESERVATION.CAR_ID:

CarReservation_entity.RecordContainers.db.conditionProcess

var cond = newWhereIfSet("CARRESERVATION.CARDRIVER_ID", "$param.CarDriverId_param")
.andIfSet("CARRESERVATION.CAR_ID", "$param.CarId_param");

result.string(cond);

If you are interested to know what SQL code this helper function produces, simply log

cond.toString().

© 2025 ADITO Software GmbH 123 / 472

10.5. Actions and ActionGroups

An Action in ADITO is an option to execute an arbitrary JDito code. Besides the predefined Actions

(save, new, cancel, delete, etc.), you can specify further Actions according to your requirements.

An ActionGroup is an ADITO model to group Actions for being used in specific ViewTemplates, e.g.,

"Table". These ViewTemplates have special properties for referencing ActionGroups, usually named

"favoriteActionGroup1", "favoriteActionGroup2", and "favoriteActionGroup3".

10.5.1. Configuration

Actions are assigned to an Entity, because they are always executed in an Entity’s Context.

To create and assign an Action, open an Entity in the Navigator window and choose option "New

Action" in the Entity’s context menu. Then, enter a name in camelCase (see ADITO Information

Document AID001, chapter "Spelling & Wording" > "ADITO models") and confirm with OK. The Action’s

name will appear under a new node named "Actions". Click on the new Action and look at its

properties:

● title: The text to be shown in the Actions menu (see below) or as Action button label.

● tooltip: The text to be shown as tooltip of the Action button.

● stateProcess: Code to specify cases when the Action should be in a specific state, e.g., disabled.

By default, all Actions are available.

● onActionProcess: The actual code that will be executed when the user selects the Action.

● isMenuAction: see sub-chapter "Appearance"

● isObjectAction: see sub-chapter "Appearance"

10.5.2. Appearance

In ADITO xRM, Actions are usually shown in the following locations:

● In the PreviewView

○ Selectable via the three-dotted button in the PreviewView. This button is part of some

ViewTemplates (in particular, the "Card"-type ViewTemplate) and usually includes the

default Action "Delete".

○ As separate Action buttons (see properties "favoriteActionX" of some ViewTemplates,

particularly "Card")

● In the FilterView, on the top of some ViewTemplates, e.g., "Table" (´see properties

"favoriteActionGroupX"). Here, Actions can appear

© 2025 ADITO Software GmbH 124 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

○ as separate Action buttons;

○ clustered in ActionGroups;

○ included in the three-dotted button.

Where and when an Action appears, depends on the settings of the following properties:

● isMenuAction: defines if the Action is generally to be shown in the client. If this property is set to

false, then the Action will appear nowhere in the client, whatever the other settings may be.

● isObjectAction: defines if the Action is to be displayed in relation to one specific dataset

(selectable via the three-dotted button in the PreviewView)

● selectionType: see property description (bottom of property window)

In a FilterView, an Action is only shown, if it is part of an ActionGroup, and if this ActionGroup is

specified as "favoriteActionGroup" in the property settings of the respective ViewTemplate (e.g.,

"Table"). This is independent from the state of property "selectionType".

Table 3. Visibility of Action buttons according to property settings

isMenuAction isObjectAction selectionType Visibility

false false UNBOUND nowhere

true false UNBOUND as button via FilterView (only when

specified via favoriteActionGroup)

false true UNBOUND nowhere (isMenuAction = false)

false false MULTI nowhere (isMenuAction = false)

true true UNBOUND PreviewView (via three-dotted button), as

button via FilterView (only when specified

via favoriteActionGroup)

true false MULTI as button via FilterView (only active, if at

least 1 dataset is selected)

false true MULTI nowhere (isMenuAction = false)

© 2025 ADITO Software GmbH 125 / 472

isMenuAction isObjectAction selectionType Visibility

true true MULTI PreviewView (via three-dotted button), as

button via FilterView (only active, if at least

1 dataset is selected & if specified via

favoriteActionGroup)

Here is an example of additional Actions in the "Card" ViewTemplate of the PreviewView, along with

their settings:

Figure 19. Example of additional Actions in the "Card" ViewTemplate

The property settings of all 3 Actions is, in this case:

● isMenuAction: true

● isObjectAction: true

● selectionType: MULTI

Furthermore, action2 is set in property "favoriteAction1" of the "Card" ViewTemplate of the

PreviewView.

Here is another example, showing Actions that appear on the top of the "Table" ViewTemplate of the

FilterView:

© 2025 ADITO Software GmbH 126 / 472

Figure 20. Example of additional Actions in the "Table" ViewTemplate

All 8 Actions are included in an ActionGroup (Navigator > Entity > Context Menu > New Action Group):

Figure 21. Example configuration of an ActionGroup

There are 2 ways to assign an Action to an ActionGroup:

1. Right-click on the ActionGroup and choose option "New Action" in the context menu.

or

© 2025 ADITO Software GmbH 127 / 472

2. Create a new Action via the context menu of the Entity (Navigator > Entity > Context Menu >

New Action) and then drag and drop it with the mouse pointer into the ActionGroup.

The property settings of all 8 Actions in the above example is as follows:

● isMenuAction: true

● isObjectAction: false

● selectionType: MULTI

Furthermore "MyActionGroup" is set in property "favoriteActionGroup1" of the "Table" ViewTemplate

of the FilterView.

As you can see in the client screenshot, all 8 Actions are inactive. This is because property

selectionType is set to MULTI, but none of the datasets is selected. As soon as one dataset is selected,

all 8 Actions will become active.

You can also see that the first 4 Actions of the ActionGroup are displayed as separate buttons, while all

further Actions are included in an Action list that appears if you click on the three-dotted button.

In the property sheet of some ViewTemplates, particularly those of type "Table", you can set up to 3

ActionGroups as "favoriteActionGroup". Please note: The display logic of property

"favoriteActionGroup1" is different from the logic of properties "favoriteActionGroup2" and

"favoriteActionGroup3". To watch the effect, please add 2 further ActionGroups and distribute the

groupActions to these (using "Drag & Drop") as follows:

© 2025 ADITO Software GmbH 128 / 472

Figure 22. Example configuration of multiple ActionGroups

Furthermore, please set, separately for every Action and every ActionGroup, the following properties

(enter any values you like):

● "title": In the client, this text will act as label (if the Action appears as separate button), or as

Action list entry (if the Action appears in a combo box), respectively.

● "iconId" (choose any icon from the combo box): In the client, this icon will appear to the left of

the title - or alone, if "title" is not set.

Setting an icon is especially important, if you view ADITO on a small screen,

because in this case, the buttons are shown without "title" text (label). Thus,

if you have not set an icon, you cannot identify the button, as it only appears

as empty square.

After deploying, the result in the client should be something like this (select any dataset):

© 2025 ADITO Software GmbH 129 / 472

Figure 23. Example of how multiple ActionGroups appear in the client

As you can see, the display logic is as follows:

● "favoriteActionGroup1":

○ The first 4 Actions appear as separate buttons. If the screen is not wide enough, one up to

all buttons are displayed without label, only with the Actions' icons (in this example, this

is the case for groupAction3 and groupAction4).

○ All further Actions are included in an Action list that appears if you click on the three-

dotted button.

● "favoriteActionGroup2" and "favoriteActionGroup3": All Actions of these ActionGroups are

grouped in separate combo boxes, showing the respective ActionGroup’s title and icon.

If you watch this example on a very small screen (e.g., of a laptop), all buttons will be shown

"abbreviated", i.e., without title, and a horizontal scroll bar is displayed in order to enable you to reach

all Actions and further buttons (e.g., "Filter"):

Figure 24. Example of ActionGroups and Actions to be displayed on a small screen (scroll bar appears)

© 2025 ADITO Software GmbH 130 / 472

Now, take some time and play around with these example Actions and their settings, in order to get

familiar with the respective effects.

Then, let’s extend our car pool example project by some useful Actions:

10.5.3. Example: Reserve this car

When a car is selected, the user should have the option to reserve this car via an Action. The effect of

the Action should be that the CarReservation Context is opened, with the respective car preselected.

First, we create a new Action for Car_entity, name it "reserveCar" (spelling convention: camelCase,

starting with lowercase letter), and enter "Reserve this car" as property "title". After deploying, this

Action will be immediately visible in the client, yet without effect.

Enter the following code in property "onActionProcess" of Action reserveCar:

Car_entity.reserveCar.onActionProcess

var params = {};

var carId = vars.get("$field.CARID");

if (carId) {
 params = {
 "CarId_param" : carId
 };
}

var recipe = neonFilter.createEntityRecordsRecipeBuilder().parameters(params).toString();

neon.openContextWithRecipe("CarReservation", null, recipe, neon.OPERATINGSTATE_NEW);

Explanations:

● The associative array params is used to carry information from the Context Car to the Context

CarReservation, when the latter is opened with the dialog for creating new datasets. In this case,

the only "workload" of params is CARID.

● If you want Context CarReservation to be opened in a new browser tab, you need to set method

openContextWithRecipe’s additional boolean parameter

"pOpenInNewTab" to "true":

`neon.openContextWithRecipe("CarReservation", null, recipe,

neon.OPERATINGSTATE_NEW, null, true)

Just try it and watch the effect.

Note that parameter "pOpenInNewTab" is only effective in desktop browsers.

© 2025 ADITO Software GmbH 131 / 472

It will be ignored on tablets or mobile devices, and when targeting

unsupported Views (e.g, PreviewViews or EditViews that have property "size"

set to SMALL).

The above onActionProcess is the "outgoing" process, if you like.

Similar to the Provider/Consumer mechanism, we now need to "catch" this Parameter at the "ingoing"

side, i.e., in the Context CarReservation. We need 2 separate processes: one for the CARID itself, and

one for displaying specific features of the car identified by CARID.

Using method openContextWithRecipe for "jumping" into another Context is

not possible in the RecordContainer processes on(DB)Insert, on(DB)Update,

and on(DB)Delete. This can lead to various errors.

CarReservation_entity.CAR_ID.valueProcess

if (vars.exists("$param.CarId_param"))
{
 result.string(vars.get("$param.CarId_param"));
}

Explanation:

Condition if (vars.exists("$param.CarId_param")) is only true, whenever Context Car

is opened via the "reserveCar" Action. This if clause prevents overwriting the value of CAR_ID in

readonly Views (where the Parameter does not exist).

Instead of CAR_ID, there should be displayed manufacturer, type, and color. We load this feature from

the database with an SQL statement:

CarReservation_entity.CAR_ID.displayValueProcess

var carId = vars.get("$field.CAR_ID");

if (carId)

{

 var displayData = newSelect("MANUFACTURER, TYPE, COLOR")

 .from("CAR")

 .where("CAR.CARID", carId)

 .arrayRow();

 var carManufacturer = KeywordUtils.getViewValue($KeywordRegistryCarPool.carManufacturer(), displayData[0]);

 var type = displayData[1];

 var color = KeywordUtils.getViewValue($KeywordRegistryCarPool.carColor(), displayData[2]);

 result.string(carManufacturer + " " + type + " " + color);

}

Explanations:

© 2025 ADITO Software GmbH 132 / 472

● Using prepared statements via SqlBuilder is a safe way to execute an SQL statement.

arrayRow specifies the return type of the SQL query: The contents of the first row is returned

as a one-dimensional array (on the contrary, arrayColumn would return the contents of the

first column as a one-dimensional array).

● The required values are retrieved by SQL. However, instead of writing something like

(…) select MANUFACTURER, TYPE, COLOR from CAR where CARID = carId

(…)

we use prepared statements. The advantage of prepared statements is, amongst others, a higher

security, because it prevents hacking by SQL injection.

10.5.4. Example: Reserve car for this driver

Now, use the previous example as a pattern for adding an Action that enables the reservation of a car

for a given driver. I.e., we want to first select a driver in Context CarDriver and then "jump" to Context

CarReservation, with the driver preselected. Try it on your own, before reading the solution.

Solution:

First, we create a new Action for CarDriver_entity, name it "reserveCarForDriver", and enter "Reserve

car for this driver" as property "title". Make sure that the Parameter "CarDriverId_param" has been

created, and its property "expose" has been set to "true" (see earlier chapter "Example: Showing all

reservations of a driver in the MainView").

Now, we enter the following code in property "onActionProcess" of Action reserveCarForDriver:

CarDriver_entity.reserveCarForDriver.onActionProcess

import { neon, neonFilter, vars } from "@aditosoftware/jdito-types";

var params = {};

var carDriverId = vars.get("$field.CARDRIVERID");

if (carDriverId) {

 params = {

 "CarDriverId_param" : carDriverId

 };

}

var recipe = neonFilter.createEntityRecordsRecipeBuilder().parameters(params).toString();

neon.openContextWithRecipe("CarReservation", null, recipe, neon.OPERATINGSTATE_NEW,null,true);

We now need to "catch" this Parameter in the Context CarReservation:

CarReservation_entity.CARDRIVER_ID.valueProcess

if (vars.exists("$param.CarDriverId_param"))
{
 result.string(vars.get("$param.CarDriverId_param"));

© 2025 ADITO Software GmbH 133 / 472

}

Instead of CARDRIVER_ID, there should be displayed salutation, first name and last name of the driver .

We load this feature from the database with an SQL statement:

CarReservation_entity.CARDRIVER_ID.displayValueProcess

var carDriverId = vars.get("$field.CARDRIVER_ID");

if (carDriverId)
{
 var displayData = newSelect("SALUTATION, FIRSTNAME, LASTNAME")
 .from("PERSON")
 .join("CONTACT", "CONTACT.PERSON_ID = PERSON.PERSONID")
 .join("CARDRIVER", "CARDRIVER.CONTACT_ID = CONTACT.CONTACTID")
 .where("CARDRIVER.CARDRIVERID", carDriverId)
 .arrayRow();

 var salutation = displayData[0];
 var firstname = displayData[1];
 var lastname = displayData[2];

 result.string(salutation + " " + firstname + " " + lastname);
}

Explanation:

As SALUTATION, FIRSTNAME, and LASTNAME are not fields of table CARDRIVER, but of table PERSON,

we need a join in the SQL select statement.

Loading and writing datasets via SqlBuilder (or via the older methods db.xxx)

ignores the permissions (access rights) configured by the client administrator! To

load or write data respecting these permissions,

● set property "usePermissions" of the respective Entity/EntityFields to "true"

(checkbox checked) and

● use the functionality of "LoadEntity" and "Write Entity" instead - see

appendix LoadEntity and WriteEntity.

For further information on setting permissions please refer to the ADITO

documentation for client administrators.

10.5.5. Multi Selection Action

To see an example of how a multi selection action can be implemented, take a look at the

© 2025 ADITO Software GmbH 134 / 472

ChangeParticipantStatus_action action of the EventParticipant_entity of the

xRM Basic project.

In this example an additional context is used, EventParticipantsChangeStatus. It has it own

view which serves as input. Its entity uses a dataless recordcontainer, contains one field which is linked

via a consumer to the keyword entity to get the participant states. It also contains an action which will

contain the change logic.

The action found in EventParticipant reads the current selection as recipe and puts in forward

via a parameter into the additional context. The action of the

EventParticipantsChangeStatus uses the recipe to get all ids of the selected records and

writes the new status via the SqlBuilder. At the end of the action the current image (the view of

EventParticipantsChangeStatus) is closed.

10.6. Calculated fields

The values of some EntityFields are the result of calculations, i.e., they are not only simply loaded from

one single database column.

To assign a value to these kind of fields, there are 2 different ways:

● property "expression" of the EntityField’s RecordFieldMapping in the RecordContainer

● property "valueProcess" of the EntityField

These 2 variants will be explained below.

Calculated EntityFields are often readonly, i.e., they are not editable. In these cases, make sure that its

property "state" is set to READONLY or DISABLED.

10.6.1. expression (RecordContainer)

The preferred way of calculating the value of an EntityField is property "expression" of the EntityField’s

RecordFieldMapping. This property is defined with an SQL term e.g.

● a fix String or number

● the name of a database column or a combination of multiple database columns

● a sub-SELECT

● a complex calculation using specific SQL functions

Whenever an EntityField’s value has to be calculated, you should always first try to realize it this way,

because the second way - using the valueProcess - can have serious performance-related impacts (see

next chapter). Realizing a calculated EntityField via the "expression" property might include the

© 2025 ADITO Software GmbH 135 / 472

challenge that you are not so familiar with programming complex algorithms via SQL, but still it will be

worth to invest much effort in doing this, in order to avoid performance issues related to using the

valueProcess (see next chapter).

The result of the code inserted in property "expression" will then be included in the "select" part of the

SQL produced by the RecordContainer, e.g., when loading a table.

Example of code of property "expression" of an EntityField’s RecordFieldMapping

var mySqlExpression = "'This is a test value.'";
result.string(mySqlExpression);

If you would log the SQL produced by the RecordContainer, you would see, for this example, something

like this:

select MYCOLUMN1, MYCOLUM2, ('This is a test value.'), MYCOLUMN4, (...)
from MYTABLE
(...)

As you can see, ADITO automatically surrounds the result of the expression by round

brackets, so you do not need to care for this when writing subselects, etc.

10.6.2. valueProcess (EntityField)

The second way of calculating the value of an EntityField is to use the EntityField’s valueProcess. This

property is defined with JDito code.

Example of code of property "valueProcess" of an EntityField

var myValue = "This is a test value.";
result.string(myValue);

10.6.2.1. Common use cases

The most common cases of using a valueProcess is

● to preset the value of an EntityField

○ when the EditView is opened in order to create new dataset;

○ dependent on the value of another EntityField.

● to calculate an EntityField’s value, when a calculation is not possible via the expression of the

RecordFieldMapping (see previous chapter). But, in this case, consider the following warning!

© 2025 ADITO Software GmbH 136 / 472

10.6.2.2. Warning

The same warning that was given for the displayValueProcess, also applies for the

valueProcess of an EntityField. The following examples are only for demonstration

purposes. Be aware that using the valueProcess of an EntityField can be a

performance killer:

Whenever you want to calculate the value of an EntityField, using the value’s

"expression" property in the RecordContainer usually enables a higher performance

than other ways, in particular, than using property valueProcess of the EntityField

(see below): The technical background is that the former simply extends the SQL

statement of the loading process, while the latter initiates an additional loading

process, which is executed separately for every single dataset.

However, if you want to create a new dataset that includes a predefined value for a

specific field (or a combo box for selecting from a list of values), then setting

"expression" is not enough, but you additionally need to set the valueProcess for

this field.

To sum it up: Using the valueProcess of an EntityField can be a performance killer.

Thus, as a rule of thumb, you should always try to calculate the value via SQL in the

RecordContainer, using the "expression" property. If you need a value at creation

time, you can additionally (not alternatively!) program a valueProcess. If both

"expression" and valueProcess are filled, the ADITO system automatically ignores the

valueProcess (but not the displayValueProcess!), whenever a value can be retrieved

via "expression".

Find related information in appendix "Accessing the value of an EntityField".

10.6.2.3. Conditional execution

In most cases a valueProcess contains an "if" clause to define a condition for what code is to be

executed, or if the valueProcess is to be executed at all. In this context, you need to consider that the

valueProcess is triggered at various occasions (see following chapter). Thus, you should define the

conditions for executing the respective code very precisely.

Example:

If you want to preset the value of an EntityField only in case it has not been set yet, the following code

would be unsufficient, as an existing value would be overwritten:

result.string("preset subject text");

Instead, you need to included suitable conditions, like those in the following example:

© 2025 ADITO Software GmbH 137 / 472

if (vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW &&
vars.get("$this.value") == null)
{
 result.string("preset subject text");
}

10.6.2.4. Trigger

The valueProcess is triggered at various occasions that cannot be listed completely, as there are many

influencing factors like concurrency etc. Instead, these are the rules and conditions for the trigger.

When will the valueProcess of an EntityField principally be executed?

1. Depending on the operating state (vars.get("$sys.operatingstate"))

a. VIEW

In Operating state VIEW, ADITO tries to minimize the loading time by preferring to load

the value via the RecordContainer. Therefore, the valueProcess is only executed, if

i. the EntityField’s value is available in the client, i.e., the EntityField is referenced in a

ViewTemplate, and

ii. the value of the EntityField has not already been loaded via the RecordContainer

(e.g., via the RecordFieldMapping’s property "expression").

This principle is also true for the displayValueProcess.

b. NEW/EDIT

In the operating states NEW and EDIT, the valueProcess

■ will be executed for every relevant EntityField, i.e., in these operating states, more

EntityFields are involved than in operating state VIEW: The valueProcess is

executed for all EntityFields that are connected in the RecordContainer, i.e., that

are being saved in the database - as well as all mandatory EntityFields.

■ is often used for presetting values or transforming values input by the user.

2. Dependencies between EntityFields:

If the value of an EntityField is accessed in any process (e.g., but not only, in the valueProcess of

another EntityField), the EntityField’s value must be calculated under the actual conditions,

which also can mean the execution of its valueProcess.

As performance problems are sometimes related to undiscovered executions of the

valueProcess, it is generally helpful to activate JDitoLogging and track all executed

processes. This will also reveal all occasions the valueProcess is triggered, which can

© 2025 ADITO Software GmbH 138 / 472

be the basis for performance optimization. (Find more information in chapter

Logging.)

10.6.2.5. Examples

In the xRM project, you can find a lot of examples of implementations of calculated EntityFields: Simply

do a full-text search for the terms "expression" or "valueProcess" and scan the results.

Besides, we will now also extend our carpool example project by a few valueProcesses and expressions.

10.6.2.5.1. Example: Driving experience

In CarDriver_entity, the driving experience of a driver (field "drivingExperience") is calculated on the

basis of the issue date of the driver’s driving license (field DRIVINGLICENSEISSUEDATE).

To display the driving experience in years, we enter the following code:

CarDriver_entity.drivingExperience.valueProcess

var drivingLicenseIssueDate = vars.get("$field.DRIVINGLICENSEISSUEDATE");

if (drivingLicenseIssueDate) {

 var drivingExperience = Math.floor(DateUtils.getDayDifference(drivingLicenseIssueDate)/365) ;

 result.string(drivingExperience);

}

Explanation:

We calculate the driving experience (rounded to years), using the predefined function

DateUtils.getDayDifference and dividing the result by 365 (which is simple but not 100%

precise, of course - you might replace it by a better algorithm, if you like).

The above example and the following examples are only for demonstration

purposes. As explained before, you should always be aware that using the

valueProcess of an EntityField can be a performance killer and that you should

always prefer to realize calculation logic in the property "expression" of the

corresponding record field, if this is possible. You may try this on your own, for the

above example and for the below examples, if you like.

10.6.2.5.2. Example: Age

The age of a driver (CarDriver_entity’s field "age") is calculated on the basis of the value of

Person_entity’s field DATEOFBIRTH, whose value is stored in the database field PERSON.DATEOFBIRTH.

Now, as you have seen the preceding example and you know how to load fields from the database, try

© 2025 ADITO Software GmbH 139 / 472

to write the code for the valueProcess on your own, before looking at the solution.

© 2025 ADITO Software GmbH 140 / 472

Solution:

To display the age, we enter the following code:

CarDriver_entity.age.valueProcess

var contactId = vars.get("$field.CONTACT_ID");

if (contactId) {

 var dateOfBirth = newSelect("DATEOFBIRTH")
 .from("PERSON")
 .join("CONTACT", "CONTACT.PERSON_ID = PERSON.PERSONID")
 .where("CONTACT.CONTACTID", contactId)
 .cell();

 if (dateOfBirth) {
 var age = Math.floor(DateUtils.getDayDifference(dateOfBirth)/365) ;
 result.string(age);
 }
}

Explanations:

First, we retrieve the date of birth by a SQL select statement on table PERSON. Other than

arrayColumn(), which we had used before, cell() returns one single database field. Then, we

proceed the same as for field drivingExperience (see above).

As mentioned before, for performance reasons, you should avoid using a

valueProcess or displayValue process without filling also the "value.expression" /

"displayValue.expression" processes in the RecordContainer. Therefore, here is an

example of how to calculate the age from a date of birth via SQL code.

The following example code refers to the xRM project’s standard Context "Person": Simply add an

EntityField "age" to Person_entity and add this new field as new column of PersonFilter_view’s

ViewTemplate "Persons". Then add the following code in the corresponding "expression" process:

Person_entity.db.age.value.expression

var sqlUtils = new SqlMaskingUtils();
var sql = sqlUtils.yearFromDate("CURRENT_DATE")
 + " - "
 + sqlUtils.yearFromDate("dateofbirth")
 + " - "
 + SqlBuilder.caseWhen(
 "("
 + sqlUtils.monthFromDate("CURRENT_DATE")
 + " < " + sqlUtils.monthFromDate("dateofbirth")

© 2025 ADITO Software GmbH 141 / 472

 + "OR ("
 + sqlUtils.monthFromDate("CURRENT_DATE")
 + " = " + sqlUtils.monthFromDate("dateofbirth")
 + " AND "
 + sqlUtils.dayFromDate("CURRENT_DATE")
 + " < " + sqlUtils.dayFromDate("dateofbirth")
 + ")"
 + ")"
)
 .then("1")
 .elseValue("0")
 .toString();

result.string(sql);

After deploying, you will see the age displayed in the new column of PersonFilter_view (for each

PERSON dataset that includes a DATEOFBIRTH value).

Now, try to use this code pattern for creating a similar suitable code for process

CarDriver_entity.db.age.value.expression.

10.6.2.5.3. Example: Sum of fines

CarDriver_entity’s field "speedingFinesSum" is also a calculated field. It sums up all values of

CarReservation_entity’s field "speedingFine", as far as referring to the given driver. Thus, we again need

a database query for our valueProcess. Try it on your own, before looking at the solution.

© 2025 ADITO Software GmbH 142 / 472

Solution:

CarDriver_entity.speedingFinesSum.valueProcess

var carDriverId = vars.get("$field.CARDRIVERID");

if (carDriverId) {

 var speedingFinesArray = newSelect("SPEEDINGFINE")
 .from("CARRESERVATION")
 .where("CARRESERVATION.CARDRIVER_ID", carDriverId)
 .arrayColumn();

 var sum = 0.0;
 for (let i = 0; i < speedingFinesArray.length; i++) {
 if (speedingFinesArray[i]) {
 sum += parseFloat(speedingFinesArray[i]);
 }
 }
 result.string(sum);
}

Explanations:

● This time, we use function arrayColumn(), because we want to get all values of a column,

SPEEDINGFINE. As arrayColumn() always returns an array of Strings (ignoring the data type

of the database column), we must convert it into a decimal value (function parseFloat)

before summing it up. For simplicity’s sake, we ignore the currency here.

● The solution via a loop was only used to demonstrate function arrayColumn(). You will

surely have noticed, that the better performance will be achieved by calculating the sum directly

in the SQL statement. Try also this way now, by modifying the code. You may use function

cell() in this case, as this returns only one single value, as string, not as array.

● if (speedingFinesArray[i]) reflects the "implicit type conversion" functionality of

JavaScript. Here, it is a simple way to avoid the sum becoming NaN, if a CARRESERVATION

dataset shows no SPEEDINGFINE value - as, in this case, speedingFinesArray[i] is

converted into the boolean value "false".

Of course, instead of calculating the sum via a "for" loop, you can also retrieve the

sum via a modified SQL statement, in one step. Try it by yourself - but be aware that

this might restrict your ADITO project to a specific database dialect (as SQL "sum"

functionality differs between the dialects of the various database types).

Next, try to use your knowledge in order to write the code for the valueProcess of field

© 2025 ADITO Software GmbH 143 / 472

"parkingTicketFinesSum" by yourself, before looking at the solution.

© 2025 ADITO Software GmbH 144 / 472

Solution:

CarDriver_entity.parkingTicketFinesSum.valueProcess

var carDriverId = vars.get("$field.CARDRIVERID");

if (carDriverId) {

 var parkingTicketFinesArray = newSelect("PARKINGTICKETFINE")
 .from("CARRESERVATION")
 .where("CARRESERVATION.CARDRIVER_ID", carDriverId)
 .arrayColumn();

 var sum = 0.0;
 for (let i = 0; i < parkingTicketFinesArray.length; i++) {
 if (parkingTicketFinesArray[i]) {
 sum += parseFloat(parkingTicketFinesArray[i]);
 }
 }
 result.string(sum);
}

10.6.2.5.4. Example: Sum of damages

Car_entity’s field "damages" is also a calculated field. It summarizes all texts of CarReservation_entity’s

field "damage", as far as referring to the given car. Thus, we again need a database query for our

valueProcess. Try it on your own, before looking at the solution.

© 2025 ADITO Software GmbH 145 / 472

Solution:

Car_entity.damages.valueProcess

var carId = vars.get("$field.CARID");

if (carId) {

 var damagesArray = newSelect("DAMAGE")
 .from("CARRESERVATION")
 .where("CARRESERVATION.CAR_ID", carId)
 .arrayColumn();

 var allDamages = damagesArray.join("; ");

 result.string(allDamages);
}

Furthermore, it is recommended to set property contentType of Car_entity’s field "damages" to

LONG_TEXT, as this results in a scrollable text box shown in the client.

10.6.2.5.5. Example: Mileage

The value of Car_entity’s field mileage is the maximum value of CarReservation_entity’s field

MILEAGERETURN, as far as the respective car is concerned. Try to write the required valueProcess on

your own, before looking at the solution.

© 2025 ADITO Software GmbH 146 / 472

As always, there are multiple ways of solving the task - this is a suggestion:

Car_entity.mileage.valueProcess

var carId = vars.get("$field.CARID");

if (carId) {

 var maxMileage = newSelect("max(MILEAGERETURN)")
 .from("CARRESERVATION")
 .where("CARRESERVATION.CAR_ID", carId)
 .cell();

 result.string(maxMileage);
}

10.6.2.5.6. Example: carValue

The value of the car depends on its price and on its age. Per day, the value decreases by 0.03%.

Furthermore, if the car has any damage, its value should be reduced by another 10%. Try to write the

required valueProcess and displayValueProcess on your own, before looking at the solution.

© 2025 ADITO Software GmbH 147 / 472

Our suggested solution is:

Car_entity.carValue.valueProcess

var price = vars.get("$field.PRICE");
var dateOfManufacture = vars.get("$field.MANUFACTUREDATE");
var damages = vars.get("$field.damages");

if (price && dateOfManufacture) {
 var value = price;
 var ageInDays = Math.floor(DateUtils.getDayDifference(dateOfManufacture));
 // just a random percentage as example
 var valueLossPercent = -0.03;
 // random formula, similar to
 // calculation of "compound interest"
 value *= Math.pow((1+(valueLossPercent/100)), ageInDays);

 if (damages) {
 // just a random factor as example
 value *= 0.9;
 }
 result.string(value);
}

Car_entity.carValue.displayValueProcess

var carValue = vars.get("$this.value");
var currency = vars.get("$field.CURRENCY");

if (carValue && currency) {
 result.string(text.formatDouble(carValue, "#,##0.00") + " " + currency);
}

10.6.2.5.7. Example: Availability

Car_entity’s field AVAILABILITY indicates whether or not a car is currently available, i.e., if it is currently

lent (reserved) or not. Furthermore, a reservation should not be possible, if a car is not available in the

requested timespan.

First try to write the required valueProcess on your own, before looking at the solution.

© 2025 ADITO Software GmbH 148 / 472

Our suggestion for the solution is:

Car_entity.availability.valueProcess

var carId = vars.get("$field.CARID");

if (carId) {

 var currentReservationId = newSelect("CARRESERVATIONID")
 .from("CARRESERVATION")
 .where("CARRESERVATION.CAR_ID", carId)
 .and("STARTDATE < CURRENT_TIMESTAMP")
 .and("ENDDATE > CURRENT_TIMESTAMP")
 .cell();

 var availability = "NO";
 if (currentReservationId == "") {
 availability = "YES";
 }
 result.string(availability);
}

If you are interested to know what SQL code this helper function returns, please refer to appendix

"Database Access", chapter "SQL Helper Functions".

To decline a reservation of a car that is not available in the entered timespan, we use the property

"onValidation" of CarReservation_entity. The code of this property will be executed, whenever the user

enters a value of a field.

CarReservation_entity.onValidation

var carId = vars.get("$field.CAR_ID");

var startDate = vars.get("$field.STARTDATE");

var endDate = vars.get("$field.ENDDATE");

var reservationId = vars.get("$field.CARRESERVATIONID");

if (carId && startDate && endDate)

{

 var futureReservations = newSelect("CARRESERVATIONID, STARTDATE, ENDDATE")

 .from("CARRESERVATION")

 .where("CARRESERVATION.CAR_ID", carId)

 .and("ENDDATE > CURRENT_TIMESTAMP")

 .table();

 for (let i = 0; i < futureReservations.length; i++)

 {

 let aReservationId = futureReservations[i][0];

 let aStartDate = futureReservations[i][1];

 let aEndDate = futureReservations[i][2];

 if ((reservationId != aReservationId) && !(aStartDate > endDate || aEndDate < startDate))

 {

 result.string("Car is not available for the requested timespan.");

 break;

© 2025 ADITO Software GmbH 149 / 472

 }

 }

}

Explanations:

● At first, we check if the user has selected a car as well as the start date and the end date of the

reservation timespan.

● Then we load STARTDATE and ENDDATE of all reservations of the selected car, as far as they

reach into the future (we do not need the past ones, as reservations will be done only for

present or future)

● In a loop, we check if any of the existing reservations overlap with the timespan the user has

selected (in fact, this "if" condition means "the opposite of no overlap"). If so, the result of the

process is a text indicating that the car is not available for the requested timespan.

● If any text is given as result of the onValidation process, an automatism makes sure that

○ the validation is considered as "false";

○ the given text is displayed to the right of the "Save" button;

○ the "Save" button is disabled until the next call of the onValidation process.

The onValidation process is one of several processes being executed when an Entity

is processed. It is important to consider the order, in which these processes are

internally handled. Find more information in appendix "Order of execution of Entity

processes". The onValidation process should only be used to validate data. Don’t

react to changes here!

Loading and writing datasets via SqlBuilder (or via the older methods db.xxx)

ignores the permissions (access rights) configured by the client administrator! To

load or write data respecting these permissions,

● set property "usePermissions" of the respective Entity/EntityFields to "true"

(checkbox checked) and

● use the functionality of "LoadEntity" and "Write Entity" instead - see

appendix LoadEntity and WriteEntity.

For further information on setting permissions please refer to the ADITO

documentation for client administrators.

Now that we have configured the EntityField "availability", we can use it, e.g., in a

ScoreCardViewTemplate that is placed as footer of the CarPreview_view (see chapter ScoreCard for

© 2025 ADITO Software GmbH 150 / 472

further information):

● Open CarPreview_view in the Navigator window.

● Add a ViewTemplate of type "Score Card". In the "Add new ViewTemplate" dialog, choose

"Assign to … footer".

● Configure the ViewTemplate’s properties as follows:

○ title: Can be left empty, as the title of the EntityField will be used automatically.

○ fields: Choose EntityField "availability"

After deploying and refreshing, the ScoreCardViewTemplate shows "YES" or "NO", depending on the

actual availability. Now, we can optionally add a link to the ViewTemplate, in order to execute an

Action:

● Create an Action named "availabilityAction"

● Un-check the checkbox of property "isObjectAction"

● Fill property onActionProcess with a code that shows a popup window including a sentence

stating if the car is available or not:

var myMessage;

if (vars.get("$field.availability") == "YES") {
 myMessage = translate.text("This car is available.");
} else {
 myMessage = translate.text("This car is not available");
}
question.showMessage(myMessage);

● Now you can reference the new Action in property "fieldActions" of the

ScoreCardViewTemplate.

After deploying and refreshing, hover over the ScoreCard with the mouse pointer: It has now got a link

to the above Action, which opens a popup dialog showing a text.

© 2025 ADITO Software GmbH 151 / 472

10.7. AggregateFields

AggregateFields are ADITO models designed for aggregating EntityField values, e.g.

● counting datasets (e.g., via their ID column)

● summing up values

● showing minimum, maximum, or average values

In most cases, aggregations are related to a grouping.

A plain example of an implementation of AggregateFields is Context "Offer" in the ADITO xRM project.

We will use this example to show the appearance of AggregateFields in the client and to explain how

they can be configured in the ADITO Designer.

10.7.1. Appearance

In the client, navigate to Context "Offer" (menu group "Sales"). In the FilterView of this Context

(OfferFilter_view), click on the view selection button (see upper right corner): Amongst other

ViewTemplates, you can choose between 3 variants of ViewTemplates of type

"DynamicMultiDataChart", which are all column charts, based on a preset grouping according to

Offer_entity’s EntityField STATUS (holding values like "Checked", "Open", "Sent", "Won"):

● Count Chart shows how many Offer datasets have which STATUS value.

● Sum Chart shows, separately for each STATUS value, the sum of all NET values (EntityField NET)

of Offer datasets that have the respective STATUS value.

● Probability Chart shows, separately for each STATUS value, the average probabilty (EntityField

PROBABILITY) of all Offer datasets that have a specific STATUS value.

Besides "DynamicMultiDataChart", there are further ViewTemplate types suitable

for processing AggregateFields. Besides, AggregateFields can also be used in a

Consumer. Find further information in chapter Properties allowing AggregateFields.

10.7.2. Configuration

10.7.2.1. when using DbRecordContainer

To configure an aggregate functionality, please proceed as follows:

1. Create an EntityField (and give it a title) as so-called "parent field" for the AggregateField (see

below). As for the aggregate-related ViewTemplates of OfferFilter_view, these are Offer_entity’s

EntityFields COUNT (Count), NET (Total net), and PROBABILTY (Probability).

© 2025 ADITO Software GmbH 152 / 472

2. Add an AggregateField to the new EntityField (and give it a title): Right-click on the EntityField

and choose option "New AggregateField" from the context menu. This will open a dialog

requesting name and parent field.

a. The name will be preset in the syntax "<EntityField name>_aggregate", which can be left

unchanged ("COUNT_aggregate", "NET_aggregate", and "PROBABILITY_aggregate").

b. The parent field is, by default, the EntityField to which the AggregateField has been

added. In most cases, this can remain unchanged. (Exceptions are explained later.)

3. Open the RecordContainer node (e.g. "db") and double-click on the corresponding "xxx.value"

RecordFieldMapping, e.g. COUNT_aggregate.value, in order to initialize it.

4. In the "Properties" window, you can now configure the properties

a. recordField: Select the EntityField holding the values that are to be aggregated.

Alternatively, you can specify an SQL code in property "expression". If both properties are

set, the ADITO logic will exclusively use "expression" (same logic as for the

RecordFieldMapping of an EntityField).

b. aggregateType: Select the type of aggregation, e.g., COUNT, SUM, AVG (average),

MIN(imum), or MAX(imum).

5. Create a new ViewTemplate that can process AggregateFields (see chapter Properties allowing

AggregateFields). In our above example, these are ViewTemplates of type

"DynamicMultiDataChart", which are assigned to OfferFilter_view.

6. Set the new ViewTemplate properties:

a. title (e.g. "Sum chart")

b. chartType (here: COLUMN)

c. defaultGroupFields: As the scale of the x-axis is the result of a data grouping, enter the

EntityField that determines the grouping in property "defaultGroupFields". In our

example, it is the EntityField STATUS.

d. columns: The values of the y-axis (= here: the height of the columns) are provided by an

EntityField - in our 3 column chart examples, these are the EntityFields having

AggregateFields assigned to: COUNT, NET, and PROBABILITY, respectively. Additionally, you

need to set the corresponding AggregateField in columns aggregateEntityField, i.e.,

COUNT_aggregate, NET_aggregate, and PROBABILITY_aggregate, respectively.

e. yAxisLabel: Optionally, you can set a label for the y-axis here.

10.7.2.2. when using JDitoRecordContainer

AggregateFields can also be applied when using a JDitoRecordContainer. The first steps are similar to

when using a DbRecordContainer (see above).

© 2025 ADITO Software GmbH 153 / 472

A good pattern for learning the configuration of AggregateFields in a JDitoRecordContainer is the ADITO

xRM project’s Context "Turnover". Proceed as follows:

● Login to an ADITO xRM project that includes demo data.

● In the global menu, click on "Sales forecast" (menu group "Sales"). This will open the Context

that appears named "Turnover" in the ADITO Designer.

● Scan through the various ViewTemplates in the GroupLayout of this Context’s FilterView

(internal name: "TurnoverDynamicMultiDataChart_view") and get familiar with the provided

functionalities.

● In the Designer, navigate to Context "Turnover" and scan through its elements, e.g., inspect the

configuration of the ViewTemplates assigned to TurnoverDynamicMultiDataChart_view.

● Read property "documentation" of Entity "Turnover_entity".

● Study this Entity’s configuration (EntityFields, RecordFieldMappings, AggregateFields etc.)

● Study the JDitoRecordContainers very carefully: Their "contentProcess" properties include a

special grouping and result format.

○ The contentProcess of RecordContainer "jdito" has a comprehensive inline code

documentation, which will help you to understand the technique.

○ Also study the configuration of JDitoRecordContainer "jditoDynamicMultiDataChart", as

well as the code of its contentProcess.

10.7.3. displayValueProcess of an AggregateField

To format an AggregateField, you can use the displayValue or the displayValueProcess.

AggregateFields currently can only be formatted by using the displayValueProcess.

An expression exists, but as the system builds the aggregate from the return of the

expression, it is not possible to use it for extra formatting or adding further elements

to the result of the aggregate function.

Example of a displayValueProcess of an AggregateField

result.string("#: " + vars.get("$this.value"))

10.7.4. Usage in filter

If you want to use an AggregateField in a filter, set property "isFilterable" of the corresponding

parentField’s RecordFieldMapping to true. It will then appear in the filter component (to the right of

the FilterView) with the title of the AggregateField’s parent field (not of the AggregateField itself), so

© 2025 ADITO Software GmbH 154 / 472

you can manually set a filter condition.

Furthermore, you can use AggregateFields also in the filterConditionProcess. Then, the following

functions may be helpful:

● $local.isAggregateCondition: true, if the condition, for which the filterConditionProcess is

executed, is based on an AggregateField; else false

● $local.conditionHaving: If a FilterExtension is executed due to an aggregation field, this variable

returns the condition to be included in the subselect

● $local.columnPlaceholder: The value of the place holder, if you filter according to attributes und

thus neet to retrieve the correct column name.

10.7.5. Usage in Consumer

AggregateFields can also be used in a Consumer, via its properties

● lookupIdField

● targetContextField

● targetIdField

● sortingField

If you want to show 2 aggregations in the same Entity, you need to use a second

Consumer.

10.7.6. Properties allowing AggregateFields

Aggregate fields can be specified in various properties of the following ADITO models:

1. ViewTemplates

a. properties "entityField" and "columns"/"fields":

■ Actions

■ CardTable

■ DynamicMultiDataChart

■ DynamicSingleDataChart

■ Gantt

■ Generic

■ GenericMultiple

© 2025 ADITO Software GmbH 155 / 472

■ ScoreCard

■ Table

■ TitledList

■ TreeTable

b. ActionList: properties "titleField", "descriptionField", "iconField"

2. Consumer: properties "lookupIdField", "targetContextField", "targetIdField", "sortingField"

© 2025 ADITO Software GmbH 156 / 472

10.8. Field Groups

A Field Group is an ADITO model used for combining EntityFields, along with an additional

configuration for editing.

Let’s use our car pool project for creating an example: Our task is to have both the EntityFields

MANUFACTURER and TYPE set as property titleField of ViewTemplate CarPreviewCard (included in

CarPreview_view):

When the edit button ("pencil") to the right is clicked, both EntityFields should be editable separately:

Configuration:

Open Car_entity in the Navigator window. Right-click on folder "Fields" and choose "New Field Group"

from the context menu. In the following dialog, enter a suitable name, e.g.,

MANUFACTURER_AND_TYPE_fieldGroup.

In ViewTemplate CarPreviewCard, select the new Field Group in property titleField.

The central property of a FieldGroup is a valueProcess, in which you can combine any available

EntityFields. The code for the above example is simple:

© 2025 ADITO Software GmbH 157 / 472

import { result, vars } from "@aditosoftware/jdito-types";

var manufacturer = vars.get("$field.MANUFACTURER");
var type = vars.get("$field.TYPE");

result.string(manufacturer + " " + type);

Making the EntityFields MANUFACTURER and TYPE both editable separately is even simpler: In the

Navigator window, drag and drop these EntityFields on the FieldGroup, then they appear subordinated

to the FieldGroup:

The 2 EntityFields will then be editable in this order, as soon as the client user clicks the edit button

("pencil") to the right.

Do not mistake the edit buttons: There is a further edit button to the left hand side

of the CardViewTemplate. This button opens the EditView, while, in our case, we

need the other edit button, which is to the right of the titleField. This edit button

only refers to the EntityFields shown in the CardViewTemplate.

You may change the order of the editable EntityFields again by drag & drop in the Navigator window of

the Designer.

If you click on the subordinated EntityFields in the Field Group, you see that no properties are shown.

This is o.k., because the only purpose of these EntityField references is to determine, that, and in which

order, the EntityFields can be edited in the client.

Advanced examples:

In the xRM project you can find various advanced examples of an implementation of a Field Group, e.g.,

FULL_NAME_fieldGroup, a Field Group of Person_entity. This Field Group combines the EntityFields

SALUTATION, TITLE, FIRSTNAME, MIDDLENAME, and LASTNAME, as well as ORGANISATION_NAME,

which is not editable. If you inspect the valueProcess of this FieldGroup you see that it references the

Entity’s contentTitleProcess, which in turn is generated via the valueProcess of a separate EntityField

named contenttitle.

© 2025 ADITO Software GmbH 158 / 472

10.9. Advanced filter options

10.9.1. Dynamic filter values

Besides fix filter values, ADITO enables the client user to specify also dynamic filter values. Look at an

example included in the xRM project: In the filter component of ActivityFilter_view, you can filter

according to property "Responsible". If you then open the "Value" combo box, you can not only select

from the system’s Employee records, but you can also choose value "me". This is a dynamic filter value,

because it depends on the logged-in ADITO user (Employee).

Figure 25. Example of dynamic filter value "me" (Context "Activity")

In the Designer, this feature is configured as follows:

Activity_entity’s EntityField RESPONSIBLE has a Consumer "Employees", which depends on

Employee_entity’s Provider "Employees". This Provider’s property "filterVariablesProcess" includes the

core code of the feature:

Employee_entity.Employees.filterVariablesProcess

var res = {
 "global.user.contactId": translate.text(
"${FILTER_DYNAMIC_VALUE_ME}")
};

result.object(res);

The result of the filterVariablesProcess can be an arbitrary number of key-value pairs, with

© 2025 ADITO Software GmbH 159 / 472

● key being the variable whose value is to be used

● value being the display value to be used in the client

In the above example, the result means "Show the text 'me' as additional filter value. If the client user

selects it, use the value of variable $global.user.contactId as filter value."

This principle can be used with any $global und $sys variable. If required for this purpose, further $sys

variables can be ordered from ADITO’s development department. But you can also define your own

$global variables via vars.set("$<global.xxx.yyy>", variableValue) in process

"autostartNeon".

The technical background, why this feature is available in the Provider model is:

As you can (optionally) specify a lookupIdfield in the Provider in order to use a different UID, it must be

possible to filter also according to different values.

Hypothetical example:

● UID: CONTACTID

● lookupIdfield of Provider "#PROVIDER" (the UID will be used)

→ In this case, a dynamic filter "my company" requires the CONTACTID of the user’s company.

● lookupIdfield of Provider "XYZ": ORGANISATIONID

→ In this case, a dynamic filter "my company" requires the ORGANISATIONID of the user’s

company.

10.9.2. Filter presets

Besides filters set by the client user, it is also possible to include customized filter presets, e.g., to be

automatically executed when a Context is opened.

10.9.2.1. FilterBuilder

JDito includes the FilterBuilder, which is a builder pattern that allows you to define/configure even

complex filters quite comfortably and intuitively. (In earlier versions you had to realize this via a big

JSON string, created manually.)

To use this functionality, you first need to import the system module neonFilter. It includes the

methods

● createFilterGroup, which creates an object of class FilterGroup

● createFilterCondition, which creates an object of class FilterCondition

You can create multiple instances of these objects. Each can be configured in detail and then nested -

© 2025 ADITO Software GmbH 160 / 472

which finally results in an (extended) filter.

The handling of these methods and objects is similar to the usage of the "extended Filter" in the client.

Therefore, we will create an arbitrary example of an extended filter in the client and then learn how to

configure the same filter in JDito.

First, click on "Open extended filter" in the FilterView of Context "Contact".

Here is an example of an extended filter, containing 4 filter groups (represented by the lines starting

with the all/one switch), each with 0 to 2 filter conditions (represented by the lines with grey

background).

© 2025 ADITO Software GmbH 161 / 472

The effect of this filter is to show all "Contacts" (= datasets of Person_entity) that are

● not inactive AND

○ EITHER female and having the last name "Smith"

○ OR male and having a last name starting with "Mill"

Now, this is how the same filter is configured in JDito (cf. labeled screenshot below):

© 2025 ADITO Software GmbH 162 / 472

Examples of how to use the filter builder pattern

var filterGroup1 = neonFilter.createFilterGroup();
filterGroup1.mergeOperator(neonFilter.MERGE_OPERATOR_AND);

var filterConditionNotInactive = neonFilter.createFilterCondition()
.field("STATUS")
.searchOperator(neonFilter.SEARCH_OPERATOR_NOT_EQUAL)
.contentType(neonFilter.CONTENT_TYPE_TEXT)
.value("Inactive")
.key("CONTACTSTATINACTIVE");

filterGroup1.addFilterCondition(filterConditionNotInactive);

var filterGroup2 = neonFilter.createFilterGroup();
filterGroup2.mergeOperator(neonFilter.MERGE_OPERATOR_OR);
filterGroup1.addFilterGroup(filterGroup2);

var filterGroup3 = neonFilter.createFilterGroup();
filterGroup3.mergeOperator(neonFilter.MERGE_OPERATOR_AND);
filterGroup2.addFilterGroup(filterGroup3);

var filterConditionLastnameSmith = neonFilter.
createFilterCondition()
.field("LASTNAME")
.searchOperator(neonFilter.SEARCH_OPERATOR_EQUAL)
.contentType(neonFilter.CONTENT_TYPE_TEXT)
.value("Smith")
.key("Smith");

filterGroup3.addFilterCondition(filterConditionLastnameSmith);

var filterConditionGenderFemale = neonFilter.createFilterCondition()
.field("GENDER")
.searchOperator(neonFilter.SEARCH_OPERATOR_EQUAL)
.contentType(neonFilter.CONTENT_TYPE_TEXT)
.value("Female")
.key("f");

filterGroup3.addFilterCondition(filterConditionGenderFemale);

var filterGroup4 = neonFilter.createFilterGroup();
filterGroup4.mergeOperator(neonFilter.MERGE_OPERATOR_AND);
filterGroup2.addFilterGroup(filterGroup4);

var filterConditionLastnameMill = neonFilter.createFilterCondition()
.field("LASTNAME")
.searchOperator(neonFilter.SEARCH_OPERATOR_STARTSWITH)
.contentType(neonFilter.CONTENT_TYPE_TEXT)

© 2025 ADITO Software GmbH 163 / 472

.value("Mill")

.key("Mill");

filterGroup4.addFilterCondition(filterConditionLastnameMill);

var filterConditionGenderMale = neonFilter.createFilterCondition()
.field("GENDER")
.searchOperator(neonFilter.SEARCH_OPERATOR_EQUAL)
.contentType(neonFilter.CONTENT_TYPE_TEXT)
.value("Male")
.key("m");

filterGroup4.addFilterCondition(filterConditionGenderMale);

© 2025 ADITO Software GmbH 164 / 472

The above code is simplified. In practice, of course, you would reference

KeywordEntries not directly, but via the usual JDito methods, e.g.,

● .key($KeywordRegistry.contactStatus$inactive())

instead of .key("CONTACTSTATINACTIVE")

● .value(KeywordUtils.getViewValue($KeywordRegistry.co

ntactStatus(),

$KeywordRegistry.contactStatus$inactive()))

© 2025 ADITO Software GmbH 165 / 472

instead of .value("Inactive")

As you can see, creating a FilterGroup is always the starting point. "Into" this FilterGroup, you can add

("nest")

● either a FilterCondition

● or another FilterGroup, which in turn can have FilterGroups or FilterConditions added ("nested")

This "nesting" of FilterGroups and other FilterGroups or FilterConditions can, in theory, be continued up

to an unlimited depth (with limits as for performance, of course).

The methods mean:

● FilterGroup:

○ .mergeOperator: The operator (mathematical term: "logical connective") to be

applied for connecting the filter group’s conditions and subordinated filter groups.

Possible values: "and", "or". The parameter should be specified by using the respective

constants given in neonFilter, e.g., neonFilter.MERGE_OPERATOR_AND.

○ .addFilterGroup: "Nests" one filter group "into" another. The subordinated filter

group’s result will be connected with the filter conditions using the specified

mergeOperator (see above).

○ .addFilterCondition: Specifies a filter condition to be applied in this filter group.

This filter condition will be connected with further filter conditions as well as with

subordinated filter groups' results using the specified mergeOperator (see above).

○ .toJson(): Converts the filter group and all its nested content into a big JSON string. In

earlier ADITO versions, this was required for passing the filter to specific JDito methods

that did not yet accept the filter object as argument, but only a JSON string - e.g.,

neon.setFilter. But now, in most cases, you do not need to convert the filter into a

JSON string, because methods like neon.setFilter accept the FilterGroup itself as

argument. Also process properties like initFilterProcess (see below), accept the

FilterGroup to be passed as result, without the need to convert it into a JSON string first:

result.string(<myFilterGroup>) (but do NOT use

result.object(<myFilterGroup>) in these cases).

● FilterCondition:

○ .field: The EntityField the filter condition refers to

○ .contentType: The contentType of the EntityField. The parameter should be specified

by using the respective constants given in neonFilter, e.g.,

neonFilter.CONTENT_TYPE_TEXT.

© 2025 ADITO Software GmbH 166 / 472

○ .searchOperator: The search operator (relational operator) to be applied for the

comparison between the values of the EntityField and the value given in method .key.

Examples: "greater than", "equals", "starts with". The parameter should be specified by

using the respective constants given in neonFilter, e.g.,

neonFilter.SEARCH_OPERATOR_EQUAL.

○ .key: The value to compare the EntityField’s values with when the filter is executed. This

value is NOT displayed in the client.

○ .value: The value to be displayed in the client when the filter has been set (NOT used

for filtering, only for displaying purposes!) If there is no difference between the values of

.key and .value, then .value must be specified anyway - simply repeating the value

of .key(see, e.g., the above example "filterConditionLastnameSmith") .

10.9.2.2. initFilterProcess

If you want a specific filter to be preset when a Context is opened (i.e., when calling the FilterView), the

most common way is to use the Entity’s initFilterProcess. The required result can easily be configured

using the FilterBuilder (see previous chapter).

Here is an example task, which can be used as pattern: When opening the FilterView of Context Car, we

want to see only cars, whose license plate number includes the letter "M". This requires the following

code:

Car_entity.initFilterProcess

import { neon, neonFilter, result, vars } from "@aditosoftware/jdito-types";

if (vars.get("$sys.presentationmode") === neon.CONTEXT_PRESENTATIONMODE_FILTER)
{
 var recordState = vars.get("$sys.recordstate");
 if (recordState != neon.OPERATINGSTATE_SEARCH)
 {
 var filter = neonFilter.createFilterGroup()
 .mergeOperator(neonFilter.MERGE_OPERATOR_AND)
 .addFilterCondition(neonFilter.createFilterCondition()
 .field("LICENSEPLATENUMBER")
 .key("M")
 .value("M")
 .searchOperator(neonFilter.SEARCH_OPERATOR_CONTAINS)
 .contentType(vars.get("$property.LICENSEPLATENUMBER.contentType"))
);
 result.string(filter.toString());
 }
}

 Find more information about the difference between "operating state" and "record

© 2025 ADITO Software GmbH 167 / 472

state" in the appendix "Operating state vs. record state".

Here is another example, from the xRM project. This code makes sure that only "active" company

datasets are shown:

Organisation_entity.initFilterProcess (fragment)

var filter;

(...)

if (vars.get("$sys.presentationmode") === neon.CONTEXT_PRESENTATIONMODE_FILTER)

{

 var statusInactive = $KeywordRegistry.contactStatus$inactive();

 filter = neonFilter.createFilterGroup()

 .mergeOperator(neonFilter.MERGE_OPERATOR_AND)

 .addFilterCondition(neonFilter.createFilterCondition()

 .field("STATUS")

 .key(statusInactive)

 .value(KeywordUtils.getViewValue($KeywordRegistry.contactStatus(), statusInactive))

 .searchOperator(neonFilter.SEARCH_OPERATOR_NOT_EQUAL)

 .contentType(neonFilter.CONTENT_TYPE_TEXT)

);

}

result.string(filter);

Filter referencing a FilterExtension:

If your filter condition is related to a FilterExtension (see chapter "FilterExtension"), the syntax of the

argument of method field is like this:

"#EXTENSION.TestfilterExtension.TestfilterExtension#TEXT"

Here is a code fragment as an example:

Example of referencing a FilterExtension in a filter condition

(...)
var filterCondition = neonFilter.createFilterCondition()
 .field("#EXTENSION.TestfilterExtension.TestfilterExtension#TEXT")
 .key(companyId)
 .value("13")
 .searchOperator(neonFilter.SEARCH_OPERATOR_EQUAL)
 .contentType(neonFilter.CONTENT_TYPE_TEXT);
(...)

10.9.2.3. neon.setFilter

© 2025 ADITO Software GmbH 168 / 472

If you want a specific filter to be applied in another part of your project - e.g., in an Action - you need to

use method neon.setFilter:

Pattern for setting a filter in JDito

var filter = neonFilter.createFilterGroup();

(...) // configuration of filter - cf. above examples

neon.setFilter("#ENTITY", filter);

(In earlier ADITO versions, `neon.setFilter`required a JSON string as argument, but now you can simply

pass the filter builderpattern (FilterGroup) as shown in the example.)

10.9.3. FilterExtension

FilterExtension is an ADITO model used for extending the standard filter (which are controlled via the

"isFilterable" properties of the RecordFieldMappings in the RecordContainer) by an additional filter

option - e.g., a filter criteria that is related to a field of another Entity.

Examples in ADITO xRM:

● "Favorites_filter", a FilterExtension included in the RecordContainers of several Entities, e.g., of

Organisation_entity.

● "Phase_filter" ("Phase_filterExtention"), a FilterExtension included in the RecordContainer of

Salesproject_entity.

To understand these examples, you might first study the following paragraphs.

10.9.3.1. General example

Generally, a FilterExtension can be added as follows:

10.9.3.1.1. Creating a new FilterExtension

Open your Entity in the Navigator, right-click on its RecordContainer, and choose "Add Filter Extension"

from the context menu. Enter a name of your choice, e.g., "hasMyEntityFieldSet".

Now, fill the new FilterExtension’s properties as follows:

10.9.3.1.2. General properties

● "title": Enter the text of the respective list item to appear in the filter’s combo box "Property",

e.g. "Has my EntityField set".

© 2025 ADITO Software GmbH 169 / 472

● "contentType": Enter the data type of the values to be entered or selected in the filter’s field

"Value". This data type will then, amongst others, determine the list of relational operators from

which the user can select in the filter component’s field "Operator". For our example, the

contentType should be set to "TEXT".

10.9.3.1.3. filterValuesProcess

Fill property filterValuesProcess only if you want to select the values (in the filter’s field "Value") via a

combo box. The result of this property’s process must be an array of value pairs:

Example of data structure of filterValuesProcess result

(...)
var myFilterValues = [];
myFilterValues.push(["myID1", "mycombo boxListItem1"]);
myFilterValues.push(["myID2", "mycombo boxListItem2"]);
myFilterValues.push(["myID3", "mycombo boxListItem3"]);
(...)
result.object(myFilterValues);

The second values of the value pairs are displayed in the combo box, while the first values are to

evaluate the selection in the filterConditionProcess (see below); often this first value is a key (e.g., the

UID of a dataset).

In many cases, the above result array is generated via an SQL selection:

Example of filterValuesProcess using an SQL selection

var myFilterValues = newSelect("MYIDCOLUMN, MYCOLUMNFORCOMBOBOXLISTITEMS")
 .from("MYTABLE")
 .table();

result.object(myFilterValues);

If, however, you want to enter the value as free text (no selection via combo box),

then property filterValuesProcess must remain in default status (empty).

The specific code of the filterValuesProcess suitable for the carpool example will be

added in a future version of this manual. You may try it by yourself meanwhile.

10.9.3.1.4. useConsumer/consumer

Checking property useConsumer enables you to use lookup functionality via a Consumer. It is an

alternative to specifying a filterValuesProcess: As soon as you have checked this checkbox, property

© 2025 ADITO Software GmbH 170 / 472

filterValuesProcess disappears and property "consumer" appears instead. Here, you can select a

Consumer that delivers the selectable filter values, with the corresponding Provider Entity’s

● contentTitleProcess or (if set) LookupView to be used for displaying the selectable values in the

combo box;

● UID column (= its primary key) acting as value to be evaluated in the filterConditionProcess (see

chapter below)

If you uncheck property useConsumer again, property filterValuesProcess (and its value) will reappear

instead of property "consumer". The values of these alternative properties will always remain stored,

independently from the value of property useConsumer.

10.9.3.1.5. filterConditionProcess

The property filterConditionProcess is used for reacting to the value the user has input/selected in the

"Value" field of the filter component. The result of this process is an SQL condition that will be added to

the conditionProcess of the RecordContainer (i.e., to the "WHERE" part of the SQL code used for filling

the FilterView). Like in the conditionProcess, the SQL code words "WHERE" and "AND" must not be

included.

The following variables are available in the filterConditionProcess:

● The user’s input/selection can be retrieved via the local variable "rawvalue":

vars.get("$local.rawvalue") This variable holds

○ the text typed in by the user, if the input was done via a free text field (see above,

filterValuesProcess)

○ the first value of the value pair corresponding to the user’s selection, if the input was

done via a combo box (see above, filterValuesProcess)

Furthermore, there are 2 $local variables to retrieve the relational operator that the user

has selected in the "Operator" field of the filter component:

● "comparison": vars.get("$local.comparison") This variable holds a String value

representation of the selected operator, e.g. "EQUAL", "CONTAINS", or "STARTSWITH". This

operator selection can then be evaluated via "if" clauses or via "switch/case" (here, you can, if

required, use the SqlBuilder.XXX functions, e.g., SqlBuilder.EQUAL() - see example

code below).

Possible values of $local.comparison are EQUAL, GREATER, LESS, GREATER_OR_EQUAL,

LESS_OR_EQUAL, NOT_EQUAL, CONTAINS, CONTAINSNOT, STARTSWITH, ENDSWITH, ISNULL, and

ISNOTNULL. Furthermore, there is a value named EQUAL_ANY, if there is a comparison with

multiple values - meaning that at least one of the values matches (in contrast to EQUAL,

© 2025 ADITO Software GmbH 171 / 472

meaning that all elements match). Value NONE means that there is no operator.

● "operator": vars.get("$local.operator") This variable holds an Integer value

representation, deduced from the selected operator. However, it is not unique for every

operator (some operator selections result in equal Integer values). Experienced users can use

this value to simplify the evaluation of the selected operator, especially in SQL statements. But

do not be confused by this variable: You can make use of the full FilterExtension’s functionality

by ignoring variable "operator" and evaluate only variable "comparison" (see above).

● "operator2": vars.get("$local.operator2"): The relational operator as special

character, mainly to be used in SQL statements, e.g. ">".

Here are examples showing how the filterConditionProcess can be designed:

Example of filterConditionProcess evaluating value selection via combo box

// the first part of the array returned by filterValuesProcess, e.g., a UID

var rawvalue = vars.get("$local.rawvalue");

// the relational operator coded as Integer number (non-unique!), e.g. "2"

var operator = vars.get("$local.operator");

// the relational operator as special character to be used in SQL statements, e.g. ">"

var operator2 = vars.get("$local.operator2");

// the relational operator as cleartext in String format, e.g. "NOT_EQUAL"

var comparison = vars.get("$local.comparison");

// useful logging for understanding the above variables

// -> just try various values and relational operators

// and inspect the log output

logging.log("--------------------> rawvalue = " + rawvalue);

logging.log("--------------------> operator = " + operator);

logging.log("--------------------> operator2 = " + operator2);

logging.log("--------------------> comparison = " + comparison);

// Example:

// Assuming that ANOTHERTABLE has been used in filterValuesProcess,

// so ANOTHERTABLE.ANOTHERTABLEID is here given in rawvalue

// and now used for filtering MYTABLE via its column ANOTHERTABLE_ID

var myPrimaryId = rawvalue;

var sqlCondition = "";

switch(comparison) {

 case "EQUAL":

 sqlCondition = newWhere("MYTABLE.ANOTHERTABLE_ID", myPrimaryId, SqlBuilder.EQUAL());

 break;

 case "NOT_EQUAL":

 sqlCondition = newWhere("MYTABLE.ANOTHERTABLE_ID", myPrimaryId, SqlBuilder.NOT_EQUAL());

 break;

 case "ISNULL":

 sqlCondition = "MYTABLE.ANOTHERTABLE_ID IS NULL";

 break;

 case "ISNOTNULL":

 sqlCondition = "MYTABLE.ANOTHERTABLE_ID IS NOT NULL";

 break;

© 2025 ADITO Software GmbH 172 / 472

 default:

 sqlCondition = "1 = 2";

}

result.string(sqlCondition);

Example of filterConditionProcess evaluating value input via free text (no filterValuesProcess required in

this case)

var myUserInput = vars.get("$local.rawvalue");

// operator selection is ignored here

var myFilterCondition = newWhere(
 "MYTABLE.MYCOLUMN",
 myUserInput,
 SqlBuilder.EQUAL());

result.string(myFilterCondition);

The specific code of the filterConditionProcess suitable for the carpool example will

be added in a future version of this manual. You may try it by yourself meanwhile.

10.9.3.1.6. groupQueryProcess

Property groupQueryProcess is an option to group data provided via a FilterExtension. It requires no

specific EntityField, because the grouping is created in the process itself. The result of the

groupQueryProcess is an SQL string that returns the grouping.

The groupQueryProcess is triggered when the client user selects a FilterExtension-related "Group-by"

value in the "Grouping" section of the filter component of the FilterView.

The grouping will only work if a filterConditionProcess is defined.

Example in xRM:

groupQueryProcess of Phase_filter ("Phase_filterExtention"), a FilterExtension of the "db"

RecordContainer of Salesproject_entity ("Opportunity").

© 2025 ADITO Software GmbH 173 / 472

As you can see, this FilterExtension is not used for filtering (which you can additionaly do via the

EntityField PHASE). Its purpose is to enable grouping of Opportunity datasets by PHASE and still having

them in the correct alphabetical order.

This is the configuration of Phase_filter:

Step-by-step explanation of how to implement a groupQueryProcess:

● Add a new FilterExtension.

● Check property "isGroupable" (otherwise, the grouping option is not visible in the client)

● Set groupedRecordField: This is the EntityField by which the grouping will be done.

● Set titleRecordField: This is the EntityField that will later be used as displayValue for the groups.

As in this property a string can be entered, you can alternatively set a placeholder string and

replace it later, e.g., by a join or (if it is not too long) subselect/caseWhen statement - see

groupQueryProcess of Phase_filter.

● groupQueryProcess: Here, you are free to do what is required, as long as the result is a suitable

© 2025 ADITO Software GmbH 174 / 472

SQL string that includes a "group by" clause. You may have a look at the groupQueryProcess of

Phase_filter to learn the approach. Here you have access to various useful variables (see chapter

FilterExtensionSet). Variables used in Phase_filter are:

○ $local.condition: The condition that is given by filter and filterConditionProcess. If

present, the condition needs to be appended to the SQL (see Phase_filter)

○ $local.count: Boolean indicating if the process is executed to calculate the count or for

loading the data itself. If only the count is needed, the SQL should, for performance

reasons, select only something like "1". If the data is to be loaded, take the column list

(see below) and replace the placeholder text for the displayValue (if required, see

Phase_filter)

○ $local.columnlist: string with columns, separated by comma (order: groupedRecordField,

titleRecordField [, n aggregate fields])

Filter extensions are not automatically respected by the index. This means, if, e.g.,

you want to use a FilterExtension like "Supervisor assignment equals YES" in the

access rights, you need to re-build this filter in the index. If you do not do this, then,

in the index, there will be shown no result for the respectiv IndexGroup. Find more

information in the ADITO document AID093_Indexsearch.pdf.

10.9.3.1.7. supportsFilterExtensionGrouping

It is possible to use FilterExtensions and FilterExtensionSets (see chapter FilterExtensionSet) on groups

with RecordContainers without paging. If the property "isPageable" is disabled on a RecordContainer,

the additional property supportsFilterExtensionGrouping is shown. If this property is set to

true, the FilterExtensions are also shown when using grouping.

This has to be used with care, because it leads to all data being reloaded for every

row of grouped data. The mechanism may cause a huge amount of data being

loaded and most likely will negatively affect the system’s performance!

10.9.3.2. Specific example task

In Context CarDriver, a filter option should be added that enables us to see only drivers who have ever

reserved a specific car. In terms of the FilterView,

● the filter’s "Property" is "has reserved car"

● the filter’s "Operator" is "equal"

● the filter’s "Value" is a list showing all cars

© 2025 ADITO Software GmbH 175 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID093_Indexsearch.pdf

This feature can be generated as follows:

10.9.3.2.1. Creating a new FilterExtension

Open CarDriver_entity in the Navigator, right-click on its RecordContainer, and choose "Add Filter

Extension" from the context menu. Enter a name of your choice, e.g., "hasReservedCar".

10.9.3.2.2. Setting the FilterExtension’s properties

Fill the new FilterExtension’s properties as follows:

======= General properties

● "title": Enter the text of the respective list item to appear in the filter’s combo box "Property",

e.g. "Has reserved car".

● "contentType": Enter the data type of the values to be entered or selected in the filter’s field

"Value". This data type will then, amongst others, determine the list of relational operators from

which the user can select in the filter component’s field "Operator". For our example, the

contentType should be set to "TEXT".

======= Further properties

Now, try to complete the example task on your own, by configuring all required further

properties/processes.

 A sample solution will be added in a future version of this manual.

© 2025 ADITO Software GmbH 176 / 472

10.9.4. FilterExtensionSet

You will understand the content of this chapter better, if you first read the previous

chapter FilterExtension.

FilterExtensionSet is an ADITO model used for extending the standard filter (controlled via the

"isFilterable" properties of the record fields in the RecordContainer) by additional filter options, partly

similar to the FilterExtension, but more complex and powerful.

A FilterExtensionSet can be generated as follows:

Open an Entity in the Navigator, right-click on its RecordContainer, and choose "Add Filter Extension

Set" from the context menu. Enter a name of your choice.

10.9.4.1. Example

Here is an example of how to configure a FilterExtensionSet: Given we want to manage trainees,

including their performance at school (grades in English, German, and math).

This example of a FilterExtensionSet is to demonstrate the 3 options to load the values (directly from

the database; dropdown with filter values from filterValuesProcess; dropdown with filter values from

Consumer) and the grouping.

In the filterConditionProcess, in turn, we again have 3 options that are quite common with

FilterExtensions: A boolean evaluation (yes/no), and two evaluations with type TEXT (one of it simple,

and one more complex).

All defined filter and groupings in the set are directly refering to the same table as the RecordContainer

does - therefore, the examples are a little bit "artificial", but nevertheless comparably easy to

understand, as you do not have to deal with subqueries etc.

This example, for itself, is not meant as "best practice", but it demonstrates well how

to handle a FilterExtensionSet, without having the need to call complex functions or

generate/require complex SQL queries.

Now, first, we set up a Context "Trainee", including a "Trainee_entity" with several EntityFields. And we

include this Context in a new menu group in the Global Menu. Furthermore, we create a database table

and connect it with the Entity and its EntityFields. Most of this preparatory work can be realized via

Liquibase: Please update your ADITO project, including its databas, using the corresponding Liquibase

and .aod files in appendix Trainee example. Then, everything will be prepared to continue with the

following paragraphs.

© 2025 ADITO Software GmbH 177 / 472

In the project tree, double-click on Trainee_entity and unfold its RecordContainer "db" in the Navigator

window. There, if you unfold the node "FilterExtensions", you see a FilterExtensionSet named

"example_filterSet":

Now we will configure this FilterExtensionSet’s properties step-by-step, along with some explanations

as code comments. Furthermore, reading the various properties' property description will help you to

understand the example.

First, make sure that property "filtertype" is set to BASIC. (The other option, "EXTENDED", would mean

that the FilterExtensionSet’s features are only available via "Open extended filter conditions".)

10.9.4.1.1. Creating Consumer for gender-related field

The following code snippet is only required for making the example work properly. It

is not directly related to the basics of a FilterExtensionSet.

The code of the valueProcess of ContainerName_param of Consumer "KeywordGenders"

import { result } from "@aditosoftware/jdito-types";
import { $SalutationKeywords } from "SalutationKeywords_registry";

result.string($SalutationKeywords.personGender());

10.9.4.1.2. filterFieldsProcess

The code of "example_filterSet"'s property filterFieldsProcess

import { result } from "@aditosoftware/jdito-types";

import { KeywordUtils } from "KeywordUtils_lib";

import { $SalutationKeywords } from "SalutationKeywords_registry";

//no local variables available

var filterFields = [

 //No dropdown

 {

 name: "FILTER_GRADEENGLISH",

 title: "Grade English entered?",

© 2025 ADITO Software GmbH 178 / 472

 contentType: "BOOLEAN",

 isGroupable: true,

 groupedRecordField:"CASE WHEN TRAINEE.GRADEENGLISH IS NOT NULL THEN 1 ELSE 0 END",

 titleRecordField:"CASE WHEN ISNULL(TRAINEE.GRADEENGLISH) = 0 THEN 'Ja' ELSE 'Nein' END",

 },

 {

 name: "FILTER_GRADEGERMAN",

 title: "Grade German entered?",

 contentType: "BOOLEAN",

 isGroupable: true,

 groupedRecordField:"CASE WHEN TRAINEE.GRADEGERMAN IS NOT NULL THEN 1 ELSE 0 END",

 titleRecordField:"CASE WHEN ISNULL(TRAINEE.GRADEGERMAN) = 0 THEN 'Ja' ELSE 'Nein' END",

 },

 {

 name: "FILTER_GRADEMATH",

 title: "Grade math entered?",

 contentType: "BOOLEAN",

 isGroupable: true,

 groupedRecordField:"CASE WHEN TRAINEE.GRADEMATH IS NOT NULL THEN 1 ELSE 0 END",

 titleRecordField:"CASE WHEN ISNULL(TRAINEE.GRADEMATH) = 0 THEN 'Ja' ELSE 'Nein' END",

 },

 //dropdown => uses filterValuesProcess (only for this one)

 {

 name: "FILTER_GRADE",

 title: "Grade",

 contentType: "TEXT",

 hasDropDownValues: true,

 isGroupable: false,

 },

 //dropdown => uses Consumer in current entity

 {

 name: "FILTER_GENDER",

 title: "Gender",

 contentType: "TEXT",

 hasDropDownValues: true,

 isGroupable: true,

 consumer: "KeywordGenders",

 groupedRecordField:"TRAINEE.GENDER",

 titleRecordField:KeywordUtils.getResolvedTitleSqlPart($SalutationKeywords.personGender(), "TRAINEE.GENDER")

 }

];

result.string(JSON.stringify(filterFields));

10.9.4.1.3. filterValuesProcess

The code of "example_filterSet"'s property filterValuesProcess

import { logging, result, vars } from "@aditosoftware/jdito-types";

let filter = JSON.parse(vars.getString("$local.filter"));

let values = [];
switch(filter.name){
 case "FILTER_GRADE":
 values = [
 ["5", "excellent"],
 ["4", "good"],

© 2025 ADITO Software GmbH 179 / 472

 ["3", "satisfactory"],
 ["2", "less than satisfactory"],
 ["1", "unsatisfactory"]
]
 break;
}

result.object(values);

10.9.4.1.4. filterConditionProcess

The code of "example_filterSet"'s property filterConditionProcess

import { logging, result, vars } from "@aditosoftware/jdito-types";

import { newWhere, SqlBuilder } from "SqlBuilder_lib";

//all possible local variables

//let columnPlaceholder = vars.get("$local.columnPlaceholder");

//let columntype = vars.get("$local.columntype");

//var comparison = vars.get("$local.comparison");

//let condition = vars.get("$local.condition");

//let conditionHaving = vars.get("$local.conditionHaving");

//let isAggregateCondition = vars.get("$local.isAggregateCondition");

//let name = vars.get("$local.name");

//let operator = vars.get("$local.operator");

//let operator2 = vars.get("$local.operator2");

//let placeholder = vars.get("$local.placeholder");

//let rawvalue = vars.get("$local.rawvalue");

//let value = vars.get("$local.value");

let rawValue = vars.get("$local.rawvalue");

let comparison = vars.get("$local.comparison");

let name = vars.get("$local.name"); //e.g. Trainee_entity.example_filterSet.FILTER_GRADEMATH

let filterName = name.split(".")

 .pop(); // e.g. FILTER_GRADEMATH

let column = "TRAINEE." + name.split("_")

 .pop(); //e.g. GRADEMATH

let cond = newWhere();

switch (filterName)

{

 case "FILTER_GRADEENGLISH":

 case "FILTER_GRADEGERMAN":

 case "FILTER_GRADEMATH":

 {

 let nullOperator = "IS NULL";

 switch (comparison)

 {

 case "EQUAL":

 nullOperator = rawValue == 1 ? "IS NOT NULL" : "IS NULL";

 break;

 case "NOT_EQUAL":

 nullOperator = rawValue == 1 ? "IS NULL" : "IS NOT NULL";

 break;

 case "ISNULL":

 nullOperator = "IS NULL";

© 2025 ADITO Software GmbH 180 / 472

 break;

 case "ISNOTNULL":

 nullOperator = "IS NOT NULL";

 break;

 }

 cond.and(column + " " + nullOperator);

 }

 break;

 case "FILTER_GRADE":

 {

 let operator = null;

 switch (comparison)

 {

 case "EQUAL":

 cond.and(

 newWhere("TRAINEE.GRADEENGLISH", rawValue, SqlBuilder.EQUAL())

 .or("TRAINEE.GRADEGERMAN", rawValue, SqlBuilder.EQUAL())

 .or("TRAINEE.GRADEMATH", rawValue, SqlBuilder.EQUAL())

);

 break;

 case "NOT_EQUAL":

 cond.and(

 newWhere("TRAINEE.GRADEENGLISH", rawValue, SqlBuilder.NOT_EQUAL())

 .or("TRAINEE.GRADEGERMAN", rawValue, SqlBuilder.NOT_EQUAL())

 .or("TRAINEE.GRADEMATH", rawValue, SqlBuilder.NOT_EQUAL())

);

 break;

 case "ISNULL":

 cond.and(

 newWhere("TRAINEE.GRADEENGLISH IS NULL")

 .and("TRAINEE.GRADEGERMAN IS NULL")

 .and("TRAINEE.GRADEMATH IS NULL")

);

 break;

 case "ISNOTNULL":

 cond.and(

 newWhere("TRAINEE.GRADEENGLISH IS NOT NULL")

 .and("TRAINEE.GRADEGERMAN IS NOT NULL")

 .and("TRAINEE.GRADEMATH IS NOT NULL")

);

 break;

 }

 }

 break;

 case "FILTER_GENDER":

 {

 let operator = null;

 switch (comparison)

 {

 case "EQUAL":

 cond.and(column, rawValue, SqlBuilder.EQUAL());

 break;

 case "NOT_EQUAL":

 cond.and(column, rawValue, SqlBuilder.NOT_EQUAL());

 break;

 case "ISNULL":

 cond.and(column + " IS NULL");

 break;

 case "ISNOTNULL":

© 2025 ADITO Software GmbH 181 / 472

 cond.and(column + " IS NOT NULL");

 break;

 }

 }

 break;

}

logging.log(JSON.stringify({

 rawValue,

 comparison,

 name,

 cond: cond.toString()

}, null, "\t"));

result.string(cond.toString());

10.9.4.1.5. groupQueryProcess

The code of "example_filterSet"'s property groupQueryProcess

import { logging, result, vars } from "@aditosoftware/jdito-types";
import { newWhere, SqlBuilder } from "SqlBuilder_lib";

//all possible local variables
//let columnlist = vars.get("$local.columnlist");
//let columns = vars.get("$local.columns");
//let columntype = vars.get("$local.columntype");
//let condition = vars.get("$local.condition");
//let contenttype = vars.get("$local.contenttype");
//let count = vars.get("$local.count");
//let fieldname = vars.get("$local.fieldname");
//let grouped = vars.get("$local.grouped");
//let groupedlist = vars.get("$local.groupedlist");
//let name = vars.get("$local.name");
//let order = vars.get("$local.order");

var sql = new SqlBuilder()

if (vars.get("$local.count")) // TRUE if the count of the records is needed
{
 sql.select("1");
}
else
{
 let columnlist = vars.get("$local.columnlist");

 sql.select([columnlist]);
}

sql.from("TRAINEE");

let condition = vars.get("$local.condition");
if(condition != " ")
{

© 2025 ADITO Software GmbH 182 / 472

 sql.where(condition);
}

let grouped = vars.get("$local.grouped");
sql.groupBy(grouped);

sql.orderBy(grouped);

result.string(sql.toString());

10.9.4.2. Further examples

Further, more complex examples of FilterExtensionSets are included in the ADITO xRM project. For

example, a FilterExtensionSet named "Attribute_filter" is included in the RecordContainer of several

Entities, e.g., in Organisation_entity and in Person_entity. This FilterExtensionSet enables the client

user to filter the Entity’s datasets according to the attributes assigned to them (e.g., the attribute

"Loyalty" of Organisation/Company or Person/Contact datasets).

10.9.4.3. Available local variables

The following "$local" variables can, amongst others, be accessed in the code of a FilterExtensionSet’s

properties:

Name Description

$local.count TRUE if the count of the records is needed

$local.columnlist String with the columns (and expressions) expected to be returned by

the query

$local.condition the (filter) condition that’s being used (if used in a grouping, then it

includes the group hierarchy); see example in appendix ("$local

variables")

$local.groupedlist String with the columns (and expression) used for grouping

$local.order String that contains the order expression how the grouped items have

to be sorted

$local.name String value of the "name" property, if a filterField was returned by the

filterFieldsProcess; every filterField has its unique name

© 2025 ADITO Software GmbH 183 / 472

10.9.4.4. useConsumer

If you are already familiar with FilterExtensionSets, please note that the "useConsumer" functionality

(see chapter "FilterExtension" above) is also available for FilterExtensionSets. You can configure it via

the JSON config object that is set in the result of the filterFieldsProcess: Simply add attribute

"consumer" and set the Consumer’s name as its argument. Here is a universal code example:

Example of result of filterFieldsProcess relating to a Consumer

var myConfig = [];
(...)
 myConfig.push({
 name: (...),
 title: (...),
 contentType: (...),
 hasDropDownValues: (...)
 isGroupable: (...),
 groupedRecordField: (...),
 titleRecordField: (...),
 consumer: "MyConsumerName",
 (...)
 });

myConfig = JSON.stringify(myConfig);
result.string(myConfig);

10.9.4.5. groupQueryProcess

Grouping via groupQueryProcess is also available for FilterExtesionSets. The approach is similar to the

groupQueryProcess of FilterExtensions. The difference is only that the required properties

"groupedRecordField" and "titleRecordField" are filled in the filterFieldsProcess. In the

groupQueryProcess the usual $local variables are available ($local.columnlist, $local.condition,

$local.groupedlist, etc.), and you can use them to build your SQL statement that makes the grouping.

You may study an example in xRM, e.g., groupQueryProcess of ClassificationGroup_filter, a

FilterExtensionSet of several Entities, e.g., of Organisation_entity or Salesproject_entity.

© 2025 ADITO Software GmbH 184 / 472

10.9.5. EntityRecordsRecipe

As the name suggests, EntityRecordsRecipe is a definition ("recipe") of datasets (records) of a specific

Entity. It can be built and configured quite intuitively, with several options, e.g., to specify a filter (via a

FilterGroup object, see chapter FilterBuilder) or a list (as array) of UIDs of records to be excluded.

You can consider EntityRecordsRecipe to be a kind of extended filter that can be applied, e.g., when a

Context is opened, or when records are loaded via LoadEntity.

10.9.5.1. Technical background

An EntityRecordsRecipe does NOT hold the records (datasets) theirselves, but it defines them - like a

recipe defines the ingredients required to cook a meal. Basically, it’s a filter, whose result can optionally

be further reduced by a set of "UIDs to be excluded".

Formerly, this definition could exclusively be done via a set of the single UIDs of all corresponding

records. This principle

● did not scale very well, as additional or changed records always meant that the set of UIDs had

to be adjusted-

● could cause performance and memory issues, if the Entity held millions of records, causing a

huge set of UIDs.

Therefore, EntityRecordsRecipe was introduced, providing a scalable and well-performing solution for

defining an entirety of records without having to indicate every single UID. An example in the client

showing the benefit of this approach is the "select all" button of a table: If you check it and

subsequently uncheck 3 single records, an EntityRecordsRecipe is being built defining "all datasets

without UIDs xxx, yyy, and zzz". (This EntityRecordsRecipe is available in variable

"$sys.selectionsRecordsRecipe" - see chapter further below.)

10.9.5.2. General usage

The ADITO system uses EntityRecordsRecipe internally, e.g., to hold and process a definition of the

records selected by the client user - see chapter on variable "$sys.selectionsRecordsRecipe" further

below.

If you, however, want to create a new EntityRecordsRecipe, then proceed as follows.

The first step is to create a builder object:

var entityRecordsRecipeBuilder = neonFilter.createEntityRecordsRecipeBuilder();

© 2025 ADITO Software GmbH 185 / 472

This object has several methods, allowing to specify various options. Each method returns the builder

object itself, so a "chaining" of methods is possible - similar to LoadEntity or "SqlBuilder". Technically,

the conditions resulting from these methods are combined with a logical "AND".

The most common methods to call are:

● entity(<Name of Entity>): Definition of the Entity, given as its name String, e.g.,

.entity("Person_entity"). If this is the only method you call, then the definition is

"ALL records of the Entity". In SQL terms, the effect of this method is "… FROM <joined

database tables of the Entity’s RecordContainer>".

● filter(<filter>): Filter that restricts the record definition to specific conditions. The filter

can be given as FilterGroup object (see chapter FilterBuilder) or as JSON String. In SQL terms, the

effect of this method is "… WHERE <filter conditions>".

● .uidsExcludelist(<Array of UIDs>): Specifies a list of UIDs of all records that are to

be excluded from the remaining records. In SQL terms, the effect of this method is "… WHERE

xxxID NOT IN ('UID1', 'UID2', …)".

● .uidsIncludelist(<Array of UIDs>): Specifies a list of UIDs of records to which the

definition is to be restricted. In other words: This is the "maximum" of records - which can be

further reduced by the conditions given in the other methods (.uidsExcludelist or

.filter). Do not be mislead by the name: This list does NOT "add" additional records to those

specified in .filter, but it defines that the UIDs of the records described by the

EntityRecordsRecipe must be included in this list of UIDs. Or, in SQL terms, the effect of this

method is a condition like "… where MYTABLEID in ('UID1', 'UID2', …)".

NOTE: If the argument of method uidsIncludelist is

○ an empty Array, then nothing is loaded subsequently

○ null, then there there is not any UID-related restriction at all (= same as if this setter

method was not executed at all)

10.9.5.3. Usage in "openContextWithRecipe"

The following example will help you to understand how the EntityRecordsRecipe works. This code

opens the FilterView of Person_entity, with the datasets

● restricted to persons whose last name starts with letter "B"

● without (excluding) the persons "Frank Baer" and "Christine Burger"

You may include this code, e.g., in the onActionProcess of a test Action of Person_entity. (see chapter

Actions)

© 2025 ADITO Software GmbH 186 / 472

Person_entity.TestActionGroup.testAction.onActionProcess

// Definition of test filter that is restricting records

// to those with LASTNAME starting with letter "B"

var myFilterCondition = neonFilter.createFilterCondition()

.field("LASTNAME")

.searchOperator(neonFilter.SEARCH_OPERATOR_STARTSWITH)

.contentType(neonFilter.CONTENT_TYPE_TEXT)

.key("B");

var myFilter = neonFilter.createFilterGroup()

.addFilterCondition(myFilterCondition);

// Definition of array holding UIDs (CONTACTIDs)

// of "Frank Baer" and "Christine Burger"

var myUidList = ["701569b7-d791-4682-89a1-bf26682187af", "a38a19f6-6255-47b0-bbea-138bae2271c4"];

// Definition of EntityRecordsRecipeBuilder

var myEntityRecordsRecipe = neonFilter.createEntityRecordsRecipeBuilder()

.entity("Person_entity")

// applying filter

.filter(myFilter)

// excluding records of "Frank Baer" and "Christine Burger"

.uidsExcludelist(myUidList);

// opens PersonFilter_view with 1 record ("Carl Bush")

neon.openContextWithRecipe("Person", "PersonFilter_view", myEntityRecordsRecipe,

 neon.OPERATINGSTATE_SEARCH, null, false);

Here is a modified example, without using method filter, resulting in exactly 2 records ("Frank

Baer" and "Christine Burger"):

Person_entity.TestActionGroup.testAction2.onActionProcess

(...)
var myEntityRecordsRecipe = neonFilter.createEntityRecordsRecipeBuilder()
.entity("Person_entity")
// restricting to records of "Frank Baer" and "Christine Burger"
.uidsIncludelist(myUidList);

And here is an example that combines a filter with a "include list" (resulting in only 1 record, "Christine

Burger"):

Person_entity.TestActionGroup.testAction3.onActionProcess

// Definition of test filter that is restricting records

// to those with LASTNAME starting with letter "B"

var myFilterCondition = neonFilter.createFilterCondition()

.field("FIRSTNAME")

.searchOperator(neonFilter.SEARCH_OPERATOR_STARTSWITH)

.contentType(neonFilter.CONTENT_TYPE_TEXT)

.key("C");

var myFilter = neonFilter.createFilterGroup()

.addFilterCondition(myFilterCondition);

// Definition of array holding UIDs (CONTACTIDs)

// of "Frank Baer" and "Christine Burger"

© 2025 ADITO Software GmbH 187 / 472

var myUidList = ["701569b7-d791-4682-89a1-bf26682187af", "a38a19f6-6255-47b0-bbea-138bae2271c4"];

// Definition of EntityRecordsRecipeBuilder

var myEntityRecordsRecipe = neonFilter.createEntityRecordsRecipeBuilder()

.entity("Person_entity")

// applying filter

.filter(myFilter)

// restricting to records of "Frank Baer" and "Christine Burger"

.uidsIncludelist(myUidList);

// opens PersonFilter_view with 1 record ("Christine Burger")

neon.openContextWithRecipe("Person", "PersonFilter_view", myEntityRecordsRecipe,

 neon.OPERATINGSTATE_SEARCH, null, false);

10.9.5.4. Usage in "LoadEntity"

EntityRecordsRecipe can also be used to define the records to load via "LoadEntity" (see appendix

LoadEntity): Simply specify an EntityRecordsRecipe instance as parameter of the LoadRowsConfig’s

method fromEntityRecordsRecipe. Here is an example using the same EntityRecordsRecipe as

in the example code of the previous chapter:

Person_entity.TestActionGroup.testAction4.onActionProcess

(...)
var myEntityRecordsRecipe = (...) // see previous chapter

var myLoadRowsConfig = entities.createConfigForLoadingRows()
// can be skipped, as it is included in EntityRecordsRecipe
//.entity("Person_entity")
.fields(["FIRSTNAME", "LASTNAME"])
.fromEntityRecordsRecipe(myEntityRecordsRecipe)

var myRows = entities.getRows(myLoadRowsConfig);

// [{"FIRSTNAME":"Carl", "LASTNAME":"Bush"}]
logging.log(JSON.stringify(myRows));

10.9.5.5. Usage in customized methods

In principle, there are almost no limits for integrating EntityRecordsRecipe also in customized methods.

In fact, your application’s performance can be significantly improved if you use it whenever required, or

if you refactor your existing customized code with respect to EntityRecordsRecipe.

Here is an example of how an integration can look like in a customized code (just as pattern):

Example pattern for using EntityRecordsRecipe in a customized method

var attributeValue = (...);

© 2025 ADITO Software GmbH 188 / 472

var activeStatusFilter = neonFilter.createFilterCondition()
.field("STATUS")
.searchOperator(neonFilter.SEARCH_OPERATOR_EQUAL)
.key($KeywordRegistry.contactStatus$active())
.contentType(neonFilter.CONTENT_TYPE_TEXT);

var affectedContactsRecordsRecipe = neonFilter.createEntityRecordsRecipeBuilder()
.entity("Person_entity")
.filter(activeStatusFilter)
.parameters({"NoCommRestriction_param": "EMAIL"});

AttributeRelationUpdateUtils.addAttribute(
 $AttributeRegistry.deliveryTerm(),
 "Person",
 affectedContactsRecordsRecipe,
 attributeValue);

The argument of method .filter can either be a filter object (as shown in the

above example), but it could also be a JSON filter object (stringified) instead.

Method .filter only works, if also method .entity is used (unlike parameters,

uids, etc.).

10.9.5.6. $sys.selectionsRecordsRecipe

The system variable "$sys.selectionsRecordsRecipe" holds an EntityRecordsRecipe describing the

Entity’s name and the records selected by the client user.

The ADITO system automatically reacts to changes of the value of "$sys.selectionRecordsRecipe" - i.e.,

subsequent processes will be executed, e.g., the titleProcess of an Action.

The content of an EntityRecordsRecipe depends on the value of the Entity’s property

"recordsRecipeSupported". If this property’s value is

● false, then the description of the selected records is exclusively done via "uidsIncludelist" - while

the variables "$sys.selections" and "$sys.selectionRows" are still working. This enables you to

write and apply processes already using EntityRecordsRecipe even for Entitys that do not yet

support it.

● true, then also EntityRecordsRecipe’s methods "filter" and "uidsExcludelist" might be used -

depending on the situation ("select all" button checked or not, filter defined or not, etc.). For

most Entitys, this state should be the standard.

If property recordsRecipeSupported is set to true, then variables

"$sys.selections" and "$sys.selectionRows" will be deactivated (holding

"null"). This is intended, in order to draw your attention to those parts of your

code that have not yet been transferred to support of EntityRecordsRecipe.

© 2025 ADITO Software GmbH 189 / 472

Please refer to the corresponding chapter in the Update Manual, which is

available in the customer area of the ADITO web site.

(The above principle is also used for "$field.<consumer>.selectionRecordsRecipe".)

This is an example code of a test Action of Person_entity, opening the FilterView again, restricted to the

selected records (i.e., all records of the FilterView with checkboxes checked by the client user).

Person_entity.TestActionGroup.testAction5.onActionProcess

var myEntityRecordsRecipeAsJSON = vars.get("$sys.selectionsRecordsRecipe");

// logging the selected records
logging.log("------> " + myEntityRecordsRecipeAsJSON);

neon.openContextWithRecipe("Person", "PersonFilter_view", myEntityRecordsRecipeAsJSON,
 neon.OPERATINGSTATE_SEARCH, null, false);

Now, to be more exact, $sys.selectionsRecordsRecipe holds the EntityRecordsRecipe not as

EntityRecordsRecipeBuilder object, but as JSON string.

You can simply convert this JSON string into an EntityRecordsRecipeBuilder object, by specifying it as

parameter of the create method:

var myEntityRecordsRecipe = neonFilter.createEntityRecordsRecipeBuilder(vars.get("$sys.selectionsRecordsRecipe"));

(...)

Subsequently, you may modify this object (e.g., by calling methods filter or uidsExcludelist-

see previous chapter) and use it for any purpose.

10.9.5.7. Example: Notifications

In the xRM project' Notification_entity, you can find an example of the usage of EntityRecordsRecipe. In

the client, a "select all" button is available, allowing the user to select all Notification records (and, if

required, unselect single records afterwards) - including those that will appear not before you scroll

down or to the next "page".

After selecting Notification records, the user can change their state all at once. In the corresponding

Actions' onActionProcesses the EntityRecordsRecipe approach is used. See also the functionality of

Notification_lib and the ADITO platform methods notification.xxx, e.g.

● notification.updateUserNotificationsStateBulk, which in turn requires

method

© 2025 ADITO Software GmbH 190 / 472

https://www.adito.de/login

● notification.createUpdateStrategy

© 2025 ADITO Software GmbH 191 / 472

10.9.6. Context filter (content search)

Several ViewTemplates provide the option to display a so-called Context filter. Its visual expression is

the horizontal content search bar that is shown in the upper part of the ViewTemplate.

Example:

Figure 26. Example: The Context filter of Context KeywordEntry

→

Figure 27. Example: Filter criteria "fax"

© 2025 ADITO Software GmbH 192 / 472

Via the Context filter, you can enter filter terms that are then processed in different ways, depending

on the ViewTemplate’s type and some specific settings. This chapter gives an overview and further

details.

10.9.6.1. Availability

The following ViewTemplate types are able to show and process a Context filter, if their property

hideContentSearch is set to false:

● BreadCrumbTreeTable: This type is not yet available via "Add View Template…", but it is

automatically used on devices MOBILE and TABLET, if a Tree or TreeTable type is used, and

property useBreadCrumbs is set to true.

● CardTable

● DynamicMultiDataChart

● DynamicSingleDataChart

● MultiEditTable

● ResourceTimeline

● Table

● Tiles

● Timeline

● Tree

● TreeTable

Furthermore, this filter/search feature is also available in the ADITO xRM project’s View

"DefaultLookup_view" (of Context "Default_context"), which has a ViewTemplate of type "List". Here,

you can configure the lookup component that is to be used, if no specific lookupView is set in a

Context. As the ListViewTemplate is not yet available via "Add View Template…", it needs to be

configured in the source code of DefaultLookup_view:

Source code of "DefaultLookup_view", including its ListViewTemplate "DefaultList"

<?xml version="1.0" encoding="UTF-8"?>

<neonView xmlns="http://www.adito.de/2018/ao/Model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" VERSION="1.2.3"

xsi:schemaLocation="http://www.adito.de/2018/ao/Model adito://models/xsd/neonView/1.2.3">

 <name>DefaultLookup_view</name>

 <majorModelMode>DISTRIBUTED</majorModelMode>

 <layout>

 <noneLayout />

 </layout>

 <children>

 <listViewTemplate>

 <name>DefaultList</name>

 <entityField>#ENTITY</entityField>

 </listViewTemplate>

 </children>

© 2025 ADITO Software GmbH 193 / 472

</neonView>

10.9.6.2. Evaluation

The term(s) entered in the Context filter are evaluated by different instances in different ways,

depending on the ViewTemplate type and the RecordContainer’s property settings:

● The ViewTemplate component performs the filtering, if the RecordContainer’s properties

isPageable and isRequireContainerFiltering are both set to false.

○ ResourceTimeline: Checks, if at least one of the strings of the filter value is included in the

title (logical "OR" - unlike all other cases).

○ BreadCrumbTreeTable (see chapter Availability), Tiles, Tree, and TreeTable: Checks, if the

columns of a row include all filter terms.

○ DynamicMultiDataChart and DynamicSingleDataChart: no filtering

● The RecordContainer performs the filtering, if it is filterable, i.e., if property

isRequireContainerFiltering is set to true. Then, the filter checks, if the columns of a

row include all filter terms. If, additionally, a filter is set in the FilterView’s filter component (right

hand side of the FilterView), then a combined filter is constructed, joined with a logical "AND".

○ JDitoRecordContainer, IndexRecordContainer, DBRecordContainer: Filter will be set, and

the data will be loaded anew.

○ DatalessRecordContainer or no RecordContainer: no filtering

© 2025 ADITO Software GmbH 194 / 472

10.10. RecordContainers

A RecordContainer is the ADITO model that defines the way how the data of an Entity is retrieved

(loaded) and persisted (saved). There are various types of RecordContainers, which are described in the

following chapters.

Depending on the purpose, it can be suitable to define more than one RecordContainer per Entity. An

example of this is KeywordEntry_entity in the ADITO xRM project.

A RecordContainer includes the option to utilize a cache, in order to increase the

performance of the ADITO system for repetitive requests of the same data. This is

described in the appendix RecordContainerCache.

10.10.1. Database RecordContainer

A Database RecordContainer (dbRecordContainer) is a RecordContainer that enables an easy-to-

establish connection of specific EntityFields with specific database columns. In the background, this

RecordContainer automatically generates all required SQL statements for loading (SELECT), changing

(UPDATE), saving (INSERT), ordering (ORDER BY), and deleting (DELETE) data.

Furthermore, you can optionally write specific parts of the SQL statement by yourself, e.g., by using

● the RecordContainer’s properties

○ fromClauseProcess (FROM)

○ conditionProcess (WHERE)

○ orderClauseProcess (ORDER BY)

● a RecordFieldMapping’s property "expression"

In the carpool example of this manual, you can find several examples of how to use

a dbRecordContainer. Furthermore, you can find detailled information in appendix

Database Access, chapter "Basic SQL Statement".

10.10.1.1. COUNT queries

When a dbRecordContainer loads data from the database, in many cases, a SELECT COUNT(*)

statement is executed automatically, before the SELECT statement of the actual data is executed.

10.10.1.1.1. Purpose

The automatic SELECT COUNT queries have several reasons, particularly,

© 2025 ADITO Software GmbH 195 / 472

● the number of datasets is stored in specific variables, e.g., $sys.datarowcount

● the SELECT statement for retrieving the actual data is skipped, if SELECT COUNT(*) results

in 0 (no datasets available).

10.10.1.1.2. minimizeCountQueries

Usually, a SELECT COUNT(*) statement consumes only minimal system resources. If, nevertheless,

you want to reduce the frequency of SELECT COUNT(*) queries, you can set the

dbRecordContainer’s property "minimizeCountQueries" to true. However, before using this property,

read its property description carefully, in order to avoid unpleasant side-effects.

10.10.1.1.3. Caching not required

When your dbRecordContainer utilizes a cache, please note: Despite caching is active, still a SELECT

COUNT(*) statement is executed. The reason for this is that SELECT COUNT(*) queries are

generally excluded from being cached, as it is assumed that these queries consume only minimal

system resources.

10.10.2. JDitoRecordContainer

10.10.2.1. Introduction

While a dbRecordContainer has a database as data source, a JDitoRecordContainer has JDito code as

data source. (Of course, the JDito code itself can include a loading from the database.) The result of this

code is an array. This array must provide the data in a specific order, which can be configured in the

JDitoRecordContainer’s property "recordFieldMappings". The data source array is the result object of

property "contentProcess".

To establish a JDitoRecordContainer, proceed as follows:

● Open the respective Entity in the Navigator window.

● Right-click on it and choose "New RecordContainer" from the context menu.

● A dialog appears, in which you choose "JDitoRecordContainer" as type and enter an arbitrary

name.

● The new RecordContainer will appear as sub-node of node "RecordContainers". Click on it and

edit its properties:

○ recordFieldMappings: Add the EntityFields to be filled by the JDitoRecordContainer.

IMPORTANT:

■ The order of the fields will be the order of the data in the array built in the

contentProcess (see below).

© 2025 ADITO Software GmbH 196 / 472

■ An EntityField named 'UID' (spelled exactly like this!), with contentType TEXT must

always be present and included in the record field mapping.

○ contentProcess: This code must return a nested array acting as data source. The order of

the data in the array must be exactly the order of the fields in the recordFieldMapping

(see above). In principle, the contentProcess looks like this:

XXX_entity.myJDitoRecordContainer.contentProcess

var entityField1value1 = (...);

var entityField2value1 = (...);

var entityField3value1 = (...);

(...)

var myDataArray = [];

myDataArray.push([entityField1value1, entityField2value1, entityField3value1]);

myDataArray.push([entityField1value2, entityField2value2, entityField3value2]);

myDataArray.push([entityField1value3, entityField2value3, entityField3value3]);

result.object(myDataArray);

Example:

Open Turnover_entity (Context "Turnover") in the Navigator window. Click on RecordContainers > jdito:

The sub-nodes appear in exactly the order defined in Entity recordFieldMappings (and thus, not in

alphabetical order).

Now, look at the contentProcess: The resulting array is included in the variable chartData, which is

filled in a loop including the following line:

// EntityFields: UID, PARENT, CATEGORY, X, Y

chartData.push([key, countDataSet.parent, countDataSet.category, countDataSet.x, countDataSet.count]);

Finally, the array is returned: result.object(chartData);

The data retrieved and structured in the Turnover_entity is displayed in the client in various charts,

organized in a GroupLayout: Click, e.g., on Sales > Opportunity > MainView > tab Forecast, which

includes TurnoverDynamicMultiDataChart_view in the upper right part: Just view the different charts

(using the View selection button in the upper right corner).

10.10.2.2. Advanced explanations

The JDitoRecordContainer is one of the currently four types of RecordContainers that serve as a data

source of an Entity. Its speciality lies in its flexibility, as the data source is a JDito process (property

"contentProcess"). The advantage of increased flexibility comes with the drawback of having to code

sorting, paging, and filtering by yourself, within the contentProcess. The source of your data depends

© 2025 ADITO Software GmbH 197 / 472

on its purpose. You can use the SqlBuilder to interface with the database, or you could also use the

net module to access web services and use those as the source of your data.

If you use a JDitoRecordContainer, be always aware that you need to handle sorting,

paging and filtering by yourself. Otherwise it will simply be not supported by your

Entity, even if you have activated the corresponding properties.

Important properties

● jDitoRecordAlias

This defines the default alias, which is used by the database access methods in all of the

RecordContainer’s processes. In many cases, this property will be set to "Data_alias".

● recordFieldMappings

Here you map your EntityFields to the result value of your contentProcess.

The order of the mapping has to be the same as the order of the arrays

returned by your contentProcess.

● isPageable

This determines if paging is active. In your contentProcess you will then get access to

$local.page (page to be loaded) and $local.pagesize (number of datasets per page to

be returned).

● isFilterable

© 2025 ADITO Software GmbH 198 / 472

This property determines if your Entity is filterable or not. If active, you get access to

$local.filter, which consists of a map that contains the field, the operator, and the value.

● isRequireContainerFiltering

This informs your RecordContainer that filtering should be done serverside. Without this, the

result is filtered by the receiving client. If you deal with a large number of datasets, this can give

a big boost to performance.

● isSortable

This turns sorting on. You get access to $local.order, which contains a map consisting of

the fieldname as key and the sorting direction as value.

● contentProcess

This is the actual data source of your RecordContainer. In this process, you have to gather your

data and at the end return it as a twofold nested array. For example:

var data = [
 ["UID1","VALUE1.1","VALUE2.1","VALUE3.1"]
 ,["UID2","VALUE1.2","VALUE2.2","VALUE3.2"]
 ,["UID3","VALUE1.3","VALUE2.3","VALUE3.3"]
];

result.object(data);

● rowCountProcess

This process is used to determine the number of datasets. If it is missing, the contentProcess is

executed twice, which can lead to a performance loss, if the contentProcess involves extensive

data manipulation in order to generate the data. If you can determine the number of datasets in

an easier way, you should do so here.

● hasDependentRecords

If your datasets are interdependent, e.g., in a parent-child structure for trees, then you should

check this flag. In particular, this flag has effects when deleting datasets: If it is set to true, then

the contentProces will always run after every deletion and thus update (rebuild, refresh) all data

and their structure correctly.

● onInsert

This process is used, if you add new datasets to the Entity. Here you should handle how your

data is saved. The process is executed per data row. You get access to $local.rowdata,

© 2025 ADITO Software GmbH 199 / 472

which contains the data of the data row. For example:

var rowdata = vars.get("$local.rowdata");
var columns = [
 "UID"
 ,"C1"
 ,"C2"
 ,"C3"
];
var values = [
 rowdata["UID.value"]
 , rowdata["C1.value"]
 , rowdata["C2.value"]
 , rowdata["C3.value"]
];

new SqlBuilder().insertData("YOURTABLE", columns, null,
values);

In the onInsert process, do not access EntityField values via $field variables, as

these may contain outdated values at that time. Use $local.rowdata or

$local.initialRowdata instead (see chapter $local.rowdata and

$local.initialRowdata and appendix $local variables).

● onUpdate

This process handles the edit of data. Here you have access to $local.changed, which

contains an array holding all changed EntityFields. For getting the data, $local.rowdata is

provided, too. To get the data for the update, you have to loop over the array you got from

$local.changed and use these as index to access $local.rowdata. The UID of the row

to be updated can be accessed by reading from $local.uid

var changedFields = vars.get("$local.changed");
var rowData = vars.get("$local.rowdata");

var columns = [];
var data = [];

for(let field in changedFields)
{
 // According to the spelling guidelines (see AID001),
 // EntityFields that represent database columns
 // should be named like the database columns.
 // This enables us to just split the field
 // identifier "NAME.value" at the dot to get the name

© 2025 ADITO Software GmbH 200 / 472

 // of the database column at index 0.
 columns.push(changedFields[field].split(".")[0]);
 data.push(rowData[changedFields[field]]);
}

newWhereIfSet("YOURTABLEID = '" + vars.get("$local.uid") + "'")
.updateData(true, "YOURTABLE", columns, null, data);

In the onUpdate process, do not access EntityField values via $field variables, as

these may contain outdated values at that time. Use $local.rowdata or

$local.initialRowdata instead (see chapter $local.rowdata and

$local.initialRowdata and appendix $local variables).

● onDelete

This is the process that handles the deletion of data. Here you only get the variable

$local.uid to identify the dataset that is to be deleted.

newWhereIfSet("YOURTABLEID = '" + vars.get("$local.uid") + "'")
.deleteData(true, "YOURTABLE");

In the onDelete process, do not access EntityField values via $field variables, as

these may contain outdated values at that time.

The code examples above are assuming you are using a database as your data

source.

If you want to use a web service, you have to design the properties onInsert,

onUpdate, and onDelete accordingly, in order to send the new/changed data back to

the web service.

10.10.2.3. Step-by-step example

Now, for learning and testing purposes, let’s build our own Entity with a JDitoRecordContainer step-by-

step.

At first, we create a new database table with some columns:

Table name: MYTEST

Columns:

© 2025 ADITO Software GmbH 201 / 472

● MYTESTID: char(36)

● MYNUMBERFIELD: int

● MYTEXTFIELD: varchar(50)

As usual, we update the Alias Definition in order to have the new table available in ADITO.

Then, we create a new Context "MyTest", an Entity and EntityFields according to the naming

conventions - with one exception: The EntityField holding the primary key is only named "UID".

MyTest_entity

● UID

● MYNUMBERFIELD: contentType = number

● MYTEXTFIELD

Create a FilterView, a PreviewView and an EditView, and set the EntityFields and properties accordingly.

(We do not need a MainView for our example.)

Add the new Context to a suitable place in the Global Menu (application >

_SYSTEM_APPLICATION_NEON > …).

Now we are ready to create the JDitoRecordContainer: Open the Entity in the Navigator window and

right-click on the Entity’s name. Choose "New RecordContainer". In the following dialog, select type

"jDitoRecordContainer" and enter simply "jDito" as name. Then, a new folder "RecordContainers" will

appear, with sub-node "{} jDito" in it.

Click on "jDito", in order to set its properties. For this test example, we will only set some of the

properties.

● jDitoRecordAlias: Data_alias

● recordFieldMappings (to simplify matters, we skip the display values):

○ UID.value

○ MYNUMBERFIELD.value

○ MYTEXTFIELD.value

© 2025 ADITO Software GmbH 202 / 472

Figure 28. RecordFieldMappings of a simple JDitoRecordContainer

Always keep in mind the order of the RecordFieldMappings, as this order will be

important in most of the processes.

● isfilterable: true

● contentProcess: This is the central process of a JDitoRecordContainer. Here, the data is loaded

and (if required) filtered. The variable $local.idvalues contains the id(s) of (if so) selected

dataset(s) (row(s)), to be shown in the Preview. The variable $local.filters contains the filter, e.g.,

set by the client user via the filter component of the FilterView.

import { result, vars } from "@aditosoftware/jdito-types";

import { FilterSqlTranslator } from "JditoFilter_lib";

import { newSelect, SqlBuilder } from "SqlBuilder_lib";

var query = newSelect("MYTESTID, MYNUMBERFIELD, MYTEXTFIELD")

 .from("MYTEST");

if (vars.exists("$local.idvalues") && vars.get("$local.idvalues"))

{

 // selected row(s), to be shown in the Preview

 query.whereIfSet("MYTEST.MYTESTID", vars.get("$local.idvalues"), SqlBuilder.IN());

}

 else if (vars.get("$local.filters"))

{

 // load with filter

 var filterCondition = new FilterSqlTranslator(vars.get("$local.filters"), "MYTEST");

 query.whereIfSet(filterCondition.getSqlCondition());

}

var data = query.table();

result.object(data);

● onInsert: This is the process to control how new datasets are inserted (saved). Use the EditView

© 2025 ADITO Software GmbH 203 / 472

for entering example data for MYNUMBERFIELD and MYTEXTFIELD (not for MYTESTID/UID, as

this column/field will be automatically handled in the background), and fill the onInsert process

accordingly, e.g., like this:

import { vars } from "@aditosoftware/jdito-types";
import { SqlBuilder } from "SqlBuilder_lib";

var rowdata = vars.get("$local.rowdata");

// The columns' order must match the order of the values.
var columns = [
 // In the database, the ID column is named
 // according to the naming conventions (see AID001)
 "MYTESTID"
 , "MYNUMBERFIELD"
 , "MYTEXTFIELD"
];

// The values' order must match the order of the columns.
var values = [
 // In an Entity with a JDitoRecordContainer,
 // the ID field must always be named "UID".
 rowdata["UID.value"]
 , rowdata["MYNUMBERFIELD.value"]
 , rowdata["MYTEXTFIELD.value"]
];
new SqlBuilder().insertData("MYTEST", columns, null,
 values);

● onUpdate: This process handles the update (change) of existing datasets, e.g., via the EditView.

In this example, its code can be kept short:

import { vars } from "@aditosoftware/jdito-types";
import { newWhereIfSet } from "SqlBuilder_lib";

var changedFields = vars.get("$local.changed");
var rowData = vars.get("$local.rowdata");

var columns = [];
var data = [];

for(let field in changedFields)
{
 // According to the spelling guidelines (see AID001),
 // EntityFields that represent database columns
 // should be named like the database columns.

© 2025 ADITO Software GmbH 204 / 472

 // This enables us to just split the field
 // identifier "NAME.value" at the dot to get the name
 // of the database column at index 0.
 columns.push(changedFields[field].split(".")[0]);
 data.push(rowData[changedFields[field]]);
}

newWhereIfSet("MYTESTID = '" + vars.get("$local.uid") + "'")
.updateData(true, "MYTEST", columns, null, data);

● onDelete: This process handles the deletion of datasets. If more than one dataset has been

marked, the onDelete process is executed separately for every marked dataset, with variable

$local.uid filled accordingly. In many cases, the code of the onDelete process can be kept quite

simple, e.g., like this:

import { vars } from "@aditosoftware/jdito-types";
import { newWhereIfSet } from "SqlBuilder_lib";

newWhereIfSet("MYTESTID = '" + vars.get("$local.uid") + "'")
.deleteData(true, "MYTEST");

This simple step-by-step example should help you to get a little bit more familiar with

JDitoRecordContainers, which are, in practice, often way more complex. Indeed, the above example

would never be used in practice, as a DbRecordContainer would fit the task better, because it already

includes automatisms for, e.g., interpreting the filter.

The power of a JDitoRecordContainer lies in its flexibility, to load or calculate, filter, sort, insert, update

and delete data nearly without any restrictions. Otherwise, its disadvantage is its complexity and that

you have to care manually for things that are automated in a DbRecordContainer.

A common use case that often requires a JDitoRecordContainer, is a Tree structure.

10.10.2.4. Filtering a JDitoRecordContainer

In the previous chapter you can see already a plain example of integrating a filter in a

JDitoRecordContainer. However, to enable also complex filtering, you can find further functions in

library JDitoFilter_lib, e.g., the very useful FilterSqlTranslator. These functions are either for filtering the

data manually or for building an SQL condition.

In the JDitoRecordContainer of, e.g., the Contexts Attribute, Manager, or Workflow you can find

examples of how the various helper functions for building filters are applied.

© 2025 ADITO Software GmbH 205 / 472

10.10.3. IndexRecordContainer

In ADITO, the "index" is a kind of parallel data container that can be filled with selected data of

connected ADITO databases (e.g., name and address of contact persons or companies). By this data

reduction, by a special data structure, and by a special database (comparable with a NoSQL database)

the data included in the index can be scanned and read very quickly, using the Apache Solr search

engine.

An IndexRecordContainer can be used in various ways, of which the "Global Search" is the most

common: If you click on the search button in the web client’s Global Bar, you open a search field, in

which you can enter search terms, e.g., the name "Smith"; then, in the result, amongst others, all

persons or companies are listed that have a name including "Smith". By clicking on one of them, the

corresponding dataset is opened, ready for further processing.

Besides the "Global Search", an IndexRecordContainer can also be used as an alternative data source

for EntityFields, if the usage of a DB or JDito RecordContainer is not suitable or does not show the

required performance. In the ADITO xRM project, several FilterViews are filled by using an

IndexRecordContainer.

To keep the index up-to-date, it is connected to ADITO’s audit process. This process is called for every

change in the database. In the "Projects" window, you can find the audit process under process >

internal > process_audit.

Please find detailed explanations on the purpose and usage of an IndexRecordContainer in the ADITO

Information Document AID093 "Indexsearch".

© 2025 ADITO Software GmbH 206 / 472

https://solr.apache.org/
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID093_Indexsearch.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID093_Indexsearch.pdf

10.10.4. DatalessRecordContainer

A DatalessRecordContainer makes it possible to use an Entity without loading or writing data via the

RecordContainer. This enables the mere entry of data, which can then be read and processed, e.g., via

an Action.

Example: If you want to request specific information before opening the actual Context, you could

realize this via an Entity having a DatalessRecordContainer. Via an Action, the information could

subsequently be extracted from the EntityFields and then be passed to another Entity via method

neon.openContextWithRecipe, using a Parameter.

Examples in ADITO xRM:

There are several examples of the usage of a DatalessRecordContainer in the ADITO xRM project - just

do a full-text search for the term "datalessRecordContainer".

An easy-to-understand example is "BulkMailTesting_entity". This Entity’s View "BulkMailTesting_view"

is opened, when, in the FilterView of Context "BulkMail", a dataset is selected and Action "Test email"

is called via the three-dotted button in the CardViewTemplate of the PreviewView - see

BulkMail_entity.testMail.onActionProcess. BulkMailTesting_view is only required for selecting a contact

and entering the recipient email address - both are temporary data that does not need to be stored

anywhere: After the user has pressed the button "Test email", the data is extracted in process

BulkMailTesting_entity.testMail.onActionProcess (do not mistake this process with the onActionProcess

quoted before) and used for sending out the test email. If the user had set the switch "Save settings" to

true, then CONTACT_ID and email recepient are stored in the database table BULKMAIL - i.e., the table

referring to BulkMail_entity. Thus, BulkMailTesting_entity itself does not need database access and

therefore uses a DatalessRecordContainer.

You may wonder why a DatalessRecordContainer also features the property "alias"

(for specifying the default alias), when in fact there is no database access in this

case. Well, this is simply a matter of consistency: "alias" must be a common property

of all types of RecordContainers. This has technical reasons, because the existence

of a RecordContainer with an "alias" property is a prerequisite for all methods that

allow database access on Entity level (e.g., in Actions).

If you open the PreviewView of an Entity connected to a DatalessRecordContainer,

and there is an Action involved that does not cause a "jump" to another Entity, then

please make sure that the PreviewView is closed via the following code line at the

end of the onActionProcess:

neon.closeImage(vars.get("$sys.currentimage"), true);

Otherwise, the PreviewView will remain open, and the user will not get any

© 2025 ADITO Software GmbH 207 / 472

feedback, when the Action is finished, but he must close the window manually.

© 2025 ADITO Software GmbH 208 / 472

10.11. Tags

To understand this chapter, please first read the chapter on the ViewTemplate type

Favorite.

Tags are useful if you want to "attach a label" to specific datasets, in order to mark them for various

purposes. They will then appear in Context "Favorite" (see "star" button in the sidebar of the client),

grouped according to property "Tag", to keep track of these datasets in an ordered way. (Exception:

Datasets exclusively tagged by Hashtags do not appear in Context "Favorite".)

Some use cases require tags to be set not by the user, via a ViewTemplate of type "Favorite", but via an

Action or via an automatism.

In principle, you could customize the assignment of tags simply by creating the required datasets in the

system tables ASYS_RECORDGROUP and ASYS_RECORD (see chapter Favorite). However, the preferable

way to do this is to use the methods of a library named "tag", which can be imported via

import { tag } from "@aditosoftware/jdito-types";

There are different methods for tagging and un-tagging, as well as for getting a tag object - but the

principle steps are always the same:

1. You create a purpose-specific config object.

2. You execute the actual method for (un-)tagging itself, with the config object as parameter.

Example:

The execution of the following example code (e.g., to be included in the onActionProcess of a test

Action) adds a tag titled "Test Tag" to a dataset of Context "Offer", visible in the client of the current

user:

var userId = tools.getCurrentUser()["name"];

// OFFERID of demo dataset "1004-1" of Offer_entity
var recordId = "ab61911c-88c5-4d79-9ac2-f41f21154dbe";

// creating the config object
var config = tag.createAddTagConfig();
config.setObjectType("Offer");
config.setRowId(recordId);
config.setTagTitle("Test Tag");
config.setTagType(tag.FAVORITE_GROUP);
config.setUserId(userId);

// adding the tag

© 2025 ADITO Software GmbH 209 / 472

tag.add(config);

The methods used in this example code should be self-explanatory, if you have read chapter Favorite

before.

Depending on the purpose, the config object must be created with one of the following methods:

● tag.createAddTagConfig()

● tag.createGetTagConfig()

● tag.createGetTaggedObjectByDataConfig()

● tag.createGetTaggedObjectByIdConfig()

● tag.createGetTaggedObjectsConfig()

● tag.createGetTagsConfig()

● tag.createUntagByContextConfig()

● tag.createUntagByDataConfig()

● tag.createUntagByIdConfig()

● tag.createUntagMultipleByIdConfig()

Each config object has individual configuring methods and is to be set as parameter of one of the

corresponding excution methods:

● add(pConfig)

● untag(pConfig)

● getTags(pConfig)

● getPublicTags(pConfig)

● getTaggedObjects(pConfig)

Besides, there are further utility methods like

● getTagAlias()

● lookupHashtags(pInputPattern)

● suggestHashtags(pTagConfig)

All methods are well-documented via JSDoc, which you can access as usual (via the auto-completion).

© 2025 ADITO Software GmbH 210 / 472

10.12. Notifications and observations

10.12.1. Basics

Notifications are pieces of information shown in ADITO

1. in the NotificationFilter_view, available via the "Bell" icon in the left upper corner of the ADITO

web client:

Here, one or multiple notifications are displayed in a table, with the option to filter them, mark

them as "read", etc.:

2. via a popup appearing in the lower right corner of the web client (once per one single

notification), given that you had once accepted being notified by ADITO

Notifications can be triggered in various ways, in particular via

● changes of data that is covered by "observation". Observations can be set by the web client user,

in various ways - find more information in the ADITO end user training course "Notifications and

observations" and the corresponding documentation.

● storing datasets that include hyper-references to a specific ADITO user (Employee), e.g., "(…)

@J.Smith (…)"

● incoming telephone calls - find extensive information in the ADITO Information Document

AID018 "CTI".

● manual triggering of a notificaton via JDito

© 2025 ADITO Software GmbH 211 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID018_CTI.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID018_CTI.pdf

10.12.2. Setup

Every new ADITO cloud system comes with a ready-to-use notification functionality. This includes a

notification queue, in which all notifications remain (e.g., as long as someone is offline), until it is

possible to deliver them to the respective users (recepients).

Normally, you do not need to customize anything to use notifications. (In case you have an earlier

ADITO system without notification functionality, contact ADITO for further instructions.) Also, the

triggering of notifications via hyper-references is already built-in and does not need to be configured or

activated. The setup of CTI is explained in the ADITO Information Document AID018 "CTI".

Thus, the only functionalities that require customizing are manual notification triggers and observation.

10.12.2.1. Manually triggered notifications

You can arbitrarily trigger a notification manually via JDito, by using the backend methods of class

notification. There are 2 steps:

1. Create and set a configuration object

2. Execute the notification trigger, using the configuration object - with "execute" actually meaning

to add a notification to the list (queue) of notifications to be sent to the user(s)

Here is an example, included in the ADITO xRM project. You may use this example as a pattern to

design your own notification triggers:

KnowledgeManagement_entity.Likes.onActionProcess.js

(...)
let notificationConfig = notification.createConfig()
 .addUserWithId(employeeUserId)
 .forcedPriority(notification.PRIO_LOW)
 .notificationType("Like")
 .initialState(notification.STATE_UNSEEN)
 .caption(caption)
 .description(description);

notification.addNotificationWith(notificationConfig);
(...)

10.12.2.2. Observation

If you want to augment an Entity with the option to "observe" one or multiple datasets of it, you need

to add specific Actions and configure them accordingly.

© 2025 ADITO Software GmbH 212 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID018_CTI.pdf

As a first step, add Observation_entity as sibling to the Entity that is to be observed. See, e.g.,

KnowledgeManagement_entity:

Setting this sibling makes sure that the corresponding actions (see below) will be updated

automatically. (Otherwise, e.g., it would be possible that an observation can be added multiple times.)

Furthermore, in the RecordContainer’s process onDBInsert/OnDBUpdate/onDBDelete you need to add

the function

EventHandler.onInsert()/EventHandler.onUpdate()/EventHandler.onDelete

().

Then, open Dependency_lib (in the project tree, under process > libraries) and add the connection of

the dependent Entities.

10.12.2.2.1. Observation of selected datasets

Selected datasets can be observed (and "un-observed") via a corresponding Action in the PreviewView,

executed by the web client user:

To include this functionality, proceed as follows:

1. Add an ActionGroup named "observeActionGroup".

2. Under this ActionGroup, add 2 Actions named "observe" and "cancelObservation".

3. Configure these Actions' properties, following the pattern given in several Entities of the ADITO

© 2025 ADITO Software GmbH 213 / 472

xRM project, e.g., KnowledgeManagement_entity.

An even faster approach is to simply

● copy & paste this ActionGroup from another Entity of the ADITO xRM project,

e.g., KnowledgeManagement_entity;

● adapt parameter "pUid" of method

Observation.actionStateRecordsRecipe in property

"stateProcess"

10.12.2.2.2. Observation of filtered datasets

Selected datasets can be observed (and "un-observed") via a corresponding Action in the FilterView,

executed by the web client user:

To include this functionality, proceed as follows:

● Add the functionality for observing selected datasets, as explained in chapter Observation of

selected datasets

● Select ActionGroup "observeActionGroup" as favoriteActionGroup of the TableViewTemplate (or

TreeTableViewTemplate etc.) of your FilterView.

10.12.3. Notifications with multiple ADITO servers

If your system includes multiple ADITO servers, it would be negative, if each server managed only his

own notifications, independently from the notifications triggered on the other servers. In this case,

server A had no information what happens on server B, and vice versa.

Example:

Each managed ADITO cloud system consists of at least one background server and one foreground

server. Now, if a CTI telephone call came in at the background server, the respective user would get no

notification, as they is logged into the foreground server.

© 2025 ADITO Software GmbH 214 / 472

To avoid this, a so-called cluster messaging server needs to be applied, in order to ensure a distributed

notification management. Therefore, every managed ADITO cloud system comes with an installation of

Apache Ignite as pre-configured, ready-to-use cluster messaging server. (Besides, ADITO utilizes Ignite

also as remote cache server, see chapter Shared caching with multiple ADITO servers.) Its alias has the

type "Cluster Messaging", see AliasConfig:

If this alias is not present yet, you need to add it first:

1. In the project tree, right-click on node "alias" and choose "New" from the context menu.

2. A dialog named "Create New Model" appears. Here, type in a suitable name (e.g.,

"ClusterMessaging").

© 2025 ADITO Software GmbH 215 / 472

https://ignite.apache.org/

3. A dialog named "Create AliasDefinition Model" appears. Here, select the type "Cluster

Messaging".

4. Deploy your project. Then, the new alias appears in the AliasConfig.

Now, check if the cluster messaging alias is set as value of the project property "clusterMessagingAlias"

(see preferences > ____PREFERENCES_PROJECT, in the project tree):

© 2025 ADITO Software GmbH 216 / 472

If it is not set yet,

1. set it now,

2. deploy your project,

3. restart the ADITO server,

4. re-establish the tunnel to your cloud system,

5. reconnect to your your system, in order to see the AliasConfig again.

Now, if you click on the cluster messaging alias in the AliasConfig, you can inspect its properties in the

"Properties" window. Here, you should see that the address of the cluster messaging server (properties

"host" and "port") has been set automatically:

© 2025 ADITO Software GmbH 217 / 472

This semi-automatic activation of a cluster messaging server only works for

managed ADITO cloud systems, as these systems by default come with a pre-

configured, ready-to-use installation of a cluster messaging server. If, however, your

system is an unmanaged cloud system, you first need to order the transformation of

your system to a managed cloud system from ADITO.

ADITO does not offer support of integrating cluster messaging servers into "on

premise" (not cloud-based) systems. Although, in principle, this is possible, the

installation and integration of a cluster messaging server must be realized by the

customers themselves.

© 2025 ADITO Software GmbH 218 / 472

10.13. Adding an ATTRIBUTES tab

Several of the ADITO xRM-Project’s Contexts have a tab named "ATTRIBUTES" available in their

MainView. Attributes are specific features that can be assigned to certain datasets.

Figure 29. Example of an "ATTRIBUTES" tab, in PersonMain_view

These are the steps to add a similar ATTRIBUTES tab to the MainView of another Context:

1. Create 2 Consumers:

a. one Consumer that should be named "Attributes" and includes the following property

settings:

■ entityName: AttributeRelation_entity

■ fieldName: AttributeRelations

■ onValidation: cp. Person_entity:

result.string(AttributeRelationUtils.validateAttributeCount(vars.get("$field.CONTACTID"), ContextUtils

.getCurrentContextId(), "Attributes"));

(replace CONTACTID by the EntityField that is related to the Context’s primary

key)

b. one Consumer that should be named "AttributeTree" and includes the following property

settings:

■ entityName: AttributeRelation_entity

■ fieldName: TreeProvider

c. For both Consumers, fill Parameters ObjectRowId_param and ObjectType_param

© 2025 ADITO Software GmbH 219 / 472

2. Adapt Views:

a. EditView: Assign View reference to AttributeRelationMultiEdit_view (via Consumer

"Attributes" , see above)

b. MainView: Assign View reference to AttributeRelationTree_view (via Consumer

"AttributeTree" , see above)

3. Create FilterExtensionSet "Attribute_filter", if the Attributes should be filterable (see chapter

FilterExtensionSet and use, e.g., Person_entity as pattern).

4. In the Entity’s afterUiInit property, place the code required for the automatic presetting of the

Attributes when a new dataset is being created - see, e.g., Person_entity

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW)

{

 AttributeRelationUtils.presetMandatoryAttributes(ContextUtils.getCurrentContextId(), "Attributes");

}

5. Add your Context in method AttributeUtil.getPossibleUsageContexts() (in

library AttributeUtil_lib):

6. In the Web Client, navigate to Context "Attributes" (in menu group "Administration") and add

the Context to section "Usage" of every Attribute that you want to be available in your Context

(or create a new Attribute for you Context first, respectively).

Example:

© 2025 ADITO Software GmbH 220 / 472

10.14. Adding a LOGS tab

Several of the ADITO xRM-Project’s Contexts have a tab named "LOGS" available in their MainView. This

kind of logging is not directly related to changes of EntityField values, but to changes of the content of

the corresponding database columns (i.e., it is not available for calculated EntityFields that are not

mapped to database columns).

Figure 30. Example of a "LOGS" tab, in OrganisationMain_view

These are the steps to add a similar LOGS tab to the MainView of another Context:

● Prerequisites:

○ Logging must be generally enabled for the ADITO system, via setting property

"databaseAuditEnabled" to "true". You can find this property, if (in the "Projects" window)

you double-click on system > default and then double-click on "____CONFIGURATION".

Then, in the "Navigator" window, navigate to Modules > Database.

Restart the server.

○ Logging must be generally enabled for the project, via setting property

"databaseAuditAlias" to "__SYSTEMALIAS". You can find this property, if (in the "Projects"

window) you open node "preferences" and double-click on __PREFERENCES_PROJECT.

Then, in the "Navigator" window, navigate to Modules > Database.

© 2025 ADITO Software GmbH 221 / 472

Restart the server.

○ Logging must be enabled for the respective database table(s), by setting its property

"auditMode" to BLOB (in the Alias Definition):

○ Logging must be enabled for every database column that is to be logged, e.g., for table

ORGANISATION’s column CUSTOMERCODE. This requires the following steps:

■ Right-click on the database column in the Alias Defintion and choose option "Edit

properties":

© 2025 ADITO Software GmbH 222 / 472

■ Add a "custom property" via the "plus" button, name it "log" (exactly spelled like

this!) and set its type BOOLEAN:

■ Then, a new boolean property appears in the property sheet of the column. (If not,

simply click on another column and than back again.) Set this property to "true"

and set the title to be used for the log entries:

■ Don’t forget to deploy all changes and (as for the project/system-wide settings)

restart the server.

© 2025 ADITO Software GmbH 223 / 472

○ The corresponding Entity must have the "standard" EntityFields DATE_EDIT, DATE_NEW,

USER_EDIT und USER_NEW.

● Create a Consumer (usually named "LogHistories").

● Set the new Consumer’s properties as follows:

○ entityName: LogHistory_entity

○ fieldName: LogHistoryProvider

● Double-click on the new Consumer’s Parameter "tablenames_param" and set the Parameter

valueProcess according to this pattern:

var res = [];
res.push({id: vars.get("$field.MYIDFIELD"), tableNames: ["MYTABLENAME"]});
res = JSON.stringify(res);
result.object(res);

In this pattern, "MYIDFIELD" and "MYTABLENAME" are, of course, placeholders that must be

replaced by the actual name of the related database table(s) and by the name of the EntityField

related to the respective database table’s primary key.

Here is an example of Organisation_entity:

var res = [];

res.push({id: vars.get("$field.CONTACTID"), tableNames: ["CONTACT", "COMMUNICATION", "ADDRESS", "AB_ATTRIBUTERELATION",

"COMMUNICATIONSETTINGS"]});

res.push({id: vars.get("$field.ORGANISATIONID"), tableNames: ["ORGANISATION"]});

res = JSON.stringify(res);//currently only strings can be passed as param

result.object(res);

● Properties "expose" and "mandatory" of the new Consumer’s Parameter "tablenames_param"

must both remain in default state "true".

● In the "Projects" window, double-click on the MainView that should get the LOGS tab.

● In the "Navigator" window, right-click on the MainView and choose "Add reference to existing

View".

● As "EntityField", choose the new Consumer that you had created before (see above).

● As "View", choose LogHistoryFilter_view.

● Click OK, deploy - done!

You can set the language of the log entries in Loghistory_lib (in the project tree,

under process > libraries):

© 2025 ADITO Software GmbH 224 / 472

Changing this value will only effect future log entries. Existing log entries will always

remain unchanged.

On request, ADITO can provide you with a "Blueprint" that facilitates adding a LOGS

tab.

Further useful custom properties:

Besides the custom property "log" (see above) there are further custom properties, which need to be

set for specific use cases:

● "keyword" (Type: String); purpose: resolving keywords. Example:

● "translate4Log" (Type: JDito); purpose: resolving displayValues. Example:

© 2025 ADITO Software GmbH 225 / 472

● "autoMapTrueFalse4Log" (Type: Boolean); purpose: resolving booleans without having to do this

via translate4Log. Example:

● "tableRef" (Type: String); purpose: required in order to log changes in tables to which there is a

logging dependency (like in the above example of Organisation_entity and, e.g.,

COMMUNICATION). Example:

© 2025 ADITO Software GmbH 226 / 472

10.15. Adding Tasks

This chapter explains how to add "Task" functionality to a Context, using the example of Context

"Organisation".

These are the required steps:

1. Add a Consumer that points to Provider "Tasks" of Task_entity - can be copied from

Organisation_entity:

2. In the Context’s MainView, add a reference to TaskFilter_view:

3. Add Action "newTask" - can be copied from Organisation_entity:

© 2025 ADITO Software GmbH 227 / 472

4. For being available in the selection of the "Connections"-labelled ViewTemplate (of Contexts

Tasks, Activities, etc.)…

…the following steps are important:

a. ContextUtils.getContexts(…) (Context_lib): Add your Context to the whitelist:

© 2025 ADITO Software GmbH 228 / 472

The above applies to unmodularized projects. On the contrary, in

modularized projects, you usually work with so-called

ServiceImplementations, which are iterated over in function

ContextUtils.getContexts(…) of ContextUtils_lib. For

further details, see the ADITO Information Document AID123

"Modularization".

b. Object_entity: Create a Consumer and connect it to a suitable Provider of your Context:

© 2025 ADITO Software GmbH 229 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

c. ContextUtils.getContextConsumer (Context_lib):

Add your Context and the new Consumer (see previous step) of Object_entity (see

previous step):

The above applies to unmodularized projects. On the contrary, in

modularized projects, you usually work with so-called

ServiceImplementations, which are iterated over in function

ContextUtils.getContextConsumer(…) of ContextUtils_lib.

© 2025 ADITO Software GmbH 230 / 472

For further details, see the ADITO Information Document AID123

"Modularization".

© 2025 ADITO Software GmbH 231 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID123_Modularization.pdf

10.16. Auto-generated Primary Keys

The following procedure is not required, if you have checked the checkbox "UID

Table" in the RecordContainer’s property "linkInformation" (see above). However,

you may use it as configuration pattern, if you want to include further fields with an

auto-generated UID as content.

For testing purposes, we had inserted the values of the primary keys (e.g., CARID) by ourselves (see

Liquibase xml files). In most cases, however, this should be done automatically, whenever a new

dataset is generated. To achieve this, we enter some code in the property "valueProcess" of all

EntityFields related to the primary key of the database table corresponding to the Entity: CARID,

CARDRIVERID, CARRESERVATIONID.

Car_entity.CARID.valueProcess.js, CarDriver_entity.CARDRIVERID.valueProcess.js,

CarReservation_entity.CARRESERVATIONID.valueProcess.js

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW) {
 result.string(util.getNewUUID());
}

Explanation:

● result is similar to what you may know as "return".

● .string means that the result value is a text.

● util is the library holding utility functionality.

● getNewUUID() returns a new randomly generated UID

● The condition if(vars.get("$sys.recordstate") ==

neon.OPERATINGSTATE_NEW) restricts the auto-generation to only the creation mode (i.e.,

cases when the "plus" sign is clicked). Whenever the system is in another state (VIEW, EDIT), the

field simply shows the stored value.

© 2025 ADITO Software GmbH 232 / 472

10.17. PreviewMultiple

While the "normal" PreviewView always refers to one single dataset (selected in the FilterView), the

PreviewMultiple allows to show processed, summarized, and aggregated data of multiple selected

datasets. The respective View is set in the Context’s property "previewMultiple".

Example:

Context "Offer" includes a PreviewMultiple that summarizes the total net and the probability of offer

datasets that have been selected in the FilterView:

Configuration:

The Offer Context’s property "previewMultiple" references a View named OfferPreviewMultiple_view.

This View has a HeaderFooterLayout and includes 3 ViewTemplates:

● OfferChart: This ViewTemplate shows a bar chart that enables a comparison of the total net of

the selected Offer datasets. The label of a bar is the result of Offer_entity’s contentTitleProcess.

The configuration of the ViewTemplate is quite simple:

○ type: DynamicMultiDataChart

○ columns: NET

○ chartType: BAR

© 2025 ADITO Software GmbH 233 / 472

● StatusTreeTable: This ViewTemplate shows a TreeTable that groups the offers' total net according

to status ("open", "sent", "won", etc.), including the sum of all selected offers that have a

specific status. Configuration of this ViewTemplate:

○ type: TreeTable

○ columns:

■ entityField: NET

■ aggregateEntityField: NET_aggregate

○ defaultGroupFields: STATUS

○ hideActions: true

● AggregatedValues: This ViewTemplate is set as footer of OfferPreviewMultiple_view. It shows, as

"score cards", the sum of the total net of all selected offer datasets as well as the average

probability of all selected offer datasets. Configuration:

○ type: ScoreCard

○ entityField: OfferAggregates (= a Provider of Offer_entity, without further configuration)

○ fields: NET_aggregate, PROBABILITY_aggregate

© 2025 ADITO Software GmbH 234 / 472

10.18. Paging

From the ADITO client user’s point of view, paging means that (e.g., in a table) the datasets of a Context

are not loaded all at once, but step by step if you scroll down, in blocks (pages) of n datasets. Usually,

the client user notices only a small break when scrolling down, before the next n datasets have been

loaded.

From the customizing point of view, the paging approach depends on the RecordContainer you use.

10.18.1. Paging with a DbRecordContainer

Simply navigate to your RecordContainer and set its property "isPageable" to true (checkbox checked).

That’s all. The data will then be loaded in pages of 400 datasets.

10.18.2. Paging with a JDitoRecordContainer

Normal paging:

(loading the data in blocks of n datasets while the client user scrolls down)

Prerequisites:

● isPageable = true

● isGroupable = false

● rowCountProcess is present

To implement normal paging, you need 2 variables:

● $local.page: returns the number of the page that is requested (0, 1, 2, 3…)

● $local.pagesize: returns how many rows (datasets) are to be loaded per page

A rough, not recommendable implementation of paging would be to finish the contentProcess like this:

var page = vars.exists("$local.page") ? vars.get("$local.page") : false;
var pageSize = vars.exists("$local.pagesize") ? vars.get("$local.pagesize") : false;

if(pageSize)
{
var startRow = page == false ? 0 : page * pageSize;
var endRow = startRow + pageSize;
res = res .slice(startRow, endRow)
}

Then only the requested rows are returned, but still all rows are loaded. Thus, this kind of "paging"

does not have an added value. The better way is to load only the requested datasets, using the above

© 2025 ADITO Software GmbH 235 / 472

mentioned 2 variables.

Paging on basis of grouping:

(on the basis of grouping, the datasets are grouped tree-wise)

● isPageable = true

● isGroupable = true

● rowCountProcess is present

You can learn how to implement this kind of paging by looking at the RecordContainers of, e.g., the

Contexts

● SalesprojectConversionRate

● Turnover

As soon as grouping is applied, variable $local.grouped is set, and you do not need to return the data,

but the respective groups. If you open a group and there are no sub-groups below, then the respective

data is to be returned. The filter of the grouping(s) is then included in variable $local.filters.

10.18.3. Further information

For any RecordContainer, you need to decide if you use caching or paging. It is not possible to use both

at the same time.

© 2025 ADITO Software GmbH 236 / 472

10.19. Storing user-specific data outside ASYS_USERS

User-specific data such as title, configuration, etc. is stored in the system table "ASYS_USERS". As this

table is already very large, it should not be further extended by customizing.

Instead, if you intend to store further user-specific data, it is advisable to store this data in a separate

table within your Data_alias (not the system alias!). This approach improves performance by reducing

the amount of data that needs to be loaded from ASYS_USERS.

The prerequisite for this new table is the use of the OBJECT_ID and OBJECT_TYPE columns. An

illustrative example is the Entity TopicTreeTopicConfiguration_entity with its corresponding database

table TOPICTREETOPICCONFIGURATION.

10.20. Lookup for translated values

In an international context, lookup functionality is usually refering to translated search content. How

this can be realized, depends on the type of RecordContainer:

● DBRecordContainer: Use the SQL expression for the displayValue as Filter. However, depending

on the SQL, this could be a performance issue.

● JDitoRecordContainer: Can be filled via the contentProcess

© 2025 ADITO Software GmbH 237 / 472

10.21. Export

As you can see, e.g., in the FilterView of Context Person, there is an Action named "Export", which

enables you to export specific fields of specific datasets. This is how it works:

1. Open PersonFilter_view.

2. Mark a few or all datasets.

3. Execute Action "Export" in ActionGroup "Serial Actions".

4. Choose an export template, e.g. "Persons with addresses".

5. Enter a filename of your choice for the csv export file to be generated.

6. Click button "export using the selected template".

7. Navigate to your notifications (bell icon).

8. Click on notification "Download ready".

9. Navigate to the PreviewView and click button with download icon.

10. Find your export file in your download folder.

Now we want to implement this export feature also for our Context CarDriver. Please proceed as

follows:

● Set CarDriver_entity’s properties "useFavorites" and "recordsRecipeSupported" both to "true"

(checkbox checked)

● Copy action "Export" from Person_entity to CarDriver_entity. This requires the following steps:

○ Create an ActionGroup in CarDriver_entity and name it, e.g., "FilterViewActions".

○ Navigate to Person_entity and unfold ActionGroup "filterViewActionGroup". Here, right-

click on Action "export" and choose option "Copy".

○ Navigate back to CarDriver_entity and right-click on ActionGroup "FilterViewActions".

From the context menu, choose option "Paste". This will copy Action "export" with all its

properties, in particular, onActionProcess (containing the export logic) and stateProcess

(making sure that the Action is only enabled, if at least one dataset is marked).

© 2025 ADITO Software GmbH 238 / 472

● Set the copied ActionGroup in one of the properties "FavouriteActionGroupX" in the

TableViewTemplate assigned to CarDriverFilter_view.

● Open ExportTemplate_lib (in the project tree, under process > libraries) and add

"CarDriver_entity" in function ExportTemplateUtils.exportableEntities:

● Open Dependency_lib (in the project tree, under process > libraries) and add an empty entry for

"CarDriver_entity" in function Dependency.mapping:

● Deploy

● In the client, navigate to Context "Export Template" (in menu group "Administration").

● Click the "Plus" button in order to add a new template. Give it a suitable name and description

and select "Car driver" as "Place of use". Change the other options according to your

requirements.

● Choose "Save and open entry"

● Choose tab "Export Template Fields". Click the "Plus" button, choose "Car driver" as "Place of

use" and then choose the first export field.

● Continue with the second, third, etc. export field.

● If required, change the order via the "arrow up/down" buttons.

Now you can test the added export functionality by proceeding as described above for Context Person.

Furthermore, you can test your skills by adding the same export functionality to the Contexts Car and

CarReservation.

© 2025 ADITO Software GmbH 239 / 472

10.21.1. Export of a subordinated Entity

If you want to export a subordinated Entity in an export template, you need to modify the

configuration of the subordinated Entity in library Dependency_lib, method Dependency.mapping.

Example: Activity_entity, with its subordinated Entity Organization_entity. In this case, the nodes

isExportable and fieldsToLoad need to be added as follows:

Figure 31. Dependency_lib.Dependency.mapping

© 2025 ADITO Software GmbH 240 / 472

11. Controlling the design

In order to achieve a professional appearance and an ergonomic handling of every ADITO application,

the possibilities to control its design (colors, order of elements, etc.) are basically reduced to three

complementary options: Themes, ViewTemplates, and layouts:

● A so-called Theme contains configurations affecting all Views and Contexts, particularly

regarding colors.

● A ViewTemplate defines what and how data is presented, e.g., specific fields of one dataset

ordered in single lines, or multiple datasets in table form, with or without Action buttons, etc.

● A layout determines the way multiple associated ViewTemplates are presented together in a

View (horizontally or vertically ordered, selectable via a button, etc.)

We recommend you to respect the ADITO Design Guideline for all aspects of your

customizing work. Find more information in the ADITO Information Document (AID)

"AID003 Design Guideline", which is available in the customer area of the ADITO

web site.

Now let’s have a closer look at each of these options and their variations.

© 2025 ADITO Software GmbH 241 / 472

https://www.adito.de/login
https://www.adito.de/login

11.1. Themes

A Theme contains design configurations at a very fundamental level. The settings included in a Theme

affect all display components of an ADITO application, particularly Views and Contexts. Currently, a

Theme is limited to the definition of colors of various visual elements in the ADITO client.

As color design is quite complex and has to consider critical aspects like contrast, Themes can currently

not be created or customized by the user, but exclusively be ordered from ADITO, on the basis of the

customer’s CI guide. This will ensure that a Theme is in good compliance with the customer’s company

colors.

Once created, a new Theme can easily be integrated into an existing ADITO application: All the ADITO

administrator has to do, is to place a specific configuration file (supplied by ADITO’s development

department) in a specific folder of the server’s file structure and restart the server. Then, the name of

the new Theme can be selected in the Designer: system > default > _CONFIGURATION > System > Client

> clientTheme. By default, this property is not set. Then, the ADITO standard Theme will be used, which

is included in every ADITO installation.

You can view the available colors defined by the Theme if, e.g., you open the combo box of any "color"

property (e.g., the color property of an EntityField).

It is strictly against the intention of ADITO that users modify the Theme by

themselves. It is exclusively ADITO’s development department that is authorized to

modify a Theme or create a new Theme. In appendix Requirements for customized

Theme you can find information about the information required by the ADITO

development department in order to supply you with a customized Theme.

Furthermore, you can find extensive background information on the topic "Themes"

in the ADITO Information Document AID121 "Themes".

© 2025 ADITO Software GmbH 242 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf

11.2. Layouts

A layout is a property of a View. It determines the way multiple ViewTemplates (or referenced Views)

are presented together in a View, e.g., whether they are horizontally or vertically ordered, selectable

via a button, etc. The ADITO standard installation includes a set of predefined layouts, which fit for

most use cases.

In order to assure a consistent and ergonomic design, layouts cannot be created or customized by the

user. In special cases, if none of the predefined layouts fits, a customized layout can be ordered from

ADITO.

To set a layout, open a View in the "Projects" windows or Navigator window, click on it and edit

property "layout" in the "Properties" window. Here, you can select a layout from a list of layouts, in a

combo box. Depending on what layout you select, different layout-specific properties are shown below

the "layout" property.

Below, the function and configuration of selected layouts is explained.

11.2.1. NoneLayout

The NoneLayout is the simplest layout. It shows all ViewTemplates assigned to the View in a vertical

arrangement. The order of the ViewTemplates is the same as shown in the Navigator window.

This layout is often used, whenever only one single ViewTemplate or one single View is to be displayed.

Example:

KeywordAttributeEdit_view (Context "KeywordAttribute"). Visible in the client, whenever you create or

edit a keyword attribute (Administration > Keyword Attribute).

11.2.2. DrawerLayout

The DrawerLayout is almost as simple as the NoneLayout, with the following differences:

● A horizontal bar is shown on top. Optionally, this bar can include a caption (property

"layoutCaption").

● Via a button at the right end of the bar (icon "^") the user can hide all Views and ViewTemplates

assigned to the View having the DrawerLayout.

● Property "fixedDrawer": If checked, the above "hide" function is disabled. Then, the horizontal

header bar and its optional caption is the only difference to the NoneLayout.

Example:

AppointmentFilter_view (Context "Person", assigned to PersonTaskAppointment_view, which in turn is

assigned to PersonMain_view). Visible in the client under Contact Management > Contact: Select any

© 2025 ADITO Software GmbH 243 / 472

person and press the "open" button, to open the MainView. Here, click on tab "Tasks": In the lower

part of this tab, you can see a table, above which there is a horizontal bar, including the caption "Linked

Appointments". Via a button at the right end of the bar (icon "^") you can hide the table.

11.2.3. BoxLayout

The BoxLayout is also a quite basic layout, but it has some more properties than the NoneLayout:

● direction: Select, whether the ViewTemplates are to be shown in vertical or in horizontal order.

● maxDirectionElements: Specify the maximum of ViewTemplates to be shown in the order

specified in property "direction". If, e.g., direction is VERTICAL, and maxDirectionElements is 3,

then the first 3 ViewTemplates are shown one under the other, while the 4th ViewTemplate is

shown on top again, to the right of the first ViewTemplate.

● autoHeight: Check, if the layout should determine its height automatically. The automatic layout

height is calculated from the height of its components.

Example:

OrganisationEdit_view (Context "Organisation"). Visible in the client under Contact Management >

Company, whenever you create or edit a company dataset. You see that, as configured, the Views

showing address data, communication data, and attribute data, are shown in vertical order.

For every layout, you can change the order of the ViewTemplates simply by dragging

and dropping them in the Navigator window up or down.

11.2.4. GroupLayout

The GroupLayout enables you to change the visualization between multiple assigned Views or

ViewTemplates via a button shown in the upper right corner. If you click on this button, a list of all

Views is shown, which are assigned to the View having the GroupLayout. As soon as you have selected

a View, this View is shown, and all other Views are hidden.

Example:

ActivityFilter_view (Context "Organisation", assigned to OrganisationMain_view). Visible in the client

under Contact Management > Company: Select any company and press the "open" button, to open the

MainView. Here, click on tab "Activities" to show all activities of the person. Via the button on the right,

you can change the visualization of the activities: You can switch between 3 ViewTemplates: Timeline

View, Table View, and Treetable View.

To customize the naming of a list item shown via the View selection button, you can

set an arbitrary text in the "title" property of the respective ViewTemplate. Unless

you set the "title" property, a (non-configurable) default name is shown.

© 2025 ADITO Software GmbH 244 / 472

11.2.5. HeaderFooterLayout

The HeaderFooterLayout divides the View into 3 parts:

● header area: Upper part, which can consist of a View or a ViewTemplate.

● footer area: Lower part, which can consist of a View or a ViewTemplate.

● middle area: All other Views or ViewTemplates assigned to the View having the

HeaderFooterLayout.

In many cases, the HeaderFooterLayout is used for the PreviewView.

To configure this layout, proceed as follows:

1. Create and select the View that should get the HeaderFooterLayout.

2. Select "HeaderFooterLayout" from the combo box of property "layout".

3. Open the View in the Navigator window.

4. Create all ViewTemplates to be displayed in the View (context menu: "New ViewTemplate…").

5. Assign all other Views to be displayed in the View (context menu: "Add reference to existing

View…").

6. Select the View having the HeaderFooterLayout and edit its properties:

a. Property "header": Select the View or ViewTemplate that is to be shown in the header

area.

== .. Property "footer": Select the View or ViewTemplate that is to be shown in the footer

area.

7. Open the View having the HeaderFooterLayout in the Navigator window.

8. Configure the order in which the Views and ViewTemplates are to be displayed: Move all Views

and ViewTemplates up or down, until they are in the required order, simply by dragging and

dropping them. This is only necessary for the Views and ViewTemplates to be shown in the

middle area. (The ViewTemplates assigned as "Header" or "Footer" have fixed positions.)

Example:

OrganisationPreview_view (Context "Organisation"). Visible in the client under Contact Management >

Company: Click on any company and watch its data displayed in the preview on the right.

11.2.6. GridLayout

The GridLayout enables you to place ViewTemplates (or View references, respectively) in a grid. The

placement of the ViewTemplates is determined by their order as given in the Designer’s Navigator

window. They get filled into the grid line by line, from top to bottom.

© 2025 ADITO Software GmbH 245 / 472

The grid is defined by the number of its columns (property "columnCount") and its rows (property

"rowCount"). Optionally, property "rowHeight" can be set. In most cases, only columnCount needs to

be set, while rowCount and rowHeight are left in default state. Then, the number of rows is calculated

automatically, and rowHeight is automatically optimized.

In some ADITO versions, property "rowHeight" will not appear until you have

changed the value of property "columnCount" at least once. Furthermore, the

automatic calculation of the properties "rowCount" and "rowHeight" might fail. In

these cases, set "columnCount" and "rowCount" (and, if required, "rowHeight")

explicitely.

11.2.6.1. Properties

● columnCount

Determines how many columns the grid should have.

This value is only used for desktop devices. Mobile devices will always only

use 1 column.

● rowCount

Determines the number of rows which should be displayed in the grid. If left in default state

(recommended), this property gets adapted automatically when you add/remove

ViewTemplates to/from the View.

If you explicitly set this property, you should also consider to set property

rowHeight (see below).

● rowHeight

The height of one row in pixels.

This property should only be used in combination with an explicitly set

rowCount.

11.2.7. MasterDetailLayout

See chapter "MasterDetailLayout", subchapter of chapter "Complex dependencies".

 Note that DashletConfigs cannot be added to Views having a MasterDetailLayout.

© 2025 ADITO Software GmbH 246 / 472

11.3. ViewTemplates

A ViewTemplate defines what and how data is presented, e.g., specific fields of one dataset ordered in

single lines, or multiple datasets in table form, with or without Action buttons, etc. The ADITO standard

installation includes a set of predefined ViewTemplates, which fit for most use cases.

In order to assure a consistent and ergonomic design, ViewTemplates cannot be created or customized

by the user. In special cases, if none of the predefined ViewTemplate types fits, and a workaround is not

possible, then a customized ViewTemplate can be ordered from ADITO.

To add a ViewTemplate to a View, open the View in the Navigator window and choose "Add

ViewTemplate" from its context menu. Consequently, a dialog will open, in which you select one of the

ViewTemplate types included in the list on the left. Furthermore, enter a name for the new

ViewTemplate. The field "Assign to" is only required for configuring a MasterDetailLayout and a

HeaderFooterLayout (see chapter on layouts); in other cases, it can be ignored.

After creating a new ViewTemplate, it appears in the Navigator window as sub-node of the View it

refers to. If you click on the ViewTemplate, you can edit its properties in the "Properties" window.

The following properties are common to multiple or all ViewTemplates:

● title: The text of the list item shown via the View selection button, if the ViewTemplate is

intergrated into a GroupLayout. (Unless you set the "title" property, a (non-configurable) default

name is shown.)

● maxDBRow: Allows you to set a limit for the number of datasets to be displayed in the

ViewTemplate. CAUTION: Depending on your ADITO version, all datasets exceeding this number

will be ignored without notification (e.g., when using the filter bar above a ViewTemplate of type

TreeTable).

● entityField: The name of the EntityField that should be available for loading. Setting this

property to "#ENTITY" means that all fields of the Entity can be loaded and are therefore

available in the EntityField-related properties, e.g., "columns" or "fields". If you actually need

only one single EntityField (e.g., in ViewTemplate "WebContent"), you should select it in

property "entityField" accordingly, because this will restrict the loading process and therefore

result in a better performance.

Below, the function and configuration of all available ViewTemplate types is

explained (in alphabetical order), with the prerequisite that property entityField is

set to "#ENTITY".

11.3.1. ActionList

A ViewTemplate of type "ActionList" is used to show a vertical list of 2 fields (icon, title) of multiple

© 2025 ADITO Software GmbH 247 / 472

datasets, with the title having a hyperlink to execute an Action.

Example:

"Actions", a ViewTemplate of DocumentList_view, being referenced in

DocumentTemplatePreview_view (Context "DocumentTemplate").

Appearance in the client:

In the client, you can, e.g., find it under Marketing > Document Template > Click on any document

template, then you see the ActionList in the PreviewView, under "MAINDOCUMENTS". The lists consists

of the documents' names. If you click on a document, it is downloaded.

Configuration:

"Actions" has the following fields of Document_entity specified: NAME (titleField), DESCRIPTION

(descriptionField; visible via a click on the little "eye" icon), ICON (iconField). The specified Action is

"downloadSingleFileAction".

11.3.2. Actions

Displays an area with buttons, each related to an Action of a specific Entity. The property "fields" is

deprecated and should not be used anymore.

11.3.3. Card

A ViewTemplate of type "Card" displays up to 5 EntityFields of one single dataset, styled like a business

card. All fields have fixed positions: On the left, an image (property "iconField"), on the right, in vertical

order, 4 further, fields (properties "titleField", "subtitleField", "descriptionField", and

"informationField"), of which only the latter one has a label. The Action buttons are shown between

descriptionField and informationField.

Optionally, you can add up to 2 Action buttons by selecting an Action in field "favoriteAction1" or

"favoriteAction2".

This ViewTemplate is commonly used as "Header" of a HeaderFooterLayout (see chapter Layouts).

Example:

"Head", a ViewTemplate of SalesprojectPreview_view (Context "Salesproject").

Appearance in the client:

In the client, you can find it under Sales > Salesproject. Make sure that the "Preview" button (eye icon)

is active (= framed blue). If you click on a project in the table of the Filter View, you see the "Card"

ViewTemplate as "Head" (on top) of the PreviewView: It shows an image (or its placeholder) on the

left, as well as project title, company name, and project code on the right, followed by Action buttons,

© 2025 ADITO Software GmbH 248 / 472

including "New Activity".

In this case, the informationField has been left empty. If set, it appears below the Action buttons,

preceded by a label.

Configuration:

"Head" has 4 fields of Salesproject_entity specified: IMAGE (iconField), PROJECTTITLE (titleField),

CONTACT_ID (subtitleField), and PROJECTCODE (descriptionField). You may, for testing purposes, set

property informationField to STATE, in order to see the effect in the client. Furthermore, property

favoriteAction1 is set to newActivity.

11.3.4. CardTable

Displays multiple datasets, each styled like a business card, in a vertical list. Layout and configuration of

every card is similar to that of template type "Card".

11.3.5. DragAndDrop

A ViewTemplate of type "DragAndDrop" displays an area including a file selection component and the

ability to process files dropped here. As soon as a file is selected or dropped, an Action (property

"dropAction") is executed. Additionally, a description can be displayed in the drop zone

("descriptionField").

Example:

"Dropzone", a ViewTemplate of UniversalFileProcessorDropzone_view (Context

"UniversalFileProcessor").

Appearance in the client:

In the client, you can, e.g., find it under Marketing > Document Template > Click on the blue "plus"

button to create a new document template. You can find on the top of the create form.

Configuration:

"Dropzone" has only one field of UniversalFileProcessor_entity set, namely INFO (descriptionField). As

drop Action, the Action "drop_action" is specified.

11.3.6. DynamicForm

A ViewTemplate of type "DynamicFormViewTemplate" enables you to create dynamic forms. The fields

of the form do not require EntityFields, but they are generated dynamically, based on a JSON field

definition.

Example:

"DynamicForm", a ViewTemplate of WorflowTaskForm_view.

© 2025 ADITO Software GmbH 249 / 472

Appearance in the client:

In the client, you can find it in all Contexts that enable the user to create a WorkflowTask: There is a

Dashlet for WorkflowTasks. In the WorkflowTaskPreview_view, you can show the form (for an active

task), enter data, and finalize the task.

Configuration:

● "formDefinition": Here, you specify an EntityField supplying the JSON string that holds the field

definition (see below). The data source of this EntityField is often a JDitoRecordContainer.

● "formResult": When the form is saved, the results will be set to a second EntityField, to be

specified in property "formResult" (also in JSON format). The data source of this EntityField is

often a JDitoRecordContainer.

● This ViewTemplate can use the following content types:

○ TEXT

○ NUMBER

○ DATE

○ BOOLEAN

The JSON field definition consists of a list of form objects. All form objects have the same data

structure:

Configuration pattern for form object of JSON field definition

{
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "name": { "type": "string" },
 "contentType": { "type": "string" },
 "isReadable": { "type": "boolean" },
 "isWritable": { "type": "boolean" },
 "isRequired": { "type": "boolean" },
 "value": { "type": "string" },
 "possibleItems": { "type": "object" } (key(string) : value(string))
}

Example code for form object of JSON field definition

(...)
{
 "id": "propId",
 "name": "propName",
 "contentType": "TEXT",
 "isReadable": true,

© 2025 ADITO Software GmbH 250 / 472

 "isWritable": true,
 "isRequired": false,
 "possibleItems": {
 "value1": "Value 1",
 "value2": "Value 2"
 }
}
(...)

11.3.7. DynamicMultiDataChart

A ViewTemplate of type "DynamicMultiDataChart" is visually similar to the ViewTemplate

"MultiDataChart". It displays a multi-dimensional chart with simplified configuration. Only the

EntityField and the corresponding AggregateField need to be defined. Client users can create their own

chart by grouping and selecting the y-axis.

Example:

"DynamicMultiDataChartProb", a ViewTemplate of OfferFilter_view.

Appearance in the client:

In the client, you can find it under Sales > Offer > Probability Chart (select it in the dropdown menu of

the button related to this FilterView’s GroupLayout). Probability Chart shows several labeled columns,

e.g., "Checked", "Open", and "Sent".

Configuration:

© 2025 ADITO Software GmbH 251 / 472

11.3.8. DynamicSingleDataChart

A ViewTemplate of type "DynamicSingleDataChart" is visually similar to the ViewTemplate

"SingleDataChart". It displays a single-dimensional chart with simplified configuration. Only the

EntityField and the corresponding AggregateField need to be defined. Client users can create their own

chart by grouping and selecting the y-axis.

Examples:

"PhaseFunnelChart", "PhasePieChart", and "PhasePyramidChart" - all of them are ViewTemplates of

SalesprojectAnalysesPhases_view.

Appearance in the client:

In the client, you can find it under Sales > Sales Dashboard > Dashlet "Opportunity phase" (by default,

this Dashlet is in the lower middle part of the Sales Dashboard.

Via the button in the upper right corner of the Dashlet, you can select between the 3 chart variants:

"Funnel", "Pie chart", and "Pyramid". All of them are structured by the names of the common sales

project phases, e.g. "contact", "qualification", or "offer".

© 2025 ADITO Software GmbH 252 / 472

Configuration:

11.3.9. Favorite

This ViewTemplate enables you to attach "tags" to a selected dataset. This dataset will then appear in

Context "Favorite", which can be accessed via the "star" button in the sidebar of the client. (Exception:

Datasets exclusively tagged by Hashtags do not appear in Context "Favorite".)

Example:

"Favorites", a ViewTemplate of PersonPreview_view.

Appearance in the client:

Provides an area that enables you to attach "tags" to the selected dataset. The "star" toggle button

adds/removes a tag titled "STANDARD". Besides, a text box is available for adding further tags with

arbitrary titles (titles of existing tags appear in a dropdown menu).

Technical background:

ViewTemplate "Favorite" is exclusively to be used in PreviewViews.

Mind the wording:

● "Tag" in the broader sense means a kind of "stamp shape" that can be assigned ("stamped") to

multiple records (datasets). In ADITO, this object cannot exist without at least one assignment

© 2025 ADITO Software GmbH 253 / 472

("stamp"). Internally, this "stamp shape" is called "record group".

● In the narrower sense, "tag" means a single "stamp" created by the "stamp shape" - i.e., a single

assignment of a record group.

Technically, setting a new tag means to insert a new dataset in 2 system tables:

● ASYS_RECORDGROUP:

○ Contains datasets representing "tags" in the broader sense ("stamp shapes", see

disambiguation above).

○ A "record group" can also be seen as "tag class", identified by the tag title. Whenever the

client user adds a tag that has a new title, first a new "record group" is created (only once

per title), before the tag (record group) itself is assigned (= inserted in table

ASYS_RECORD, see below).

○ ID: The unique technical identificator of the record group (although the TITLE is also

unique)

○ USER_ID: ID of the ADITO user who has created the record group.

○ TITLE: title of the tag

○ GROUP_TYPE: There are only 2 group types, namely

■ FAVORITE_GROUP: corresponds to a titled tag, which will make the dataset appear

in Context "Favorite" under a group node having the same title

■ DEFAULT_FAVORITE_GROUP: corresponds to a "default" tag that the client user can

add by clicking the "star" button of the favoriteViewTemplate. The tagged dataset

will appear in Context "Favorite" under a group node having the title "STANDARD".

■ HASHTAG: corresponds to a tag whose title starts with "#". Datasets having these

kind of tags will not appear in Context "Favorite", but they can be used as search

criteria when performing an indexsearch.

● ASYS_RECORD:

○ Contains datasets representing "tags" in the narrower sense ("stamps", see

disambiguation above).

○ Whenever, in the client, you add a tag to a record (dataset), a new dataset in

ASYS_RECORD is created. In other words, a row in this table represents an assignment of

a "record group" (see above) to a record.

○ ID: The technical identificator of the tag assignment.

○ OBJECT_TYPE: The text that will appear in Context "Favorite" in column OBJECT TYPE.

Usually, this will be the name of the Context that holds the dataset that is tagged (e.g.

© 2025 ADITO Software GmbH 254 / 472

"Person") - see paragraph "Configuration" below.

○ ROW_ID: The primary key of the dataset that is tagged, e.g., the OFFERID of a dataset of

Context "Offer".

○ RECORDGROUP_ID: The ID of the record group (i.e., of a dataset of table

ASYS_RECORDGROUP, see above) that is used for the tagging. In other words, this is the

ID corresponding to the "stamp shape" that has been used to produce the "stamp".

As you can see, this data structure allows the client user to use one tag title (record group) for tagging

datasets of various Contexts. For example, you could tag an Activity with the title "urgent" and then use

the same title for tagging datasets of Context "Knowledge". In Context "Favorite", both datasets will

appear under the same grouping node

Configuration:

Make sure that the corresponding Entity’s property "useFavorites" is checked (in order to enable

"private" tags). As for the ViewTemplate itself, you normally have nothing to configure. Simply name

the favoriteViewTemplate "Favorites" and place it at the preferred position in your Context’s

PreviewView. According to AID003 Design Guideline, it should be generally be placed directly under the

PreviewView’s topmost ViewTemplate "Card".

That’s all - because the central properties "objectType" and "rowId" have default values that are fitting

for most use cases (see below).

Exceptionally, you can configure the ViewTemplate’s properties manually, as it was done in some

Contexts of earlier ADITO versions:

● title: can be left empty, as this property is not used by the logic (NOTE: The title is NOT the

drawer caption "TAGS", which appears in the client. Currently, this drawer caption is preset by

the ADITO core and cannot be changed. It is planned to introduce an additional property

"drawerCaption", with which you can optionally overwrite this default value.)

© 2025 ADITO Software GmbH 255 / 472

● objectType: Name of the EntityField holding the "object type" - i.e., the text that will appear in

Context "Favorite" in column OBJECT TYPE. Usually, this will be the name of the Entity’s Context,

e.g. "Person" (in the above example).

Simply name the EntityField "<name of Context>_OBJECTTYPE" (e.g., PERSON_OBJECTTYPE) and

configure it with a tiny valueProcess:

Person_entity.PERSON_OBJECTTYPE.valueProcess

result.string("Person");

In most cases, you can simply leave the default value "#CONTEXTNAME" instead of selecting an

EntityField holding the Context’s name. Internally, "#CONTEXTNAME" will automatically be

replaced by the name of the Context, e.g. "Activity".

● rowId: The identificator of the record (dataset) to be tagged - e.g. "ACTIVITYID" for records of

Context "Activity", or "CONTACTID" for records of the Contexts "Organisation" or "Person".

In most cases, you can simply leave the default value "#UID" instead of the actual primary key

column. Internally, "#UID" will automatically be replaced by the primary key of the table marked

as "UID Table" in the DBRecordContainer’s property "linkInformation".

Some use cases require tags to be set not by the user via the favoritesViewTemplate,

but via an Action or via an automatism. How this can be customized, is explained in

chapter Tags.

11.3.10. Gantt

Displays an editable Gantt chart, with the data source being specific fields of a specific Entity. The

Gantt chart represents a project, which consists of multiple steps. Each step has a start date and an end

date and optionally a predecessor. Steps without predecessor are located at the top level of the chart,

and, depending on property stepColorField, they can be shown in another color than their successors.

In the left part of the Gantt chart you see various steps, which can be in a hierarchy, shown as a tree. To

the right of each step there is a bar representing the duration of the step, shown in a calendar, which is

the headline of the chart.

The hierarchy of the Gantt chart depends on the settings of the properties

● predecessorIdField: This property defines the EntityField that holds the id of the parent step

● isSubstep: This boolean property defines the EntityField that holds the information ("TRUE" or

"FALSE"), whether or not the step is a substep of the step defined as predecessor. If it is a

substep, the corresponding bar is shown integrated inside the bar of the parent step. If it is no

© 2025 ADITO Software GmbH 256 / 472

https://en.wikipedia.org/wiki/Gantt_chart

substep, it is shown below the bar of the parent step.

When the Gantt is in edit mode, the client user can move the bars back and forth, in order to change

the start and end date of the corresponding steps.

In principle, the Gantt ViewTemplate can get its data from various RecordContainers, but in practice,

often a JDitoRecordContainer is used.

Example:

"AllCampaignsOverviewGantt", a ViewTemplate of CampaignPlanning_view.

Appearance in the client:

In the client, you can find it under Marketing > Campaign Planning

Configuration:

This is a relative simple example of a Gantt ViewTemplate. It has the following properties set:

● columns: Here you can specify arbitrary EntityFields to be shown in the left part of the Gantt

chart.

● uidField: the identificator of an activity, which also is used for the parent/child mapping of the

tree

● titleField: the title to be displayed in the bar

● descriptionField: the tooltip of an activity

● beginDateField: the start date of the step

● entDateField: the end date of the step

● predecessorIdField: see above

Note that this Gantt ViewTemplate has no settings for property isSubstep. Therefore, each step is

located one level below its parent step (defined by predecessorField), in a tree structure. Furthermore,

this Gantt ViewTemplate is not editable, i.e., you cannot move its bars.

The various EntityFields of CampaignPlanning_entity are controlled by a JDitoRecordContainer. If you

study its contentProcess and its other processes, you can learn how the values of the EntityFields are

calculated.

11.3.11. Generic

A ViewTemplate of type "Generic" displays one or multiple EntityFields of one single dataset, in a

vertical list. You can select arbitrary EntityFields in property "fields": Open this property’s editor and

add fields using the plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To

© 2025 ADITO Software GmbH 257 / 472

remove a field, select it (checkbox) and press the minus ("-") button. You can change the order of the

fields by selecting them and moving them up or down with the arrow up/down buttons.

Optionally, further properties can be set:

● title: title of the ViewTemplate, as specified in the "Add" dialog. Currently, this property has no

effect.

● editMode: check, if the fields should be editable

● showDrawer: check, if the fields should appear on a drawer (= caption bar on the top of the

fields, with the possibility to hide/show the fields by "folding" them in/out).

● drawerCaption: caption shown in the bar on the top of the drawer

● fixedDrawer: check to prevent the fields to be hidden ("folded in")

● hideLabels: check to hide the labels to the left of each field

● informationField: optional EntityField, which will be shown in edit mode, on the top of the other

fields

● hideEmptyFields: controls whether or not a line with the label (title) of an EntityField is still to

be displayed, even if the EntityField has no value (= if it is "empty").

This ViewTemplate is suitable for being used as "Footer" of a HeaderFooterLayout (see chapter

Layouts).

Example:

"Info", a ViewTemplate of OrganisationPreview_view.

Appearance in the client:

In the client, you can find it under Contact Management > Company. Make sure that the "Preview"

button (eye icon) is active (= framed blue). If you click on a company in the table of the Filter View, you

see the Generic template "Info" in the lower part of the Preview View: It shows 4 labeled fields:

Language, status, type, and information.

Configuration:

"Info" has 4 fields of Organisation_entity specified in property "fields": LANGUAGE, STATUS, TYPE, and

INFO. Furthermore, the "showDrawer" property flag is checked.

11.3.12. GenericMultiple

The ViewTemplate "GenericMultiple" is used to show and enter data of the "n" part in a 1:n data

relation: It displays one or multiple EntityFields of n datasets, ordered horizontally (like "columns"). Via

a "Plus" button, further datasets can be created, in which the values of the specified fields can be set.

© 2025 ADITO Software GmbH 258 / 472

It is recommended to assign GenericMultiple ViewTemplates only to Edit Views.

Example:

"MultipleEdit", a ViewTemplate of CommunicationMultiEdit_view (Context "Communication"). This

ViewTemplate is referenced by OrganisationEdit_view in Context Organisation.

Appearance in the client:

In the client, you can find it under Contact Management > Company, if you add a new company dataset

(via the blue "Plus" button). "MultipleEdit" is shown in the line labeled "Communication" and offers the

possibility to select a medium (e.g., email) and enter this medium’s value (e.g., "info@adito.de"). By

clicking on the "plus" button to the right of the label, you can add further media data - hence the name

"Generic Multiple".

Configuration:

"MultipleEdit" has 2 fields of Communication_entity specified in property "columns": MEDIUM_ID and

ADDR. That’s all.

The label of a GenericMultiple ViewTemplate can be specified in its property "title". If not set, property

"title" of the Entity is used.

Step-by-step Example:

Here is another example how a GenericMultiple ViewTemplate can be used for Actions that enable to

add multiple datasets.

The example task: There should be an Action that enables us to add multiple persons (Person datasets)

to a Campaign. If the Action is executed, a GenericMultiple ViewTemplate is opened, in which the

persons can be selected.

For solving the task, you need 2 further Contexts and Entities: One Entity for processing the data

(person are added as participants) and the second for presenting the GenericMultiple ViewTemplate

for the persons.

The Entity controlling the GenericMultiple ViewTemplate is configured as follows:

● EntityFields; UID, CONTACT_ID

● Consumer: Persons → Entity Person, Provider: Contacts

● RecordContainer: jDito

○ recordFieldMappings: Add the field UID

○ jDitoRecordAlias: Data_alias

© 2025 ADITO Software GmbH 259 / 472

mailto:info@adito.de

○ contentProcess (to avoid errors when saving):

if(vars.exists("$local.idvalues") && vars.get("$local.idvalues"))
{
 result.object([vars.get("$local.idvalues")]);
}

○ onInsert: Write any string in the result set. (This process must not be empty, otherwise an

error will occur.)

● EntityField CONTACT_ID:

○ Consumer: Persons

○ displayValueProcess

result.string(ContactUtils.getTitleByPersonId(vars.get(„$field.CONTACT_ID“)));

● View for GenericMultiple:

○ Create a View and assign a GenericMultiple ViewTemplate to it. Select EntityField

CONTACT_ID for property "columns".

The Entity responsible for saving is configured as follows:

● Consumer: Participants

○ state: EDITABLE

● Parameter: CampaignId_param (includes the ID of the Campaign, from which the Action was

executed)

● RecordContainer: datalessRecordContainer

○ alias: Data_alias

● Action: addToCampaign

○ onActionProcess:

var participants = vars.get("$field.Participants.insertedRows");

var campaignId = vars.get("$param.CampaignId_param");

var inserts = [];

var table = "CAMPAIGNPARTICIPANT";

var cols = [

 "CAMPAIGNPARTICIPANTID",

 "CONTACT_ID",

 "CAMPAIGN_ID",

 "USER_NEW",

 "DATE_NEW"

];

participants.forEach(function(oneParticipant)

{

 let contactId = oneParticipant["CONTACT_ID"];

© 2025 ADITO Software GmbH 260 / 472

 inserts.push([table, cols, null, [util.getNewUUID(), contactId, campaignId, vars.get("$sys.user"), vars.get(

"$sys.date")]]);

});

db.inserts(inserts);

● View for showing GenericMultiple:

Add the GenericMultiple View, which is referenced by the Consumer "Participants", to the View

via "Add reference to existing View".

Example with one single Entity:

Unlike in the above example, it is also possible to implement a GenericMultiple ViewTemplate with one

single Entity. In the xRM project, you find an example in Context

VisitRecommendationNewVisitplanEntry. Here, the Entity has 2 RecordContainers and a Consumer

VisitRecWithNoTimes connected to Provider VisitTimes of the same entity.

11.3.13. IndexSearch

A ViewTemplate of type "IndexSearch" displays a field for entering search terms to be executed by the

ADITO index search.

Example:

"IndexSearchTemplate", a ViewTemplate of IndexSearch_view (Context "IndexSearchContext").

Appearance in the client:

In the client, you can reach it by clicking on the search button in the Global Bar.

Configuration:

"IndexSearchTemplate" has its property "entityField" set to INDEXSEARCHFIELD.

11.3.14. Lookup

Enables you to integrate lookup functionality into a View, meaning the option to select a specific

dataset of another Entity via its LookupView (= the View selected in property "lookupView" in the

corresponding Context).

The UID of the selected dataset will then be assigned as value of the EntityField specified in property

"consumerField". This EntityField must have a Consumer that is connected with a Provider of the other

Entity that holds the datasets from which the user wants to select.

Example:

Salesproject > SalesprojectPhase_view > Phases

Here, a LookupView is used to show a StepperViewTemplate in the "Detail" area of the MainView.

© 2025 ADITO Software GmbH 261 / 472

Appearance in the client:

The appearance is defined by the LookupView of the Provider Entity. in the above example, it’s the

SalesprojectPhaseStep_view, which includes a ViewTemplate of type "Stepper".

Configuration:

● "consumerField": The EntityField to be used for storing the value of the selected dataset.

● "consumerPresentationMode": Mode to be used for presenting the LookupView provided via

the Consumer.

○ POPUP (default): The LookupView appears as separate (popup) window.

○ EMBEDDED: The LookupView appears embedded, i.e., it is integrated into the actual View

(no need for clicking to open it).

11.3.15. Map

Displays a map, with zoom controls.

The map is provided by a datasource, usually called "map server" (or "tile server"). On this map, the

following elements can be added (and, if required, be displayed):

● Markers: These are points (positions) on the map, given by geodetic coordinates (latitude und

longitude, short form: "LON/LAT"). Example: Positions of companies, identified by their

addresses.

● Radius around point. Example: Action "Radius Search" in PreviewView of Context "Company"

(Organisation_entity). In this example, according to the entered radius, a circle around the

company’s standard address is added to the map, in order to calculate the locations of all

companies inside this range. By clicking the button you can show these companies in the

FilterView - but the circle itself remains invisible, unless you switch to ViewTemplate "Map".

● Polylines and polygons: These are colored drawings in form of one or multiple connected lines,

in order to, e.g., mark/display the boarders of a distribution area - optionally augmented by

interactive functionality.

Example:

"OrganisationMap", a ViewTemplate of OrganisationFilter_view.

Appearance in the client:

In the client, you can find it under Contact Management > Company > FilterView > view selection

button > "Map". It shows the locations of all companies, or of the actual filter result (if a filter is set),

respectively. The maximum of locations to be shown can be configured (see below). Usually, you first

© 2025 ADITO Software GmbH 262 / 472

define the companies you want to see in the map, by filtering them in ViewTemplate "Table", and then

switch to ViewTemplate "Map".

Configuration:

Prerequisite:

The geo coordinates of the companies' standard address must be provided via Organisation_entity’s

EntityFields STANDARD_LON (longitude) and STANDARD_LAT (latitude). As these reference the

corresponding EntityFields "LON" and "LAT" of Address_entity, those must be given in the

corresponding database table ADDRESS' columns "LON" and "LAT". Whenever you create a new

ADDRESS dataset in the client, the xRM logic automatically calculates and inserts the values of the

"LON" and "LAT" fields - see property "onDBInsert" of Address_entity’s RecordContainer "db". In

particular, consider the code

new LocationFinder().getGeoLocation(address)

which makes use of functionality provided by the library Location_lib (in project folder process >

libraries), on the basis of the Nominatim API.

Note that this automatism is only active, if property "nominatim.enabled" is set to true and the

nominatim server is configured (see "Projects" window: preferences > PREFERENCES_PROJECT >

Custom > PREFERENCES_PROJECT > nominatim.xxx). Otherwise the LON/LAT values will not be

calculated automatically, and the corresponding address cannot be shown on a map.

If an address dataset has not been created via the client (but, e.g., imported from another system

without automatic setting of LON/LAT values), you can subsequently insert all missing geo coordinates

by executing the server process "Set missing address locations" in the ADITO Manager (internal name:

setMissingAddressLocations_serverProcess, see project folder process > executables).

If you want to set/update the geo coordinates of all datasets (including overwriting all possibly existing

LON/LAT values), execute the server process "Set all address locations" (internal name:

updateAllAddressLocations_serverProcess).

The configuration of the map server is set via several properties, defining the source of the geo

coordinates of the companies' addresses, as well as further features. All properties are well-

documented via the property descriptions (at the bottom of the "Properties" window), so you can learn

the functionality by studying this example.

In particular,

● property "configField" holds the EntityField providing the configuration of the map data source

(named "map server" or "tile server"). In this case, this is Organisation_entity’s EntityField

MAP_CONFIG, whose value is generated by its valueProcess, using functions of xRM’s library

MapViewTemplate_lib (see process > libraries). You may inspect the configuration’s (JSON)

format and content by simply including a logging (e.g., logging.log("MAP_CONFIG: " +

© 2025 ADITO Software GmbH 263 / 472

res); above the last (result) code line of the valueProcess and then watching the server

output, when you zoom in and out in the map (in the client). Find more information in the

following sub-chapters.

● properties "autoGeneratedMarkerLatitudeField" and "autoGeneratedMarkerLongitudeField"

provide the geo coordinates of the markers (in this case: of the companies' locations) to be

displayed in the map. By default, the markers are displayed by a default icon, hard-coded in the

ADITO platform’s logic.

● property "maxDBRow" allows you to set a limit for the number of datasets (here: company

addresses) to be displayed in the map.

● If you want to customize the "pin"-type marker icon or define separate icons for every marker,

you can specify an EntityField providing the icon’s image data, which can have 2 formats:

○ Usually, you choose a "NEON" or a "VAADIN" icon from the list of available icons, as

included in the combo box of every property named "icon". The image data is then

defined by simply providing the name of this icon, as a String - e.g., "VAADIN:FACTORY".

The icon will still be displayed inside a "pin".

○ Alternatively, you can provide the image data in base64 String format. This allows you to

use arbitrary icon images (not only a "pin") - but note that, in this case, property

autoGeneratedMarkerColorField will have no effect.

● property "autoGeneratedMarkerColorField" allows you to specify an EntityField providing the

color for the marker icon (if you want another color than the default color). The color must be

provided as String including an ADITO color code - simply refer to the list items, as included in

the combo box of every property named "color", e.g., "priority-high-color". If this value is

provided by the EntityField’s valueProcess instead, you may use the corresponding JDito color

constants, such as neon.PRIORITY_HIGH_COLOR.

● property "geoJsonFeatureCollectionField" optionally holds an EntityField to provide an array of

GeoJSON FeatureCollections, in order to add additional elements to the map. Find more

information in the property description (bottom of property sheet) and on https://geojson.org/.

Web sites like https://geojson.io/ support you to design the GeoJSON FeatureCollection

according to your requirements. Furthermore, web sites like https://github.com/isellsoap/

deutschlandGeoJSON offer prepared GeoJSON FeatureCollections for, e.g., displaying borders of

specific countries, states, regions, or districts.

In our example (ViewTemplate "OrganisationMap"), this property

"geoJsonFeatureCollectionField" holds Organisation_entity’s EntityField

MAP_FEATURE_COLLECTION, whose valueProcess reads the value from Parameter

MapViewAdditionalFeatures_param. This Parameter is set, e.g., when you execute Action

"Radius Search" in the PreviewView of Context "Company" (Organisation_entity). Internally, this

Action is named openAroundLocation, and its valueProcess opens the View

© 2025 ADITO Software GmbH 264 / 472

https://geojson.org/
https://geojson.io/
https://github.com/isellsoap/deutschlandGeoJSON
https://github.com/isellsoap/deutschlandGeoJSON

AroundOrganisationLocation_view, belonging to Context "AroundLocation". If you select

AroundLocation_entity’s Action "Open" in the Designer, you will find an example of how

Parameter MapViewAdditionalFeatures_param is set - and thus, how a FeatureCollection can be

created, as a GeoJSON String:

Example of creating a GeoJSON FeatureCollection (excerpt of process

AroundLocation_entity.Open.onActionProcess)

var homeFeatureCollection = {

 "type": "FeatureCollection",

 "features": [

 {

 "type": "Feature",

 "properties": {

 "ADITO-radius": vars.get("$field.SearchRadius") * 1000,

 "ADITO-color": neon.PRIORITY_HIGH_COLOR,

 "ADITO-icon": "VAADIN:MAP_MARKER",

 "ADITO-targetContext": "Organisation",

 "ADITO-targetId": vars.get("$param.OriginUid_param"),

 "ADITO-label": ContextUtils.loadContentTitle("Organisation_entity", vars.get("$param.OriginUid_param"))

 },

 "geometry": {

 "type": "Point",

 "coordinates": [

 parseFloat(vars.get("$param.LocationLon_param"), 10),

 parseFloat(vars.get("$param.LocationLat_param"), 10)

]

 }

 }

]

};

This ViewTemplate requires a map server to be referenced. As the "Map"

ViewTemplate is based on the "Leaflet" library, ADITO supports, in principle, any

map servers that use Leaflet’s "Tile Layers" as base. In particular, ADITO xRM’s

Organisation_entity (see above) provides a simplified support for MapTiler. Find

more details in the following chapter.

11.3.15.1. MapTiler

The easiest way to configure a map data source is to use MapTiler:

● Obtain a license key for MapTiler (e.g., via https://www.maptiler.com/cloud/plans)

● Enter the license key (i.e., a String like "rf1XkCIjY4iUR4sACNjT") in the system configuration’s

property geo.maptiler.apikey:

system > default > CONFIGURATION > Custom >CONFIGURATION > geo.maptiler.apikey

● Save

● Re-start the ADITO server.

● Test it by opening the Company Context’s ViewTemplate "Map" (internal name:

© 2025 ADITO Software GmbH 265 / 472

https://www.maptiler.com/cloud/plans

"OrganisationMap", included in OrganisationFilter_view, see description above).

● If you want to use these functionality in other Context’s, simply study the properties of

ViewTemplate "OrganisationMap" and the corresponding EntityFields - and then transfer the

configuration and the included logic accordingly.

11.3.15.2. General information on the required structure of map data sources

The ADITO ViewTemplate "Map" needs a data source (server) that provides basic map data to display

parts of the world. The world map is structured into several parts, called "tiles". These tiles are to be

provided by the server.

Find more information about tiles on https://wiki.openstreetmap.org/wiki/Tiles

The "Map" ViewTemplate is based on the "Leaflet" library (find further information and documentation

on https://leafletjs.com/). Thus, this ViewTemplate is not restricted to using MapTiler (see previous

chapter), but, in principle, it supports any map data source that uses Leaflet’s "Tile Layers" as base.

11.3.15.2.1. Requirements

The server that provides the map layer (i.e., the map elements, such as land masses, sea, rivers, streets,

etc.) must fulfill the following requirements:

● Providing raster tiles (as images) (vector tiles are not supported by Leaflet)

● Using the EPSG3857 coordinate system

● Access via an URL in "xyz"-type format (xy-coordinates of the position, plus zoom level).

● Using either no authentication at all, or authentication via the URL, by providing a license

reference such as an appid, apikey, appcode, etc.

11.3.15.2.2. Property "configField"

The "Map" ViewTemplate’s core property for referencing the map server is property "configField".

Here, you reference an EntityField providing all information required for the ADITO web server to load

map data from an (mostly: external) map server (such as MapTiler). The value of this EntityField must

have JSON format. The JSON String has several parts, which are explained in the property description

(in the "Properties" window, click on "configField" and read the description at the bottom of the

property sheet).

Here is an example:

Example of map server configuration, as provided via property "configField"

{

© 2025 ADITO Software GmbH 266 / 472

https://wiki.openstreetmap.org/wiki/Tiles
https://leafletjs.com/

"startingCenterPosition":{"lat":50.989791,"lon":4.772377,"autoLocate":true,"zoomLevel":5},

"boundaries":{"minZoom":1,"maxZoom":20},

"tiles":[{"title":"Streetmap",

 "url":"https://api.maptiler.com/maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCIjY4iUR4sACNjT",

 "attribution":"© MapTiler

 © OpenStreetMap contributors"

 }]

}

11.3.15.2.3. URL

The core element of this JSON String is "url", e.g.,

https://api.maptiler.com/maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCI

jY4iUR4sACNjT

As you can see, the URL given in the JSON String can have multiple parts. The main parts are

● a reference of the map server, i.e., a "web page" - e.g.,

https://api.maptiler.com/maps/streets/256/

● placeholders for the geo coordinates ({x} and {y}) and for the zoom factor ({z})

● an extension specyfing the image format, e.g. .png

● a suffix, attached by ?, specifying the license key, e.g., ?key=rf1XkCIjY4iUR4sACNjT

Placeholders

You can find detailed information in the "Leaflet" documentation, available on https://leafletjs.com/

Here is an extract covering the placeholder topic:

{s} means one of the available subdomains (used sequentially to help
with browser parallel requests per domain limitation; subdomain
values are specified in options; a, b or c by default, can be
omitted), {z} — zoom level, {x} and {y} — tile coordinates. {r} can
be used to add "@2x" to the URL to load retina tiles.

("retina tiles" are high-resolution tiles)

This means, you are not limited to the placeholders given in the above example, but the following

placeholders can be used:

Table 4. URL placeholders

© 2025 ADITO Software GmbH 267 / 472

https://api.maptiler.com/maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCIjY4iUR4sACNjT
https://api.maptiler.com/maps/streets/256/{z}/{x}/{y}.png?key=rf1XkCIjY4iUR4sACNjT
https://api.maptiler.com/maps/streets/256/
https://leafletjs.com/

Placeholder Meaning

{s} one of the available subdomains (used

sequentially to help with browser parallel

requests per domain limitation, one of the

following values: a, b or c

{z} z-axis, which is the zoom level

{x} x-axis of the coordinate system for specifying the

tile

{y} y-axis of the coordinate system for specifying the

tile

{r} adds an option for high-DPI-tiles

Authentication

Most tile server vendors require you to authenticate via an apikey (or similar) and to customize the tiles

by passing further options via the URL.

Authentication cannot be done with oAuth since the images are pure -HTML-tags. Instead, URL

parameters must be used to specify, e.g., an appid, apikey, appcode, or something similiar.

As the URL can be viewed within the browser, any logged-in user can view the map

source URL, including the key.

Example

Here is a more generic example of a possible URL specification:

https://www.{s}mymapsupplier.org/{x}/{y}/{z}.png?apikey=MYAPIKEY&lang

=DE&style=flat

11.3.15.2.4. Server flexibility

It is possible to change the configuration during run-time. The next time the ViewTemplate is opened or

reloaded, the new configuration will be applied.

The configuration of the map sever can be changed by modifying the JSON String provided by the

© 2025 ADITO Software GmbH 268 / 472

https://www.{s}mymapsupplier.org/{x}/{y}/{z}.png?apikey=MYAPIKEY&lang=DE&style=flat
https://www.{s}mymapsupplier.org/{x}/{y}/{z}.png?apikey=MYAPIKEY&lang=DE&style=flat

EntityField that is specified in the "Map" ViewTemplate’s property "configField" (URL, title, copyright

attribution, optional elements like min and max zoom - see paragraph "URL" above).

Thus, in principle, it is possible to enable the client user to use multiple map servers in order to switch

between the different types of tiles, e.g., a satellite map and a street map.

Note that the place and way of configuring the tile server may change in future

ADITO versions.

11.3.16. SingleDataChart

11.3.16.1. Overview

Displays single-dimensional data in a chart, with the data source being specific fields of a specific Entity.

In property “chartType”, you can select from a list of various chart types, e.g., “DONUT”.

Example:

"SingleDataChart", a ViewTemplate of CampaignCostChart_view.

Appearance in the client:

In the client, you can find it under Marketing > Campaign, in the CampaignMain_view, Tab "Overview"

(CampaignOverview_view), right below the Gantt chart. It shows, as a donut, the fix costs and the

variable costs.

Configuration:

"SingleDataChart" has several fields of CampaignCostChart_entity specified in different properties

● "xAxis": X

● "yAxis": Y

● "parentField": PARENT

Besides, property "entityField" is set to #ENTITY, and property "chartType" is set to DONUT.

11.3.16.2. Advanced explanations

SingleDataChart and MultiDataChart work on the same principles, but differ in the way that they offer

different chart types and that the MultiDataChart has one more property than the SingleDataChart.

Both are typically loading their data by a JDitoRecordContainer (see chapter "JDitoRecordContainer").

© 2025 ADITO Software GmbH 269 / 472

Figure 32. SingleDataChart ViewTemplate

The SingleDataChart is used to display one dimensional data. This means there may only be one y axis

value for any given x axis value. Typical examples are pie or funnel charts, where each segment

represents one specific value.

11.3.16.2.1. Properties

● title

The title

● devices

Select on which device types this ViewTemplate should be available.

● type

Predetermined by the Designer. Shows the type of the ViewTemplate.

● entityField

The EntityField that should be used to gather the data for the chart. Usually, #Entity is used.

● informationField

The EntityField that contains the label of the chart data

● xAxis

The EntityField holding the value that determines the segment of the chart. For example, a slice

of the pie chart. Thus, e.g., a value of 1 would determine the first slice, 2 the second slice, etc.

● yAxis

The EntityField that holds the actual value of a segment, e.g., the number of customers of a

certain type.

● parentField

This is an EntityField that may hold an ID that is used to enable drill downs. With this you can

© 2025 ADITO Software GmbH 270 / 472

nest different data within a segment of the chart.

For example, if you have a pie chart showing the number of customers of a certain type, you

could nest another pie chart within the segments, showing how many persons within a type

have opted out of your newsletter emails.

● colorField

Here you choose an EntityField that holds color information. The color must be one of the preset

colors available through the color constants of the neon. JDito module. Typically, the color-

holding EntityField is filled by a valueProcess. The color actually visible in the client depends on

the Theme (see chapter Themes).

Example of a valueProcess of a color-holding EntityField

result.string(neon.USER_COLOR_1);

● chartType

Here you select the type of chart. The SingleDataChart offers the following:

○ Donut

○ Funnel

○ Pie

○ Pyramid

11.3.16.2.2. Example

As an example, we create a pie chart of the distribution of contacts by type with drill down to gender

distribution within the person contacts.

For this example we create a test Context and add one View. To the View we add a ViewTemplate of

type SingleDataChart. Set its property "chartType" to "PIE". Then we create a test Entity and add to it a

JDitoRecordContainer and five EntityFields. These five fields are named UID, X, Y, INFORMATION and

PARENTID. Now we configure the JDitoRecordContainer, set the jDitoRecordAlias property to your data

alias, and configure the recordFieldMappings property to be in the following order:

● UID.value

● X.value

● Y.value

● INFORMATION.value

● PARENTID.value

© 2025 ADITO Software GmbH 271 / 472

Then we set the contentProcess property as follows:

contentProcess

// First step: Gathering all required data
var countOrg = new SqlBuilder().selectCount()
 .from("CONTACT")
 .where("CONTACT.PERSON_ID is null")
 .cell();

var countPrivate = new SqlBuilder().selectCount()
 .from("CONTACT")
 .where("CONTACT.PERSON_ID is not null and
CONTACT.ORGANISATION_ID = '0'")
 .cell();

var countFunction = new SqlBuilder().selectCount()
 .from("CONTACT")
 .where("CONTACT.PERSON_ID is not null and
CONTACT.ORGANISATION_ID is not null")
 .cell();

// gathering the data for the drill downs
var genderDistPrivate = newSelect("GENDER, count(*)")
 .from("PERSON")
 .join("CONTACT", "PERSON.PERSONID =
CONTACT.PERSON_ID")
 .where("CONTACT.ORGANISATION_ID = '0'")
 .groupBy("GENDER")
 .table();

var genderDistFunction = newSelect("GENDER, count(*)")
 .from("PERSON")
 .join("CONTACT", "PERSON.PERSONID =
CONTACT.PERSON_ID")
 .where("CONTACT.ORGANISATION_ID is not
null and CONTACT.PERSON_ID is not null")
 .groupBy("GENDER")
 .table();

// Second step: Building our graph data
// Order is: UID, X, Y, INFORMATION, PARENTID
// First we create the array that will contain all datasets
var ret = [];

// Then we add our main graph data
ret.push([util.getNewUUID(), "ORG", countOrg, "Organisations",
null]);
ret.push([util.getNewUUID(), "PRIVATE", countPrivate, "

© 2025 ADITO Software GmbH 272 / 472

Organisations", null]);
ret.push([util.getNewUUID(), "FUNCTION", countFunction,
"Organisations", null]);

// Now we create two drill downs
for(let i = 0; i < genderDistPrivate.length; i++)
 ret.push([
 util.getNewUUID()
 , genderDistPrivate[i][0]
 , genderDistPrivate[i][1]
 , KeywordUtils.getViewValue($KeywordRegistry.personGender(),
genderDistPrivate[i][0])
 , ret[1][0] //getting the parent id for the private slice
]);

for(let i = 0; i < genderDistFunction.length; i++)
 ret.push([
 util.getNewUUID()
 , genderDistFunction[i][0]
 , genderDistFunction[i][1]
 , KeywordUtils.getViewValue($KeywordRegistry.personGender(),
genderDistFunction[i][0])
 , ret[2][0] //getting the parent id for the function slice
]);

// Finally, we return our data
result.object(ret);

You will notice in the code that the entries for the main graph have null as their parent id. That is

because those do not have a parent and are the data that is presented first. When creating the datasets

for our drill downs, we use the ID of the respective slice to group the drill down data below them.

Make sure that potential parents are added to the result before any of their

children.

After that, we are done with the Entity. Now we head back to our Context and set our new Entity to be

used for this Context, and we set our only View for all the standard Views. After that’s done, we open

our View again and configure the properties of the ViewTemplate. Finally, we add the new Context in

application > ____SYSTEM_APPLICATION_NEON, so we can open it in the client.

If we open this Context, we should get the following chart:

© 2025 ADITO Software GmbH 273 / 472

Figure 33. Main graph

After a click on the "FUNCTION" slice, we should get the gender distribution:

© 2025 ADITO Software GmbH 274 / 472

Figure 34. Drill down

You’ll notice that we have drill downs for "FUNCTION" and "PRIVATE", but not for "ORG". Now, try to do

this by yourself: Add a drilldown to "ORG" that breaks down the organisation by their legal form.

11.3.17. MultiDataChart

11.3.17.1. Overview

Displays multi-dimensional data in a chart, with the data source being specific fields of a specific Entity.

In property “chartType”, you can select from a list of various chart types, e.g., “COLUMN”.

Example:

"MultiDataChart", a ViewTemplate of CampaignParticipantChart_view.

Appearance in the client:

In the client, you can find it under Marketing > Campaign, in the CampaignMain_view, Tab "Overview"

© 2025 ADITO Software GmbH 275 / 472

(CampaignOverview_view), left below the Gantt chart. It shows, as bars, the number of current

participants and maximal participants (1st dimension), separately for added participants and

participants that have been contacted by telephone (2nd dimension).

Configuration:

"MultiDataChart" has several fields of CampaignParticipantChart_entity specified in different

properties

● "xAxis": X

● "yAxis": Y

● "categoryField": CATEGORY

Besides, property "entityField" is set to #ENTITY, and property "chartType" is set to BAR.

11.3.17.2. Advanced explanations

SingleDataChart and MultiDataChart work on the same principles, but differ in the way that they offer

different chart types and that the MultiDataChart has one more property than the SingleDataChart.

Both are typically loading their data via a JDitoRecordContainer (see chapter "JDitoRecordContainer").

Figure 35. ViewTemplate within a View

The MultiDataCharts are used to present data on a XY graph. It is possible to display more than one Y

value fo each x value, hence the name of MultiDataChart. Additionally you are able to implement drill

downs.

11.3.17.2.1. Properties

● title

© 2025 ADITO Software GmbH 276 / 472

The title

● devices

Select on which device types this ViewTemplate should be available.

● type

Predetermined by the Designer. Shows the type of the ViewTemplate.

● entityField

The EntityField which should be used to gather the data for the chart. Usually, #ENTITY is used.

● informationField

The EntityField that contains the label of the chart data

● xAxis

The EntityField holding the value used for the x axis. For example, the number of days it took to

complete a task.

● yAxis

The EntityField that holds the corresponding value for a value on the X axis.

● parentField

This is an EntityField that may hold an id, which is used to created drilldowns. With this you can

nest different data within a segment of the chart.

For example, if you use a line chart to implement a burndown chart, you might implement a

drilldown to present the burn down of each day.

● categoryField

A EntityField that has to hold a category value. This allows you to define more than one value on

the y axis for any given value on the x axis. E.g. if you have the number of days on the x axis, you

could display multiple y values if they have a different category. This could be used to create a

burndown chart, where one category would be used for the planned value and the other

category would be used for the real value.

● colorField

Here you choose an EntityField that holds color information. The color must be one of the preset

colors available through the color constants of the neon. JDito module. Typically, the color-

holding EntityField is filled by a valueProcess. The color actually visible in the client depends on

the Theme (see chapter Themes).

Example of a valueProcess of a color-holding EntityField

result.string(neon.USER_COLOR_1);

● chartType

Here you select the type of chart. The single data chart offers the following:

© 2025 ADITO Software GmbH 277 / 472

○ Area

○ Bar

○ Column

○ Spline

○ Line

11.3.17.2.2. Example

As an example, we want to create a column chart showing all campaign steps and their costs (fixed

costs and the costs of each step).

We start similarly to the SingleDataChart (see separate chapter further below in this manual). We build

a new test Context and Entity, give it a JDitoRecordContainer, add the necessary EntityFields UID, X, Y,

CATEGORY, and INFORMATION, and map them in this order within the RecordContainer. Then we create

a new View for our Context containing a ViewTemplate of type MultiDataChart. Set its property

"chartType" to "COLUMN". After that, we insert the contentProcess of the RecordContainer. (Other

than the example of the SingleDataChart, PARENTID will not be used, because we don’t implement a

drill down. Implementing a drill down works the same way as in the SingleDataChart example. For a

more detailed description of the steps, please look at the SingleDataChart chapter further below in this

manual.)

contentProcess

// We use an ID of a campaign of the xRM project's demo data.
// Instead, you could read a Parameter that is passed by a Consumer.
// But for simplicity's sake, we use a fixed id for now.
// If this ID does is no longer present, just use another ID
// of a campaign of the demo data.

var campaignId = "680de39f-7f1c-4dca-8c67-9c16c3395c3f";

// initialize required variables
var costData = [];
var ret = [];
var catKeyword = $KeywordRegistry.campaignStepCostCategory();

// gathering data from CAMPAIGNCOST and CAMPAIGNSTEP
costData = newSelect("NAME, CATEGORY, NET, SORTING")
 .from("CAMPAIGNCOST")
 .leftJoin("CAMPAIGNSTEP on CAMPAIGNSTEP.CAMPAIGNSTEPID =
CAMPAIGNCOST.CAMPAIGNSTEP_ID")
 .where("CAMPAIGNCOST.CAMPAIGN_ID", campaignId)
 .orderBy("CAMPAIGNSTEP_ID desc, SORTING")
 .table();

© 2025 ADITO Software GmbH 278 / 472

// calculate/get display values for our data and
// adding it to our result set
costData.forEach(function([pStepId, pCategory, pNet, pSort])
{
 // if there's no step id, the costs are the
 // fixed costs of the campaign
 if(!pStepId)
 {
 // Set "FixedCosts" as pseudo step id
 pStepId = "FixedCosts";
 }
 else
 // build the step id from the SORTING and NAME columns
otherwise
 pStepId = pSort + ". " + pStepId;

 // getting the display value for the cost categories
 // from the keyword
 pCategory = KeywordUtils.getViewValue(catKeyword, pCategory);

 // Add the data to the final result in this order:
 // UID, X, Y, CATEGORY, INFORMATION
 ret.push([util.getNewUUID(), pStepId, parseFloat(pNet),
pCategory, pCategory]);
});

// returning the data
result.object(ret);

This should be the result, after adding the Context to your client’s Global Menu (application >

_SYSTEM_APPLICATION_NEON):

© 2025 ADITO Software GmbH 279 / 472

Figure 36. Resulting chart

11.3.18. MultiEditTable

A ViewTemplate of MultiEditTable type displays one or multiple datasets as editable table. Rows are

datasets, columns are EntityFields. You can select arbitrary EntityFields in property "columns". Only

those EntityFields defined in property "editableColumns" are displayed as editable components.

The Properties viewRendererMapping and editRendererMapping enable you to set one or multiple

Renderers, in order to control the way an EntityField is displayed or edited. Please refer to chapter

"Renderers" for further explanations.

Additional Information:

● Paging is not possible for this type of ViewTemplate.

● If you have changed an EntityField’s value but not saved it yet, the field is displayed with an

orange frame.

● Currently, the table edit functionality is supported for EntityFields of the following contentTypes:

○ UNKNOWN

○ NONE

○ TEXT

○ NUMBER

○ TELEPHONE

○ EMAIL

○ LINK

© 2025 ADITO Software GmbH 280 / 472

○ PASSWORD

○ DATE

○ FILESIZE

○ BOOLEAN

○ FILTER_TREE

● EntityFields of the following contentTypes are not supported yet:

○ SIGNATURE

○ LONG_TEXT

○ HTML

○ IMAGE

○ FILE

Example:

"MultiEditTable", a ViewTemplate of ProductpriceFilter_view in Context "Productprice".

Appearance in the client and configuration:

In the Global Menu of the client, you can access the above example under Sales > Prices. As this

Context’s FilterView shows a table as default, you first need to switch to the MultiEditTable, using the

view selection button (upper right corner of the FilterView). This ViewTemplate displays datasets

representing

● products: Selectable via a combo box, because the corresponding EntityField PRODUCT_ID has a

Consumer (no Renderer required).

● prices: The corresponding EntityField PRICES can be edited via 4 additional buttons (see above),

because the ViewTemplate’s property editRendererMapping specifies a Renderer of type

NUMBERFIELD for EntityField PRICES.

● validity (from/to): Selectable via a date picker, because the corresponding EntityFields

VALID_FROM and VALID_TO are of contentType DATE (no Renderer required).

● price list: Displayed with a background color, because the ViewTemplate’s property

viewRendererMapping specifies a Renderer of type BADGE for EntityField PRICELIST. In this case,

the background color is dynamically determined via the code included in the EntityField

PRICELIST’s property "colorProcess". For testing purposes, you could also define a fixed color

value by selecting a value for property "color" and deleting the value of property "colorProcess"

(choosing "Restore Default Value" from the context menu).

© 2025 ADITO Software GmbH 281 / 472

11.3.19. Picture

Displays a picture, whose source data is loaded from an EntityField (property “pictureField”). Property

pictureClickAction enables you to select an Action to be executed when the user clicks on the picture.

11.3.20. Report

A ViewTemplate of type "Report" displays a JasperReport. You define one EntityField as your report

data source. The appearance can only be edited in your report design application.

Example:

"Report", a ViewTemplate of OfferReport_view in Context "Offer". This ViewTemplate displays the data

of a selected offer.

Appearance in the client:

In the Global Menu of the client, you can access the above example under Sales > Offer. After selecting

a dataset in OfferFilter_view, click on the three-dotted button in OfferPreview_view and select the

Action showOffer, labeled "Show offer". This will display the report for the selected data in a separate

window, using the following code (via the Action’s onActionProcess):

OfferUtils.openOfferReport(vars.get("$field.OFFERID"));

This method, in turn, will execute method neon.openContextWithRecipe:

 var recipe = neonFilter.createEntityRecordsRecipeBuilder().uidsIncludelist([pOfferID]).toString();

 neon.openContextWithRecipe("Offer", "OfferReport_view", recipe, neon.OPERATINGSTATE_VIEW, null, true);

Furthermore, in this example, you can optionally click on the button representing the Action

dispatchOfferReport, labeled "@ Dispatch as email".

Configuration:

● "entityField": Select "#ENTITY" (or another value, according to your requirements).

● "reportData": Select the EntityField that supplies the report data (often via a valueProcess). In

the above example, this is the Field "OFFER_REPORT_DATA" of Offer_entity.

● Optionally, you can specify up to 3 ActionGroups via properties "favoriteActionGroup1-3". In the

above example, ActionGroup "offerReportDispatch" has been specified (which in turn includes

Action "dispatchOfferReport").

 Find more information on JasperReports in the ADITO document "Reporting

© 2025 ADITO Software GmbH 282 / 472

Manual".

11.3.21. ResourceTimeline

Displays a calendar component that shows a tree of existing resources on the left side and visualizes

scheduled operations for them on the right side. The resource timeline can be used to schedule

operations. An operation in general terms is something a resource can do on a schedule like sales visits,

maintenance appointments, etc.

Example:

A more advanced implementation of this ViewTemplate was done in the basic customizing model of

version 2022.2.0 and above. In the Designer, it can be found in the View

"ResourcePlanningFilter_view".

Appearance in the client:

It’s located under External Work → Resource planning, which is used to plan operations for existing

human resources.

© 2025 ADITO Software GmbH 283 / 472

The ViewTemplate uses two entities to load its data. One Entity is responsible for loading the resources,

the second Entity is used to load entries based on the resources and has to be connected via a

Provider-Consumer pair to the Resource_entity. More detailed informations can be found in the next

sections below.

11.3.21.1. Advanced explanations

The ResourceTimeline ViewTemplate is different from the other ViewTemplates in the sense that it

requires two entities to get its data. Typically you’ll also need at least a third one, which is used for the

operations. Operations are only referenced by an UID and can be whatever you customize them to be.

It can be a simple construct only using one Entity or somethig more complex like in the ADITO xRM

project, where an operation can also have multiple operation tasks.

The resource planning is generally divided into three parts, which interact with each other:

● Resource: the Entity for which something is planned

● Entry: the planning of an operation for one particular resource

● Operation: the action, which is planned to be carried out

As for the relations between the three parts:

● A resource has multiple entries associated with it

● One entry is connected to one operation

● Different entries can refer to same operation

11.3.21.1.1. Important properties

The configuration offers a number of properties in order to define where to get the data. They’re split

up into three sections. Only the more complex ones will be mentioned below.

● Entity

○ entityField: This property is similar to other ViewTemplates and refers to the main entity

of the ViewTemplate. Typically #ENTITY is used to refer to the Context’s Entity. In this

case this entity has to load the resources and is configured further in the Resources

section.

● Resources

○ initalDateField: This field is used to set the shown day on opening and has to contain the

date as text and has to use the ISO-8601 "yyyy.MM.dd" format. The date is parsed

internally by the vietemplate. If no field is set or the set field returns NULL, the current

day is used.

© 2025 ADITO Software GmbH 284 / 472

○ parentField: As the ressource can be a tree structure, this field is used to associate child

nodes to their respective parent node. If no EntityField is set or the set field is set to a

NULL value, the resource is treated as a root node. This behavior is similar to the

TreeTable or Tree ViewTemplates.

○ businessHoursFromField: An EntityField which holds the start of the resource’s business

hours as text. E.g. "08:00".

○ businessHoursToField: An EntityField which holds the end of the resource’s business hours

as text. E.g. "17:30".

The values of businessHoursFromField and businessHoursToField define the

timespan within which the resource is available. The timespan is shown as a white

area on the timeline when using the View in day mode. Everything outside this

timespan will be displayed in grey.

● Entries

○ entryEntityField: This property has to hold the Consumer which should be used to load

the entries. The Consumer has to be part of the Entity refered to in the entityField

property.

○ entryResourceIdField: This property is mandatory! It has to hold the UID of the resource

to which the entry is linked.

○ entryDatetimeStartField: This property is mandatory! This EntityField has to hold the start

date and time of the entry as a timestamp. It is mandatory to configure this field to be of

content type DATE and it has to be filterable.

○ entryDatetimeEndField: This property is mandatory! This EntityField has to hold the end

date and time of the entry as a timestamp. It is mandatory to configure this field to be of

content type DATE and it has to be filterable.

○ entrySelectedResourcesField: This field holds the resources which are selected in the

component. It is provided as a JSON Array. To use it in your code the value of the field has

to be processed by JSON.parse() before using it. If no resources were selected, the array

© 2025 ADITO Software GmbH 285 / 472

contains the id into whoses row an entry was dragged.

○ entryResourceOperationIdField: This property is mandatory! This field has to hold the UID

of the operation to which the entry refers and is used to find the same resource operation

from other resources.

11.3.21.1.2. Outlining the Entities

This section will detail the Entities needed. It will cover

● resource Entity (in the xRM project, e.g., "Resource_entity"),

● entry Entity (in the xRM project, e.g., "ResourcePlanning_entity"),

● and operation Entity (in the xRM project, e.g., "ResourceOperation_entity").

Apart from the fields required, the Entities can be customized to your needs.

Resource Entity:

This is the main Entity of the ViewTemplate and has to provide the resources. All resource are loaded at

once, so it is important to pay attention to the performance of this Entity. It also has to have a

Consumer which is connected to the entry Entity. This Consumer will be used to load corresponding

entries of a resource.

The RecordContainer of this Entity has to have paging disabled, as all resources have

to be loaded at once. It is also recommended to use caching to prevent loss of

performance.

© 2025 ADITO Software GmbH 286 / 472

Besides the fields necessary to fill the ViewTemplates properties the Entity is freely customizable and

can be built to your specifications. Most of the information will be presented via the PreviewView of

the Context of which this Entity is a part of and can be opened by clicking on the eye symbol besides

the resource.

Creating new and editing resources have to be implemented seperately as the ViewTemplate only can

show already existing records and only offers creating and editing of entries. One way is to create two

separate conexts which are based on the same Entity. The first Context will have a regular

Table/Treetable as FilterView where you create, edit and delete resources and the second Context has

the resource timeline as FilterView within which the entries are managed. Existing resources can still be

edited or deleted by using their PreviewView. This is the way this ViewTemplate is implemented in the

resource planning of the basic project.

Entry Entity:

This Entity represents the planning entries which link a resource and a resource operation and has a

specified start and end date. To load the correct entries this Entity has to have a Provider to which the

resource Entity connects. If you don’t need more specified Providers, the #PROVIDER Provider can be

used. The resource Entity will set a filter when requesting data. The filter is determined and set

automatically and is mechanically similar to what a lookup field, i.e. an EntityField which has a

Consumer chosen for providing a dropdown list, does.

© 2025 ADITO Software GmbH 287 / 472

If resources are selected by using the checkboxes to the left of the resource title, the IDs of these

resources are set to the field specified in the entrySelectedResourcesField property. It will then contain

a JSON Array of these IDs. If, for example, a new entry is created and several resources are checked,

you’ll have to make sure to also create an entry for every selected resource. But how this field is used

and what the resulting behaviour should be, depends on your specifications. For example, if an entry

should not only be created for the resource in whiches row it was created, but for all selected

resources, you’ll have to implement the creation of entries linked to the other resources in the

afterSave process of the entry Entity or the onCreate, onUpdate and onDelete of your RecordContainer.

If no resource was selected, then the array will contain the id of the resource to whiches row an entry

was dragged. You have to update the resource id of this entry, if the id you get from the array is

different from the one you get from the resource id field.

In general this is the Entity where the bulk of your logic has to be implemented. E.g. creating of

additional entries, updating other entries based on changes on the current entry and so on. All of these

things have to be done within this Entity.

If you want to show information of the operation within the entry, the database tables of your

oparation construct may be joined to the tables of the entry and set to read only mode. The read only

mode is necesarry because when inserting an entry linked to an existing operation, you’d get an error

because the ID of the operation already exists. If you want to include View references from your

operation Context or want to select them via a lookup dropdown, the entry Entity and operation Entity

should be connected via a Provider-Consumer pair.

Operation Entity:

An operation can be understood as "something a resource can do". E.g. sales visits, maintenance visits,

etc. This Entity is mostly independent from the first two. Its records / data is only linked by the field set

in the entryResourceOperationIdField property. Typically this Entity would have a Provider to which the

entry Entity can connect for a lookup dropdown.

Apart from that, the customzing of what an operation should be, depends on your usecase and

specifications. It could range from being a simple descriptor to a construct of singular plannable

actions, which might have tasks or checklists associated with it and also would require more logic

within the entry Entity.

11.3.21.1.3. Example: Implementing the basic functions

In the following example we will build a very basic implementation of the ViewTemplate. It will just

allow to create, edit and delete resources, to create, edit and delete operations and to plan operation

for a resource and move them via drag and drop.

© 2025 ADITO Software GmbH 288 / 472

The resources, operations and plannings will be stripped down to their bare minimum.

The resource will consist of:

● a contact, which represents the human resource for which we will plan operations

● the business hours of the resource

The operation will consist of:

● a title

● an info text field to describe the operation

The plannings will consist of:

● an operation

● the starting date

● the ending date

Creating the database tables:

Liquibase scripts and code snippets can be found in the Appendix ResourceTimeline

example: Liquibase and code

We’ll start by building the database tables for our three parts. Those will be called EXAMPLERESOURCE,

EXAMPLEPLANNINGENTRY and EXAMPLEOPERATION.

Create a folder named resourceTimelineExample in the top level of Data_alias so the

paths match with the provided scripts found in the appendix.

Within this folder create a changeset called resTimeline_creates and a changelog

called changelog.

Add the changelog of this folder to the main changelog found in the top level of

Data_alias.

After these liquibase scripts are in their place, rightclick on Data_alias and choose Liquibase → Update

to execute the scripts. After the tables were created update the aliasdefinition, so the new tables can

be used in the project.

Creating the Entities

Now we need to set up our Entities. To do that, we’ll use the Blueprint Generate Entity from

© 2025 ADITO Software GmbH 289 / 472

Aliasdefiniton found in the context menu of the "entity" node of the project tree. Rightclick the

node, then choose "New with Blueprint" → "Generate Entity from Aliasdefiniton". This will set up the

Entity with a database RecordContainer and all the fields, and already connects the fields to the

RecordContainer. Do that for every of our three tables. The Entities should be named

ExampleResource_entity, ExamplePlanningEntry_entity and ExampleOperation_entity.

After that’s done, we can go into our Entities and start by filling the valueProcesses of the fields which

should automatically be filled. These fields are DATE_NEW, DATE_EDIT, USER_NEW, USER_EDIT and our

ID fields EXAMPLERESOURCEID, EXAMPLEPLANNINGENTRYID and EXAMPLEOPERATIONID. The code

snippets for these processes can be found in the appendix or can be taken from the according fields of

other Entities. Also remove the checkmark of the mandatory property of the DATE_EDIT and

USER_EDIT fields.

Necessary changes to the Entities

The Entities now need some tweaking to be complete. We’ll start with the Entity, which needs the most

changes: ExamplePlanningEntry_entity.

Let’s start at the database RecordContainer. For the ViewTemplate to be able to select the entries

based on the time window, the fields DATE_START and DATE_END have to have the isFilterable

property checked. The same has to be done for EXAMPLERESOURCE_ID and EXAMPLEOPERATION_ID,

which are also used to select the necessary planning entries. Also add the table EXAMPLEOPERATION

to the linkInformation of the RecordContainer. Make sure the table is set to read only, so creating an

entry won’t try to also create a new opertion. As we choose our operation from a list of already created

operation, the read only mode prevents errors due to already existing ids. Now that the table is linked,

we can go to EXAMPLEOPERATION_ID.displayValue and select the database column "TITLE" as value of

the "recordfield" property.

After that’s done, we’re moving on to adding a new EntityField called "SelectedResources". The ADITO

core will provide a JSON array within this field, which either contains the selected resource or if no

resource was selected, it contains the id of the resource this particular entry was dragged to. It will can

be used to create additional entries if multiple resources were selected and is always used to

implement the drag & drop functionality. This example will only implement the drag & drop

functionality for simplicities sake. Creation of multiple entries can be found within the resource

planning implementation of the basic project of version 2022.2.1 and above. To complete the setup of

darg & drop, we have to add a valueProcess to the EXAMPLERESOURCE_ID field.

valueProcess of EXAMPLERESOURCE_ID

import { result, vars } from "@aditosoftware/jdito-types";

//to respond to drag and drop of the entry
if(vars.get("$field.SelectedResources")

© 2025 ADITO Software GmbH 290 / 472

 && JSON.parse(vars.get("$field.SelectedResources"))
 && JSON.parse(vars.get("$field.SelectedResources")).length > 0)
{
 result.string(JSON.parse(vars.get("$field.SelectedResources"))[0]);
}

This valueProcess will update the foreign key every time the entry is dragged to another resource.

Now we also have to change the fields DATE_START and DATE_END as thsoe have to be filled by the

user. So we have to set the properties of the "Formatting" group. We’ll set "resolution" to MINUTE and

both format properties to the "dd.MM.yyyy HH:mm" pattern.

As the last changes we’ll add the possibility to choose our operations. So we add a new Consumer to

the Entity and call it ExampleOperations. The Consumer has to point to ExampleOperation_entity and

use its #PROVIDER Provider. After the Consumer is configured, we go to the EntityField

EXAMPLEOPERATION_ID and set this Consumer as value of its "consumer" property.

The next Entity, we’re going to expand will be ExampleResource_entity. Here we’ll start at the Entity

itself and set its contentTitleProcess:

import {vars, result} from "@aditosoftware/jdito-types"

result.string(vars.get("$field.CONTACT_ID.displayValue"))

This will take the displayValue of the selected contact as its title.

After this change, we’ll move on to the database RecordContainer. As all resources have to be loaded at

once, we have to disable the "isPageable" property. For this simple example we ignore grouping and

caching. The last thing to do within the RecordContatiner, is to configure CONTACT_ID.displayValue, so

it shows the name of the persons we select. To achieve this, we need to add a process to the

"expression" property:

import { result } from "@aditosoftware/jdito-types";

import {newSelect, SqlMaskingUtils} from "SqlBuilder_lib";

result.string(

 newSelect([new SqlMaskingUtils().concatWithSeparator(["FIRSTNAME","LASTNAME"]," ",true)])

 .from("PERSON")

 .join("CONTACT", "PERSON.PERSONID = CONTACT.PERSON_ID")

 .where("CONTACT.CONTACTID = EXAMPLERESOURCE.CONTACT_ID")

 .toString()

);

To make the resources filterable by their names, we also check the "isFilterable" property of

CONTACT_ID.displayValue.

© 2025 ADITO Software GmbH 291 / 472

Following these changes, we’ll add two Consumers to the Entity. The first Consumer will be called

ExampleEntries and has to point to ExamplePlanningEntry_entity and use its #PROVIDER Provider. This

Consumer will be used by the ResourceTimeline ViewTemplate to load the entries for each resource

based on the resource id and the selected time window. The second Consumer will be named

"Persons" and has to point to Person_entity and use the "Contacts" Provider. This will allow us to select

the contact of the resource via a lookup table. After the Consumers being set up, go to the

CONTACT_ID EntityField and set the "Persons" Consumer as value of its "consumer" property.

Finally, we need to change ExampleOperation_entity. Here we’ll also start at the contentTitleProcess of

the Entity and add the following code:

import { result, vars } from "@aditosoftware/jdito-types";

result.string(vars.get("$field.TITLE"));

This uses the TITLE of the Operation, so we can see its name when using the lookup within the entry. As

this is done, we move on to the RecordContainer. Here we go to TITLE.value and check its "isFilterable"

and "isLookupFilter" properties.

Creating Contexts and Views

Our logic and therefore Entities are now complete, and we can move on to create the frontend for

them. We will need four Contexts for that. Two of those Contexts will reference

ExampleResource_enity and be different frontends with different purposes. As we need to create, edit,

and delete resources, we will do that within its own context, so it’s separated from the

ResourceTimeline, which will handle the creation, editing and deletion of our entries.

We’ll add our Contexts by using the "Create Contexts with Default Views" Blueprint. It’s found in the

context menu of the "context" node of the project tree. Right-click on the node and choose "New with

Blueprint" → "Create Contexts with Default Views".

Our four Contexts and their Views will be:

● ExampleResource

Set ExampleResource_entity as the used Entity.

Check the following Views:

○ Edit_view

○ Filter_view

○ Preview_view

● ExamplePlanning

© 2025 ADITO Software GmbH 292 / 472

Set ExampleResource_entity as the used Entity.

Check the following Views:

○ Filter_view

○ Preview_view

● ExampleEntry

Set ExamplePlanningEntry_entity as used Entity.

Check the following Views:

○ Edit_view

○ Preview_view

● ExampleOperation

Set Exampleoperation_entity as used Entity.

Check the following Views:

○ Edit_view

○ Filter_view

○ Preview_view

This is the minimum of Views that you need to implement. If your specific project includes more

complex constructs, the resources, entries, and operations might also require a Main_view or a

Lookup_view.

After the groundwork is done, we can now fill each View. Choose suitable names for the ViewTemplates

at your own will.

● ExampleResource

○ Edit_view

Add a Generic ViewTemplate and add the CONTACT_ID, BUSINESSHOURFROM, and

BUSINESSHOURTO fields. Make sure the "editMode" property of the ViewTemplate is

checked. As this is all we need for this example, you can also set the "size" property of the

View to "SMALL", so it’s opened besides the table we’ll use in the Filter_view.

○ Filter_view

Add a Table ViewTemplate and add CONTACT_ID, BUSINESSHOURFROM,

BUSINESSHOURTO to its column property.

○ Preview_view

Repeat the steps from creating the Edit_view, but do not check the "editMode" property.

● ExamplePlanning

© 2025 ADITO Software GmbH 293 / 472

○ Filter_view

Here we add the ResourceTimeline ViewTemplate. To configure it, we need to fill the

groups "Resources" and "Entries" as shown in the screenshot below:

Within "Resources" we just need the mandatory fields "titleField",

"businessHoursFromField" and "businessHoursToField", as those are necessary for

displaying the resources.

Within the Entries group we need to set the Consumer "ExampleEntries" as value of

"entryEntityField". This is the connection between our resources and our entries. The

follwing fields are taken from ExamplePlanningEntry_entity to fill the remaining

proeprties.

○ Preview_view

Create it the same way the Preview_view of ExampleResources was created as they’re

basically the same.

● ExampleEntry

○ Edit_view

Add a Generic ViewTemplate and add the EXAMPLEOPERATION_ID, DATE_START and

DATE_END fields to it. Check the "editMode" property of the ViewTemplate.

○ Preview_view

Add a Generic ViewTemplate and add the EXAMPLEOPERATION_ID, DATE_START and

DATE_END fields to it. Do not check the "editMode" property with this one.

● ExampleOperation

© 2025 ADITO Software GmbH 294 / 472

○ Edit_view

Add a Generic ViewTemplate and add the TITLE and INFO fields. Check the "editMode"

property of the ViewTemplate.

○ Filter_view

Add a Table ViewTemplate and add the TITLE and INFO fields to its columns property.

○ Preview_view

Add a Generic ViewTemplate and add the TITLE and INFO fields. Do not check the

"editMode" property of this ViewTemplate.

Testing the example implementation

Now we’re done implementing our example, we have to add the ExampleResource, ExamplePlanning,

and ExampleOperation Contexts to the menu by adding them to a new group within the "

_SYSTEM_APPLICATION_NEON" datamodel found in the "application" node of the project tree. For

simplicity’s sake also add the "INTERNAL_EVERYONE" role to your new menu group. ExampleEntry

doesn’t have to be in the menu unless you want to also implement a Filter_view for it, so you can have

a list of existing entries. But this is optional in this example.

After that’s done, we deploy everything and check it out within the ADITO webclient. Create some

resources within ExampleResource, then create some operations within ExampleOperation, and at last

create entries within ExamplePlanning and test the drag & drop of entries between different resources.

For a more comprehensive implementation of the ResourceTimeline ViewTemplate, you can take a look

at the source code of the resource planning included in the ADITO xRM project.

11.3.21.2. Specific color constants

There are specific color constants to color the entries of the ResourceTimeline. These colors are set by

the ADITO core, but can be overridden when using a custom Theme (see chapter Themes).

Active entry colors:

● neon.RESOURCETIMELINE_ACTIVE_COLOR_1

● neon.RESOURCETIMELINE_ACTIVE_COLOR_2

● neon.RESOURCETIMELINE_ACTIVE_COLOR_3

● neon.RESOURCETIMELINE_ACTIVE_COLOR_4

● neon.RESOURCETIMELINE_ACTIVE_COLOR_5

● neon.RESOURCETIMELINE_ACTIVE_COLOR_6

● neon.RESOURCETIMELINE_ACTIVE_COLOR_7

© 2025 ADITO Software GmbH 295 / 472

● neon.RESOURCETIMELINE_ACTIVE_COLOR_8

● neon.RESOURCETIMELINE_ACTIVE_COLOR_9

● neon.RESOURCETIMELINE_ACTIVE_COLOR_10

● neon.RESOURCETIMELINE_ACTIVE_COLOR_11

Passive entry colors:

● neon.RESOURCETIMELINE_PASSIVE_COLOR_1

● neon.RESOURCETIMELINE_PASSIVE_COLOR_2

● neon.RESOURCETIMELINE_PASSIVE_COLOR_3

● neon.RESOURCETIMELINE_PASSIVE_COLOR_4

● neon.RESOURCETIMELINE_PASSIVE_COLOR_5

● neon.RESOURCETIMELINE_PASSIVE_COLOR_6

● neon.RESOURCETIMELINE_PASSIVE_COLOR_7

● neon.RESOURCETIMELINE_PASSIVE_COLOR_8

● neon.RESOURCETIMELINE_PASSIVE_COLOR_9

● neon.RESOURCETIMELINE_PASSIVE_COLOR_10

● neon.RESOURCETIMELINE_PASSIVE_COLOR_11

11.3.22. ScoreCard

Displays arbitrary fields of an Entity, each on a labelled card. The label is specified in the

“title”/”titleProcess” property of the corresponding EntityField.

Example:

"OrganisationInformation", a ViewTemplate of OrganisationPreview_view in Context "Organisation".

This ViewTemplate displays additional information about a company.

Appearance in the client:

In the client, you can find this ViewTemplate, if you open the Global Menu and then select "Company"

in menu group "Contact Management". Then select any company: The PreviewView will open, and you

see the ScoreCardViewTemplate as footer.

Configuration:

● fields: 3 EntityFields of Organisation_entity are referenced: 2 calculated EntityFields

© 2025 ADITO Software GmbH 296 / 472

("TurnoverPercentDiff" and "LastActivity") and 1 database-related EntityField

("CLASSIFICATIONVALUE")

● fieldActions: In this example empty. Here, you can enter Actions that will be executed, if you

click on an EntityField of the ScoreCardViewTemplate: The first Action is mapped to the first

EntityField, the second Action to the second EntityField etc.

You can find a further implementation of a ScoreCardViewTemplate, regarding the

carpool example, in chapter Example: Availability.

11.3.23. Signature

Enables the client user to write a signature with a pointing device (e.g., a mouse) and assign it to an

EntityField (property “imageField”).

11.3.24. Stepper

Displays steps of a process, represented by titled circles, ordered in a horizonal line. Each step has an

icon (property “iconField”), a title (“titleField”), and a state (“stateField”). The corresponding

EntityFields ICON, STATE, and TITLE as well as an identifier (UID) are controlled by a

jDitoRecordContainer.

Example:

"Phases", a StepperViewTemplate assigned to SalesprojectPhaseStep_view.

Appearance in the client:

In the client, you will find this ViewTemplate in the MainView of Context "Opportunity" (Menu Group

"Sales"):

© 2025 ADITO Software GmbH 297 / 472

Configuration:

Check the contentProcess of SalesprojectPhase_entity’s RecordContainer "jdito" in order to learn how

the EntityFields' values are provided. Via Provider "Phases" and Parameters CurrentPhase_param,

DisabledPhases_param, and SalesprojectUid_param dependencies are established from

Salesproject_entity (Consumer SalesprojectPhaseStepper) and SalesprojectMilestone_entity

(Consumer SalesProjectPhases). SalesprojectPhaseStep_view with its StepperViewTemplate is used as

LookupView of context SalesprojectPhase. To make the StepperViewTemplate appear in the

SalesprojectMain_view, a LookupViewTemplate also named "Phases" is used (see

SalesprojectMain_view > SalesprojectOverview_view > SalesprojectPhase_view > Phases).

Step-by-step example:

As the above example in the Opportunity (Salesproject) Context is quite complex; another, plainer

example should be explained step-by-step: Our example task is to show a contact person’s work

experience in an additional tab of PersonMain_view. The steps should simply be

"Beginner"/"Advanced"/"Pro". This task should be implemented by using a StepperViewTemplate

without further buttons etc.

The following step-by-step example

● uses a Keyword for the steps;

● the icon will be loaded dynamically via a Keyword Attribute.

● Editing is done directly via the pencil icon. (There are no Actions to step forth/back, as there are

for the Salesproject Phases, see previous example.)

● Integrating the StepperViewTemplate in the "Detail" area of a MainView requires the usage of a

LookupViewTemplate (see chapter Lookup).

● Whether or not the Stepper is editable, depends on the Consumer’s state and the EntityField

EXPERIENCELEVEL’s state (if its state was "AUTO", no pencil would appear).

Now, let’s solve our task step-by-step (the naming of the various new models has no technical meaning,

but should be consistent, of course):

At first, we enter a new KeywordCategory (ExperienceLevel), 3 KeywordEntries (BEGINNER/Beginner,

ADVANCED/Advanced, PRO/Pro), 1 KeywordAttribute (icon/ExperienceLevel), as well as 3

corresponding KeywordAttributeRelations, which will be used for assigning icons VAADIN:MINUS,

VAADIN:PLUS_MINUS, and VAADIN_PLUS to the KeywordEntries. Instead of doing this manually, you

better simply include the following Liquibase changelog and execute it by a Liquibase update:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

© 2025 ADITO Software GmbH 298 / 472

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="5368c690-e7ce-4a0c-bb5d-bccae3aedb68">

 <!--KeywordCategory-->

 <insert tableName="AB_KEYWORD_CATEGORY">

 <column name="AB_KEYWORD_CATEGORYID" value="b1462948-f552-44f8-8408-21b7592f0902"/>

 <column name="NAME" value="ExperienceLevel"/>

 <column name="SORTINGBY" valueNumeric="0"/>

 <column name="SORTINGDIRECTION" value="ASC"/>

 </insert>

 <!--KeywordEntry-->

 <insert tableName="AB_KEYWORD_ENTRY">

 <column name="AB_KEYWORD_ENTRYID" value="7762f1ff-4e40-4022-abbe-8b73ca2abc01"/>

 <column name="KEYID" value="BEGINNER"/>

 <column name="TITLE" value="Beginner"/>

 <column name="CONTAINER" value="ExperienceLevel"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="b1462948-f552-44f8-8408-21b7592f0902"/>

 <column name="SORTING" valueNumeric="1"/>

 <column name="ISACTIVE" valueNumeric="1"/>

 <column name="ISESSENTIAL" valueNumeric="1"/>

 </insert>

 <insert tableName="AB_KEYWORD_ENTRY">

 <column name="AB_KEYWORD_ENTRYID" value="459f06bf-9623-4e85-b290-205290d6af8f"/>

 <column name="KEYID" value="ADVANCED"/>

 <column name="TITLE" value="Advanced"/>

 <column name="CONTAINER" value="ExperienceLevel"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="b1462948-f552-44f8-8408-21b7592f0902"/>

 <column name="SORTING" valueNumeric="2"/>

 <column name="ISACTIVE" valueNumeric="1"/>

 <column name="ISESSENTIAL" valueNumeric="1"/>

 </insert>

 <insert tableName="AB_KEYWORD_ENTRY">

 <column name="AB_KEYWORD_ENTRYID" value="4ba1f2a5-3cec-435f-9ac5-c0c8a13f1842"/>

 <column name="KEYID" value="PRO"/>

 <column name="TITLE" value="Pro"/>

 <column name="CONTAINER" value="ExperienceLevel"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="b1462948-f552-44f8-8408-21b7592f0902"/>

 <column name="SORTING" valueNumeric="3"/>

 <column name="ISACTIVE" valueNumeric="1"/>

 <column name="ISESSENTIAL" valueNumeric="1"/>

 </insert>

 <!--KeywordAttribute and KeywordAttributeRelations-->

 <!--icons-->

 <insert tableName="AB_KEYWORD_ATTRIBUTE">

 <column name="AB_KEYWORD_ATTRIBUTEID" value="fbb95471-0cd8-434c-b640-9fc919697fb8"/>

 <column name="AB_KEYWORD_CATEGORY_ID" value="b1462948-f552-44f8-8408-21b7592f0902"/>

 <column name="NAME" value="icon"/>

 <column name="CONTAINER" value="ExperienceLevel"/>

 <column name="KIND" value="CHAR_VALUE"/>

 </insert>

 <insert tableName="AB_KEYWORD_ATTRIBUTERELATION">

 <column name="AB_KEYWORD_ATTRIBUTERELATIONID" value="88bb3905-2013-472b-9afa-0bfd1f452951"/>

 <column name="AB_KEYWORD_ENTRY_ID" value="7762f1ff-4e40-4022-abbe-8b73ca2abc01"/>

 <column name="AB_KEYWORD_ATTRIBUTE_ID" value="fbb95471-0cd8-434c-b640-9fc919697fb8"/>

 <column name="CHAR_VALUE" value="VAADIN:MINUS"/>

 </insert>

 <insert tableName="AB_KEYWORD_ATTRIBUTERELATION">

 <column name="AB_KEYWORD_ATTRIBUTERELATIONID" value="d487ac11-b85b-4489-89e1-1e93353ad9e9"/>

 <column name="AB_KEYWORD_ENTRY_ID" value="459f06bf-9623-4e85-b290-205290d6af8f"/>

 <column name="AB_KEYWORD_ATTRIBUTE_ID" value="fbb95471-0cd8-434c-b640-9fc919697fb8"/>

 <column name="CHAR_VALUE" value="VAADIN:PLUS_MINUS"/>

 </insert>

 <insert tableName="AB_KEYWORD_ATTRIBUTERELATION">

 <column name="AB_KEYWORD_ATTRIBUTERELATIONID" value="d109b169-f14a-4383-af43-f30c6d357971"/>

 <column name="AB_KEYWORD_ENTRY_ID" value="4ba1f2a5-3cec-435f-9ac5-c0c8a13f1842"/>

 <column name="AB_KEYWORD_ATTRIBUTE_ID" value="fbb95471-0cd8-434c-b640-9fc919697fb8"/>

 <column name="CHAR_VALUE" value="VAADIN:PLUS"/>

 </insert>

 </changeSet>

</databaseChangeLog>

As usual in the xRM project, we will refer to the KeywordCategory and the KeywordEntries via

functions. To enable this, we add the following code lines in library KeywordRegistry_basic:

© 2025 ADITO Software GmbH 299 / 472

$KeywordRegistry.ExperienceLevel = function(){return "ExperienceLevel";};
$KeywordRegistry.ExperienceLevel$beginner = function(){return "BEGINNER";};
$KeywordRegistry.ExperienceLevel$advanced = function(){return "ADVANCED";};
$KeywordRegistry.ExperienceLevel$pro = function(){return "PRO";};

The next steps are:

● In the database Data_alias, create a new column named EXPERIENCELEVEL for table PERSON and

set the value of EXPERIENCELEVEL for all existing PERSON datasets to "BEGINNER". Instead of

doing this manually, you better simply include the following Liquibase changelog and execute it

by a Liquibase update:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-

ext.xsd http://www.liquibase.org/xml/ns/dbchangelog http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="dcf5f410-c528-4e82-977e-91337cd4c806">

 <addColumn tableName="PERSON">

 <column name="EXPERIENCELEVEL" type="VARCHAR(36)"/>

 </addColumn>

 <update tableName="PERSON">

 <column name="EXPERIENCELEVEL" value="BEGINNER"/>

 </update>

 </changeSet>

</databaseChangeLog>

● Update the Alias Definition, so we can refer to the new column in our project.

● Navigate to Person_entity and add an EntityField named EXPERIENCELEVEL (title = Experience

level; state = EDITABLE; mandatory = true; contentType = TEXT)

● Open Person_entity’s RecordContainer (db) and connect the new EntityField with the

corresponding database column: Navigate to RecordFieldMapping EXPERIENCELEVEL.value and

set its property "recordfield" to PERSON.EXPERIENCELEVEL.

● EXPERIENCELEVEL.displayValue: Set the following code for property "expression" (then, the

KeywordEntry’s TITLE, e.g. "Beginner", is shown instead of its KEYID, e.g. "BEGINNER")

var sql = KeywordUtils.getResolvedTitleSqlPart($KeywordRegistry.ExperienceLevel(), "PERSON.EXPERIENCELEVEL");

result.string(sql);

● Enter the following code in the valueProcess of EntityField EXPERIENCELEVEL, in order to preset

it with BEGINNER, whenever a new Person dataset is entered:

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && vars.get("$this.value") == null)

{

 result.string($KeywordRegistry.ExperienceLevel$beginner());

}

© 2025 ADITO Software GmbH 300 / 472

● Enter the following code in the displayValueProcess of EntityField EXPERIENCELEVEL (then, when

entering a new Person dataset, the KeywordEntry’s TITLE, e.g. "Beginner", is shown instead of its

KEYID, e.g. "BEGINNER"):

var res = KeywordUtils.getViewValue($KeywordRegistry.ExperienceLevel(), vars.get("$field.EXPERIENCELEVEL"));

result.string(res);

● In Context Person, create a new View named PersonExperienceLevel_view (title: Experience

level; layout: BoxLayout)

● Assign a LookupViewTemplate to the new View, name it simply "Lookup", and set its properties

as follows

○ consumerField: EXPERIENCELEVEL

○ consumerPresentationMode: EMBEDDED

● Open PersonMain_view and set a View reference to PersonExperienceLevel_view

● Create a new Context named PersonExperienceLevel and a new Entity named

PersonExperienceLevel_entity. This new Entity will control the Stepper. Configure the Entity as

follows:

○ title: Person experience level

○ contentTitleProcess:

result.string(vars.get("$field.TITLE"));

○ EntityFields: ICON, STATE, TITLE, and UID (leave all properties in default state).

○ Parameters: CurrentLevel_param and DisabledLevels_param (set property "expose" to

true for both of them).

○ RecordContainer: jDitoRecordContainer, name it jDito and set its properties as follows:

■ jDitoRecordAlias: Data_alias

■ recordFieldMappings: UID.value, STATE.value, TITLE.value, ICON.value (the order is

important, as it must be consistent to the contentProcess)

■ contentProcess: Enter the following code:

var res = [];

var ids = vars.get("$local.idvalues");

var disabledLevels = JSON.parse(vars.get("$param.DisabledLevels_param")) || [];

var steps = KeywordUtils.getEntryArray($KeywordRegistry.ExperienceLevel(), null, true);

var selected = vars.get("$param.CurrentLevel_param");

// filter only for steps reqistered by the system

if (ids)

{

© 2025 ADITO Software GmbH 301 / 472

 steps = steps.filter(function(pStep)

 {

 for (let i = 0; i < ids.length; i++)

 {

 if (ids[i] == pStep[0])

 {

 return true;

 }

 }

 return false;

 })

}

steps.forEach(function([stepId, title])

{

 var stepState = "DISABLED";

 if (stepId === selected)

 {

 stepState = "ACTIVE";

 }

 else if (!disabledLevels.includes(stepId))

 {

 stepState = "EDITABLE";

 }

 var resStep = [stepId, stepState, title, _getIcon(stepId)];

 res.push(resStep);

});

result.object(res);

function _getIcon(pLevel)

{

 var iconAttr = new KeywordAttribute($KeywordRegistry.ExperienceLevel(), "icon", "VAADIN:CIRCLE-THIN");

 return iconAttr.getValue(pLevel);

}

● In Context PersonExperienceLevel, create a new View named

PersonExperienceLevelStepper_view (layout: BoxLayout).

● Assign a StepperViewTemplate to the new View and name it ExperienceLevelStepper.

● The StepperViewTemplates properties are:

○ stateField: STATE

○ titleField: TITLE

○ iconField: ICON

● Set PersonExperienceLevelStepper_view for property lookupView of Context

PersonExperienceLevel.

Now, go back to Person_entity and create a new Consumer named PersonExperienceLevelStepper. Its

properties are:

● entityName: PersonExperienceLevel_entity

● fieldName: #PROVIDER

● state: EDITABLE

If you unfold this new Consumer, you will see its Parameters. Set the valueProcess of

CurrentLevel_param as follows:

© 2025 ADITO Software GmbH 302 / 472

result.string(vars.get("$field.EXPERIENCELEVEL"));

Select Consumer PersonExperienceLevelStepper for property "consumer" of EntityField

EXPERIENCELEVEL.

Finally, just for testing purposes, add EntityField EXPERIENCELEVEL

● to ViewTemplate "Edit" of PersonEdit_view and

● to ViewTemplate "Info" of PersonPreview_view

Now, deploy your changes, navigate to Context "Contact", and open any contact person in its

MainView. Open tab "Experience Level", which includes the StepperViewTemplate. Test it by clicking on

the pencil icon and then on a step other than the current one. Press "Save" to save the chosen step.

In the above example, Parameter DisabledLevels_param has not been used so far. Its

purpose is to disable specific steps (here: experience levels), so they cannot be

selected (which will be indicated by a darker icon color). The logic for this is done on

Consumer side (Person_entity > Consumers > PersonExperienceLevelStepper >

DisabledLevels_param), in the Parameter’s valueProcess. The result of this

valueProcess must be a stringified array of the KEYIDs of all steps that should be

disabled. Here is an example code that disables the steps BEGINNER and PRO:

result.string(JSON.stringify([$KeywordRegistry.ExperienceLevel$beginner(), $KeywordRegistry.

ExperienceLevel$pro()]));

Please be aware that the above implementation is only a plain example. Actually, it is possible to realize

use cases that are far more complex. E.g., you are not forced to use keywords, and the handling of the

states can be done more dynamically instead of using only one Parameter for disabling, etc.

11.3.25. Table

A ViewTemplate of type "Table" is used to show multiple fields of multiple datasets in a table. You can

select arbitrary EntityFields in property "columns": Open this property’s editor and add fields using the

plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To remove a field,

select it (checkbox) and press the minus ("-") button. You can change the order of the fields by selecting

them and moving them up or down with the arrow up/down buttons.

This ViewTemplate is commonly used for Filter Views.

Example:

"Organisations", a ViewTemplate of OrganisationFilter_view.

© 2025 ADITO Software GmbH 303 / 472

Appearance in the client:

In the client, you can find it under Contact Management > Company. It shows an image columns,

followed by several titled columns: name, customer code, language, status, email, phone, and address.

Configuration:

"Organisations" has several fields of Organisation_entity specified in property "columns": #IMAGE,

NAME, CUSTOMERCODE, LANGUAGE, STATUS, STANDARD_EMAIL_COMMUNICATION,

STANDARD_PHONE_COMMUNICATION, and ADDRESS_ID.

This ViewTemplate’s property flag "hideContentSearch" controls whether or not the

content search bar (Context filter) of the table is hidden (true; default) or displayed

(false). The content search bar will only work, if paging is disabled, i.e., the

corresponding RecordContainer’s property flag "isPageable" must be set to false in

this case.

11.3.26. Timeline

A ViewTemplate of type "Timeline" displays up to 7 EntityFields of multiple datasets, ordered in a

vertical timeline. All fields have fixed positions: On the left, a date (property "dateField") is shown,

followed by an icon ("iconField"). In the middle, in vertical order, 3 further fields ("titleField",

"descriptionField", and "subdescriptionField") are shown in different colors. On the right, another field

is shown ("additionalInfoField"). On the top of the timeline, an "informationField" is displayed, which

appears if you mark a timeline dataset.

Optionally, further properties can be set, e.g., for displaying/hiding the time, and for controlling the

order and the maximum number of the datasets.

Example:

"ActivitiesTimeline", a ViewTemplate of ActivityFilter_view (Context "Activity").

Appearance in the client:

In the client, you can find it under Contact Management > Activity. Make sure that "Timeline View" is

selected via the button in the View’s upper right corner.

In this case, the informationField, the subdescriptionField, and the additionalInfoField do not exist.

Configuration:

"ActivitiesTimeline" has 4 fields of Activity_entity specified: entryDateDateFormat (dateField),

SUBJECT_DETAILS (titleField), INFO (descriptionField), #IMAGE (iconIdField). informationField,

subdescriptionField, and additionalInfoField are not yet configured. You may set them arbitrarily to

watch the effect in the client.

© 2025 ADITO Software GmbH 304 / 472

11.3.27. Tiles

Displays multiple datasets as "tiles". Each tile is styled like a business card (similar to template type

"Card"), allowing to show up to 6 EntityField at fixed positions: On the left, an image (property

"iconField"); on the right, 5 further fields (properties "titleField", "infoTopField", "subtitleField",

"descriptionField", and "infoBottomField").

Property "tilePresentation" controls if the tiles are to be ordered as LANDSCAPE (default; 3 tiles in a

row, dynamic width), or PORTRAIT (dynamic number of tiles per row, fixed width).

Example:

"Tiles", a ViewTemplate of ProductFilter_view (Context "Product")

11.3.28. TitledList

A ViewTemplate of type "TitledList" is used to show multiple fields of multiple datasets in a list. You can

select arbitrary EntityFields in property "columns": Open this property’s editor and add fields using the

plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To remove a field,

select it (checkbox) and press the minus ("-") button. You can change the order of the fields by selecting

them and moving them up or down with the arrow up/down buttons.

Furthermore, in property "titleField" you can select one EntityField to be displayed as "title", to the left

of the "columns" fields.

To improve performance the TitledList ViewTemplate by default only displays the first six rows and then

shows a "+ X additional rows" label, which on clicking it loads the rest of the rows. The amount of rows

shown can be configured using the property rowLimit of this ViewTemplate.

Example:

"Addresses", a ViewTemplate of AddressList_view.

Appearance in the client:

The "Addresses" ViewTemplate is shown, e.g., in the PreviewViews of Contexts Person and

Organisation.

Configuration:

● In property "columns", the different parts of an address are specified, e.g., country, zip code, or

city.

● Property "titleField" includes the EntityField ADDR_TYPE, which holds the title information.

● Property "highlightingField" is set to the EntityField IS_STANDARD, which makes standard

addresses being highlighted (title is shown in bold font).

© 2025 ADITO Software GmbH 305 / 472

11.3.29. Tree

A ViewTemplate of type "Tree" is used to show, at fixed positions, specific fields of multiple datasets,

grouped to a tree. To configure the tree structure shown by default, you can select arbitrary

EntityFields as grouping criteria in property "defaultGroupFields": Open this property’s editor and add

fields using the plus ("+") button. Afterwards, you can change them via the fields' combo boxes. To

remove a field, select it (checkbox) and press the minus ("-") button. You can change the order of the

grouping by selecting fields and moving them up or down with the arrow up/down buttons.

The "leafs" of the tree can be configured with the following fields: An icon on the left (property

"iconField"), on the right a title ("titleField"), and below a description ("descriptionField").

Optionally, you can add up to 3 ActionGroup buttons by selecting an ActionGroup in field

"favoriteActionGroup1", "favoriteActionGroup2", or "favoriteActionGroup3".

Each grouping node’s name can optionally be displayed extended by the number of sub-nodes, or leafs,

respectively (property flag "showChildrenCount"). In the client, the configured default grouping can be

modified via the filter window (click on "Filter" button).

Example:

"Treetable" (should better be named "Tree"), a ViewTemplate of 360DegreeFilter_view (included in the

MainView of various Contexts, e.g., Context "Company").

Appearance in the client:

In the client, you can, e.g., find it under Contact Management > Company > Open the MainView of any

company > 360 Degree. (If the tree is not shown, select "Tree View" via the button in the upper right

corner.) The tree is grouped by the Contexts' names (e.g., "CONTRACT"). These grouping nodes can be

expanded, in order to display their objects (e.g., all contracts of the company), each consisting of an

icon, a title, and a date.

You can change the grouping by clicking on the "Filter" button and adding/removing grouping fields.

Configuration:

"Treetable" has the following fields of 360Degree_entity specified: CONTEXT_NAME

(defaultGroupFields), ICON (iconField), TITLE (titleField), and DATE (descriptionField). Furthermore, the

ActionGroup "newModule" is selected in property "favoriteActionGroup2". Property

"showChildrenCount" is set to "true".

Find further details in chapter Tree and TreeTable: Advanced explanations below.

11.3.30. TreeTable

A ViewTemplate of type "TreeTable" is used to show multiple fields of multiple datasets in a table,

© 2025 ADITO Software GmbH 306 / 472

which can be grouped to a tree. Rows are datasets, columns are EntityFields. You can select arbitrary

EntityFields in property "columns": Open this property’s editor and add fields using the plus ("+")

button. Afterwards, you can change them via the fields' combo boxes. To remove a field, select it

(checkbox) and press the minus ("-") button. You can change the order of the fields by selecting them

and moving them up or down with the arrow up/down buttons.

To configure the tree structure shown by default, you can select arbitrary EntityFields as grouping

criteria in property "defaultGroupFields".

This ViewTemplate is commonly used for Filter Views.

Example:

"ActivitiesTreeTable", a ViewTemplate of ActivityFilter_view.

Appearance in the client:

In the client, you can find it under Contact Management > Activity. It shows a date column, followed by

an image and several titled columns: responsible, subject, and description. In section "Grouping" of the

filter component shown to the right of the table (if not visible, click button "Filter" first), you can group

the activities by a specific criteria, e.g., by category.

Configuration:

"ActivitiesTreeTable" has several fields of Activity_entity specified in property "columns":

entryDateDateFormat, #IMAGE, RESPONSIBLE, SUBJECT, INFO. That’s all.

Other than in a Tree, a TreeTable can optionally feature "drag and drop". To enable

this, you need to set property "enableDragAndDrop" to "true" (checkbox checked).

In this case, you should integrate LexoRank as ordering algorithm (rather than a

numeric ordering) - find detailed information in appendix LexoRank.

Find further details in chapter Tree and TreeTable: Advanced explanations below.

11.3.31. Tree and TreeTable: Advanced explanations

The ViewTemplates of type Tree and TreeTable are used to display connected data within a tree

structure. Both ViewTemplates behave similar and only differ in their properties. The TreeTable is an

advanced version of the Tree. As a datasource, a JDitoRecordContainer is used in most cases (see

chapter JDitoRecordContainer). If the data is already stored correctly and does not need further

manipulation, a DatabaseRecordContainer can be used instead.

© 2025 ADITO Software GmbH 307 / 472

11.3.31.1. Important properties - Tree

● entityField: Here we commonly set #ENTITY, because the data is taken from various EntityFields.

● linkedColumns: With this property, you can set EntityFields to be used to immediately open the

dataset in the MainView.

● parentField: This is the central field to construct the tree structure. In this field, the ID of a

parent node has to be hold, if the entry is a child node. More details follow below.

● informationField: This field contains information that is displayed on the top of the entry.

● nodeExpandedField: This field has to be of the type BOOLEAN and determines if the node is

opened or closed at first. For example, if you want to have the tree completely expanded, then

you just assign the value true to it, by either using its valueProcess (which is not

recommended, as the valueProcess gets executed for each entry and thus can lead to a low

performance) or by assigning the value in your RecordContainer.

● titleField: This is the first row of information you can use to display your data. It is called

titleField, because here you would typically put the name of an entry, like the name of an

organisation.

● descriptionField: This is the second row of information and can be used to display further

information.

● iconField: With this field you can add an icon to the entry. Use either #IMAGE or #ICON, if you

want to use the imageProcess or iconProcess of the Entity or you can use one of your

EntityFields, which has to contain one of the following:

© 2025 ADITO Software GmbH 308 / 472

○ A text in the format "TEXT:" + your desired values. This text gets evaluated and turned

into two initials and an automatically selected background color.

○ The name of one of our predefined icons, like "NEON:LOGO".

○ An image encoded in Base64. If you use an image of your own, always use a scalable

vector graphic (.svg), so the image can automatically be scaled properly to meet different

screen resolutions.

● defaultGroupFields: If your Entity has group fields, you can determine which ones are used by

default.

● fixedFilterFields: With this property you can set the filter fields for the tree, so only those can be

used.

● expandRootItems: Select if the root nodes are expanded by default or not. Set to true to expand

all roots by default.

If your Entity doesn’t use a paging RecordContainer and the property is set to

true, all items are loaded at once, which can lead to a loss in performance.

Use this property carefully!

11.3.31.2. Important properties - TreeTable

Before reading this chapter, we recommend to read chapter "Important properties -

Tree" first.

● entityField: Here we commonly set #ENTITY, because the data is taken from the different

EntityFields.

© 2025 ADITO Software GmbH 309 / 472

● columns: This is the property that distinguishes the TreeTable from the Tree. In this property, you

can add multiple EntityFields as columns for each entry, which then are displayed in a table style.

● linkedColumns: This property has the same function as it has in the Tree ViewTemplate.

● parentField: This field holds the ID of the parent node, if the entry is a child node, otherwise it

has to be null to mark this entry as a node of the first layer.

● informationField: A field for information to be displayed at the top of the entry.

● defaultGroupFields: If your Entity has group fields, you can determine which ones are used by

default.

● fixedFilterFields: With this property you can set the filter fields for the tree, so only those can be

used.

● expandRootItems: Select if the root nodes are expanded by default or not. Set to true to expand

all roots by default.

If your Entity doesn’t use a paging RecordContainer and the property is set to

true, all items are loaded at once, which can lead to a loss in performance.

Use this property carefully!

11.3.31.3. Building a Tree/TreeTable

If you are using a Database RecordContainer, set it up like you are used to and make sure to link your

EntityFields correctly. But please note: If property isPageable is set to true, then the tree does not work

with the parent-child principle that is explained below.

When using a JDitoRecordContainer, the approach gets a bit more complex as you have to do your data

selection manually. The general rules for the JDitoRecordContainer apply (see chapter

"JDitoRecordContainer"). Additionally, consider the following rule:

You have to ensure the correct order of the datasets. Parent nodes have to be added

to the result array before any of their child nodes.

For example, if the tree structure looks like this:

A

- A1

- A2

B

- B1

- B2

Then A has to be added before A1 and A2, as well as B has to be added before B1

© 2025 ADITO Software GmbH 310 / 472

and B2

This rule also applies when using a Database RecordContainer and can lead to

exceptions if you don’t order your datasets correctly.

There are two strategies that can be used to build your data:

1. Layer by layer

This strategy aims to add one layer at a time. This can be done if you have different, but related

sets of data. Example: The first layer contains organisations, the second layer contains persons

with functions at those organisations, and the third layer contains all Activities linked to those

persons.

2. Recursive

The recursive strategy is used if your data can be infinitely deep and could branch out infinitely.

To add your data to your result, you have to do two steps:

a. Find all your nodes of the first layer and add them to your result.

b. Iterate over all top nodes and use a recursive function to retrieve the children of the next

level. The recursive function has to end, if no further children are found.

By the way, this strategy is used in the 360° View, for example.

11.3.31.4. Examples

In the following text, we will go over multiple examples. As Tree and TreeTable behave in the same way,

we will focus on only one of them in each example.

11.3.31.4.1. Simple Tree of organizations and their persons

This example will build a Tree that lists all organizations and the persons connected with them. It will

not cover displaying their PreviewViews or doing anything with the data. The focus is just on building

the tree.

First we build an Entity named "OrgTree_entity" and three EntityFields (UID, PARENT, TITLE). Then we

add a JDitoRecordContainer and create a Context called "OrgTree". Furthermore, we add a View

"OrgTree_view", assign "OrgTree_entity" to the Context and set the Context’s property filterView to

"OrgTree_view". Then we open "OrgTree_view" in the Navigator window. Within the View, we add a

Tree ViewTemplate and make sure that "#ENTITY" is assigned in the entityField property. Then we

fill the parentField with our PARENT EntityField and titleField with the EntityField TITLE. Now

add the Context to the Global Menu under application > ____SYSTEM_APPLICATION_NEON. This

completes the basics for this example.

© 2025 ADITO Software GmbH 311 / 472

Now we go back to our Entity and open the contentProcess of the RecordContainer. Here we build

the data to be displayed in the tree. First, we will gather our data, then we put it in the right format,

and finally we return it. This example will use the "layer by layer" strategy (see above).

import { result } from "@aditosoftware/jdito-types";
import { newSelect } from "SqlBuilder_lib";

// First we get our two layers of data.
// It could be done with one SQL statement,
// but that would make the example more complex.
// We go for simplicity in this one.
// Getting person data, using the SqlBuilder
var personData = newSelect("CONTACTID, FIRSTNAME, LASTNAME,
ORGANISATION_ID")
 .from("PERSON")
 .join("CONTACT", "PERSONID = PERSON_ID")
 .where("ORGANISATION_ID is not null")
 .and("PERSON_ID is not null")
 .table();

// Getting organisation data, using the SqlBuilder
var orgData = newSelect("CONTACTID, ORGANISATIONID, NAME")
 .from("ORGANISATION")
 .join("CONTACT", "ORGANISATIONID = ORGANISATION_ID")
 .where("ORGANISATION_ID is not null")
 .and("PERSON_ID is null")
 .table();

// Now we prepare our result array
var res = [];

// For our UID field, we want to use the CONTACTID.
// As we have selected the ORGANISATIONID with both our layers,
// we need to replace the ORGANISATIONID in our person data
// by the organisation's CONTACTID.
for(let i = 0; i < orgData.length; i++)
{ for(let j = 0; j < personData.length; j++)
 { if(personData[j][3] == orgData[i][1])
 {
 personData[j][3] = orgData[i][0];
 }
 }
}
// As the organisations are the first layer,
// we will add their data to the array
// The order of our fields will be: UID, PARENT, TITLE
for(let i = 0; i < orgData.length; i++)
{

© 2025 ADITO Software GmbH 312 / 472

 res.push([orgData[i][0], null, orgData[i][2]]);
}

// Now we add our second layer
for(let i = 0; i < personData.length; i++)
{
 res.push([personData[i][0], personData[i][3], personData[i][1] +
" " + personData[i][2]]);
}

// Last step: Returning the data to the system
// using result.object(), because we need
// to return an array, not a String.
result.object(res);

After that is done, we open the dialog of the recordFieldMappings property of the

RecordContainer and add UID.value, PARENT.value, and TITLE.value.

Now we can deploy our changes and test it in the web client.

 This chapter will be extended in a future version of this manual.

11.3.32. WebContent (IFrame)

Displays a web page, with the URL or HTML content being defined in an EntityField (specified in the

ViewTemplate’s property "entityField"). The dimensions of the component’s appearance in the client

can be defined using properties width, height, and unit.

Example:

ViewTemplate "Timeline" of View "FacebookTimeline_view" (of Context "Social"). This ViewTemplate’s

property "entityField" references the EntityField FACEBOOK_TIMELINE (of Social_entity), which has a

valueProcess, whose result is HTML code defining the web content to be displayed. The web content is

visible in the client, when you add the Dashlet "ADITO Facebook Feed" (in the DashletStore’s Dashlet

group "Social Media") to your Dashboard.

11.3.32.1. Advanced explanations

The ViewTemplate "WebContent" is controlled by the properties of

● the ViewTemplate itself

● the EntityField that is referenced in the ViewTemplate’s property "entityField"

The settings differ depending on the content to be displayed:

© 2025 ADITO Software GmbH 313 / 472

● Content source

The source of the content is always the valueProcess of the EntityField. Example:

valueProcess of EntityField TWITTER_TIMELINE of Social_entity

import { vars } from "@aditosoftware/jdito-types";

import { result } from "@aditosoftware/jdito-types";

var account = vars.get("$param.Account_param");

result.string("<html onmouseover=this.className='scroll' onmouseout=this.className='noscroll'

class='noscroll'><head><style>.scroll { overflow: auto; }.noscroll { overflow: hidden; }</style></head><body><a class=

\"twitter-timeline\" href=\"https://twitter.com/"+account+"?ref_src=twsrc%5Etfw\">Tweets by "+account+" <script async

src=\"https://platform.twitter.com/widgets.js\" charset=\"utf-8\"></script></body></html>")

● Loading URLs

If the EntityField’s property contentType is set to LINK, the URL will be used that is given in the

valueProcess, and the web page will be loaded in the IFrame.

● Loading HTML

If the EntityField’s property contentType is set to HTML, the HTML will be used that is given in

property valueProcess, and it will be rendered in the IFrame.

● Heigth and width

○ If the ViewTemplate’s property height is set to a specific value, then the height of the

IFrame will be set to this value.

○ If the ViewTemplate’s property width is set to a specific value, then the width of the

IFrame will be set to this value.

● Unit

Via the ViewTemplates property UNIT, the unit of height and width can be specified. You can

choose between pixel and percent. If the unit is not set explicitely, pixel will be used as default.

● States

Via the Entity’s property "state"/"stateProcess", the state of the component can be controlled:

○ The IFrame does not change when READONLY or EDITABLE is set, because this component

is always readonly.

○ The IFrame cannot be disabled (state DISABLED), because this component is always

enabled.

○ If the state is set to AUTO, the IFrame is VISIBLE by default. If the IFrame should be

invisible, the state must be set to INVISIBLE.

11.3.32.2. Common mistakes

Here are some common mistakes when using the WebContent ViewTemplate. We use the ADITO

homepage as example: https://www.adito.de/

© 2025 ADITO Software GmbH 314 / 472

https://www.adito.de/

If you want to embed a hyperlink, then the content type must be set to LINK, and the valueProcess

must provide the URL of the web page to be shown. A common mistake is to set the contentType to

TEXT or HTML, and the valueProcess provides an IFrame, something like

<html><body><iframe src="https://www.adito.de/"/></body></html>

As the WebContent ViewTemplate itself is an IFrame, this code leads to nested IFrames, which results

in suboptimal usage of space and to possible errors in display.

A further bad example refers to links in a custom HTML page. In this case, the right contentType is TEXT

or HTML, both work. However, if you add a link like this to the page

ADITO Homepage

then the page will open in the IFrame. If you want to avoid this, you need to add further keywords,

such as

<a href="https://www.adito.de/" target="_blank" rel="noopener

noreferrer">ADITO Homepage

Then, the web page will open separately.

© 2025 ADITO Software GmbH 315 / 472

11.3.33. Further ViewTemplate types

ViewTemplates of further types may be available in future ADITO versions. If you can find no

ViewTemplate suitable for your purpose, please issue a request to ADITO via the Service Client.

© 2025 ADITO Software GmbH 316 / 472

11.4. Renderers

A Renderer is an ADITO model that can be assigned to an EntityField in a ViewTemplate (e.g.,

MultiEditTable), in order to change its appearance or its functionality (e.g., edit options).

Currently, there are 2 categories of Renderers available

● ViewRenderer: Renderer for changing the appearance.

● EditRenderer: Renderer for adding edit functionality (visible, e.g., as additional buttons).

To create a Renderer, navigate to "renderer" in the "Projects" window. Then, right-click on "renderer"

and choose option "New" from the context menu. A model create dialog will appear, in which you

enter the name of the renderer and leave the model type preset to "renderer". After confirming with

"OK", a second dialog appears, requesting the Renderer’s type.

Currently, the following Renderer types are available:

● NUMBERFIELD

● BADGE

● MULTISELECTCOMBOBOX

If a Renderer suitable for your use case already exists, you can re-use it, without

having to create a new one. Each Renderer can be used for multiple use cases.

11.4.1. NUMBERFIELD

If you choose Renderer type NUMBERFIELD, an EditRenderer will be created. If assigned to an

EntityField in property editRendererMapping of a ViewTemplate (only available in ViewTemplates of

some types, e.g., MultiEditTable), the following additional buttons will appear in the client:

● Reset button (circular arrow): If you have changed an EntityField’s value, but not saved yet, this

button allows you to reload its value from the RecordContainer.

● "Set maximum" button: This button overwrites the currently displayed value with the maximum

value as defined in the corresponding EntityField’s properties "maxValue" or "maxValueProcess".

If these properties are not set, the "Set maximum" button is not displayed.

● Incrementer and decrementer buttons:

○ By default, a "Plus" and a "Minus" button are displayed, allowing the client user to

increase or decrease the currently displayed value in steps of 1.

○ You can customize the step by setting one of the following properties

© 2025 ADITO Software GmbH 317 / 472

■ numberfieldStep: Enter a positive decimal value to define the step size. This will

effect both the button for increasing and for decreasing the value. This property is

ignored, if property numberfieldStepsProcess (see below) is set.

■ numberfieldStepsProcess: Create arbitrary incrementer/decrementer buttons by

defining their corresponding step size, which can be positive and negative decimal

values, specified as an array. The following example results in four

incrementer/decrementer buttons, corresponding to steps of size -100, -0.5, 0.5,

and 100 (make sure to use result.object and not result.string, in this

case):

Example code for property numberfieldStepsProcess

result.object([-100, -0.5, 0.5, 100]);

Example in xRM:

You can study an example of the usage of a Renderer of type NUMBERFIELD in ViewTemplate

"MultiEditTable", included in ProductpriceFilter_view. Here, the Productprice_entity’s EntityField PRICE

has the Renderer "numberInput" assigned, see property "editRendererMapping". The Renderer

"numberInput" itself can be found in the "Projects" window, under "renderer". For testing purposes,

you may change its properties numberfieldStep or numberfieldStepsProcess, or set the EntityField

PRICE’s properties maxValue or maxValueProcess, in order to get familiar with the effects of this

Renderer in the client. (Note that if there is code set for property maxValueProcess, then the value of

property maxValue will be ignored.)

11.4.2. BADGE

If you choose Renderer type BADGE, a ViewRenderer will be created. If assigned to an EntityField in a

ViewTemplate (e.g., of type MultiEditTable), the EntityField’s value will be displayed on a background

that shows the color that is defined in the EntityField’s properties color or colorProcess. (The font color

will automatically be shown in the complementary color.) Renderer type BADGE has no specific

renderer properties to set, it is simply created and assigned to an EntityField using the ViewTemplate’s

property viewRendererMapping (only available in ViewTemplates of some types, e.g., MultiEditTable).

Example in xRM:

You can study an example of the usage of a Renderer of type BADGE in ViewTemplate "MultiEditTable",

included in ProductpriceFilter_view. Here, the Productprice_entity’s EntityField PRICELIST has the

Renderer "badge" assigned, see property "viewRendererMapping". The Renderer "badge" itself can be

found in the "Projects" window, under "renderer". For testing purposes, you may edit the EntityField

PRICELIST’s properties color or colorProcess, in order to get familiar with the effects of this Renderer in

the client. (Note that if there is code set for property colorProcess, then the value of property color will

be ignored.)

© 2025 ADITO Software GmbH 318 / 472

11.4.3. MULTISELECTCOMBOBOX

Using a Renderer of type MULTISELECTCOMBOBOX is an alternative to using a list of checkbox items

that are all visible permanently.

11.4.3.1. Basics

Given an EntityField that holds multiple items (via dropdownProcess or via Consumer), with the option

to select one or multiple of them (selectionMode = MULTI). By default, this will result in a list of all

selectable checkbox items. Now, for a small number of items, this is fine:

However, a larger number of selectable items might spoil the respective ViewTemplate’s appearance. In

these cases, the Renderer MULTISELECTCOMBOBOX should be preferred. It is an EditRenderer and

packs all checkbox items in a combo box. Only if you open the combo box, the selectable items are

visible (if required, in a scrollable way).

Independent from if the combo box is opened or closed, the selected items (or a part of them) are

shown above the combo box, along with the option to deselect them (via a cross icon to the right),

without having to open the combo box.

How many of the selected items are shown above the combo box depends on the available space. If

there is not enough space to display all selected items, then a number is shown on the left. Example: If,

© 2025 ADITO Software GmbH 319 / 472

e.g., 5 items have been selected in total, with the last 2 of them shown above the combo box, then this

number is 3. If you hover over this number with the mouse pointer, the further selected items are

shown in a tooltip.

Furthermore, the MULTISELECTCOMBOBOX includes a filter: Simply type in a filter value on the right of

the selected items, then the combobox will be filtered accordingly:

11.4.3.2. Configuration

The configuration of a MULTISELECTCOMBOBOX takes 2 steps:

1. Create a new Renderer of type MULTISELECTCOMBOBOX

In the "Projects" window, right-click on folder "renderer" and choose "New" from the context

menu. In the following dialog, give the new Renderer a suitable name and make sure that

"renderer" is selected as type. After clicking "OK", select MULTISELECTCOMBOBOX in the

subsequent dialog. Once confirmed with "OK", the new Renderer is added to the list of existing

Renderers.

© 2025 ADITO Software GmbH 320 / 472

2. Now, the new Renderer can be assigned to the respective multiselection EntityField, via property

editRendererMapping of a ViewTemplate (only available in ViewTemplates of some types, e.g.,

Generic):

11.4.3.3. Value format

When working with an EntityField that has a Renderer of type MULTISELECTCOMBOBOX, the value

format is the same as it is without the Renderer.

Example:

© 2025 ADITO Software GmbH 321 / 472

Given an EntityField MYTESTFIELD, with selectionMode = MULTI and a dropDownProcess as follows:

result.object([
 ["id1", translate.text("Cat")],
 ["id2", translate.text("Dog")],
 ["id3", translate.text("Bird")],
 ["id4", translate.text("Horse")],
 ["id5", translate.text("Fish")]
]);

If you select and save, e.g., "Cat", "Bird", and "Fish", then

● vars.get("$field.MYTESTFIELD") as well as

● vars.get("$this.value")

will return a multistring - in this case "; id1; id3; id5;".

Therefore, if you want to further process the value (e.g., in an onDBInsert process), you will have to

decode it first, in order to get it as an array:

var myFieldValue = vars.get("$field.MYTESTFIELD") ; // ";id1; id3; id5;"
var myFieldValueArray = text.decodeMS(myFieldValue); // ["id1", "id3", "id5"];

Vice versa, if you want to preset the selection of specific items of the combo box, in a valueProcess,

then you need to encode the value first:

if (vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && vars.get("$this.value") == null) {

 var initialValue = ["id1", "id2"];

 var encodedValue = text.encodeMS(initialValue);// "; id1; id2; "

 result.string(encodedValue);

}

11.5. Device-specific designs

ADITO includes an automatic optimization of its design, depending of the type of device on which it is

used:

● Desktop

● Tablet

● Mobile

Several ADITO models (e.g., Contexts or ViewTemplates) have a property named "devices", which

allows you to control, on which of the 3 device types ADITO will be available.

© 2025 ADITO Software GmbH 322 / 472

For demonstration or testing purposes, you can also show the tablet-specific and the mobile-specific

designs in your (Chromium-based) desktop browser.

Here is an example of showing the mobile-specific design in a Google Chrome or Microsoft Edge

browser:

1. Log out

2. Close the browser tab in which ADITO had run

3. Enter the basic URL of your ADITO system, adding the suffix "/mobile", e.g.,

https://myProject.dev.c2.adito.cloud/mobile

4. Click key "F12"

5. A developer window will appear. Here, click subsequently on

a. the three-dotted button (upper right corner) and choose "Dock side" > "Undock…" button

b. "Toggle Device toolbar" button (left upper corner of the developer window)

6. Click key "F11"

If you want the tablet-specific design to be shown, proceed as described above, but use the suffix

"/table" instead of "/mobile".

If you are done with testing, subsequently click the keys "F11" and "F12" again, in order to return to

your normal browser usage.

Due to browser "cookies", you might have problems to return to the "normal"

(desktop-specific) design, if you only enter the usual URL (e.g.,

https://myProject.dev.c2.adito.cloud/ or https://myProject.dev.c2.adito.cloud/

client). This possibly still opens ADITO showing the tablet- or mobile-specific design

(= the latest design that you had used). In these cases, repeat the above steps, using

the suffix "/desktop".

11.6. Further design elements

11.6.1. Icons

Well-selected icons help the user to navigate through the client and its menu items. ADITO provides

you with a large number of predefined icons, which you can assign to various components, such as

menu groups, or Contexts. Besides, you can also use any icon from your own resources. If no icon is

selected, a question mark ("?") is displayed instead.

11.6.1.1. Predefined icons

© 2025 ADITO Software GmbH 323 / 472

https://myProject.dev.c2.adito.cloud/mobile
https://myProject.dev.c2.adito.cloud/
https://myProject.dev.c2.adito.cloud/client
https://myProject.dev.c2.adito.cloud/client

Whenever an ADITO component shows a property named "icon" or "iconId", you can use the combo

box to select from a long list of predefined icons. Then deploy. Whenever an icon is included in a menu,

you need to log out and log into the web client first, in order to see the icon.

Example:

As you will have noticed, menu group "Car Pool" is currently displayed with a question mark to the left

of it. To replace it by an icon double-click on application > _SYSTEM_APPLICATION_NEON, and then, in

the visual representation of the Global Menu (menu editor in the Editor window), click on "Car Pool".

Then, in the properties window, select a suitable icon, e.g., "VAADIN:CAR".

You can now repeat these steps in order to assign icons also to the car pool-related Entities (not to the

Contexts, whose icons are only shown in the Designer). These icons will then, e.g., appear on the top of

a Context (in blue font color) and in the vertical navigation bar to the very left of the client (to be

opened via the "burger button" in the upper left corner of the client).

Entities have multiple icon-related properties. Please ignore the outdated properties

"icon" and "iconProcess", and use (further below in the property sheet, in section

"Icon") the properties "iconId" and "iconIdProcess" instead.

You can quickly find a suitable icon, if you filter the "icon" combo box using the

starlet ("*") as preceding wildcard.

Example: You are looking for an icon that has something to do with a "circle". To find

all possibly suiting icons, proceed as follows:

1. Open the "icon" combo box by clicking on the small "arrow" to the left of the

3-points button: A long list of all icon names, along with a preview of all icons,

will appear.

2. Type the following string: *circle

→ The focus will jump to the first icon with its name containing the word

"circle"

3. Use the arrow keys (down/up) to navigate to all other icons having names

containing "circle". (This is better than scanning the whole list using the scroll

bar.)

4. Press the "Enter" key to select the icon of your choice.

11.6.1.2. Icons from user’s resources

You can use icons from your own resources also via property "icon" - but now, do not open the combo

box, but click on the three-dotted edit button ("…"). This will open a file selection dialog; here, you can

navigate to the folder, in which you have stored the icon, and select ("Open") it there. Then, instead of

© 2025 ADITO Software GmbH 324 / 472

the file’s name, only the placeholder "[BINDATA]" is shown as property value. Note that the icon will

not be stored as a file in the ADITO project, but it will be inserted as binary value in the system

database table ASYS_BINARIES.

All parts of the ADITO xRM project are already equipped with well-suited icons. This

ensures a consistent layout of the ADITO client. Therefore, it is strictly against the

intention of ADITO that these icons are replaced by user-defined icons. Exceptions

are possible, if an icon represents a specific system (e.g., a connected ERP system), a

product, or a company.

Generally, ADITO recommends to use exclusively vector graphics, included in SVG files. This allows an

arbitrary scaling/zooming, and the programmer does not have to consider the resolution of the image.

If you nevertheless want to use absolute icons (like those of format BMP, PNG, or JPG), you need to

design them according to purpose, display resolution, and zoom level (an icon appearing great on a 24“

HD display may look bad on a 4K display). Therefore, ADITO recommends to use only vector graphics as

icons.

As the client’s elements can be zoomed in the browser, there is no absolute size of

icons. Currently, icons appear smallest in the Global Menu, and largest in Views

including "tiles".

11.6.1.3. Variable icons

If you want to use various, logic-dependent icons, enter the required code in property "iconProcess".

All icons must at first be stored in the system database table ASYS_BINARIES. The result of the

iconProcess (result.string(…)) must be the value of field ASYS_BINARIES.ID of the dataset

representing an icon.

© 2025 ADITO Software GmbH 325 / 472

11.6.1.4. Avatars

In ADITO, so-called Avatars are tiny visual components that are auto-generated by the ADITO platform’s

logic for all EntityFields of contentType IMAGE.

Example:

In PersonFilter_view, column PICTURE shows icon-typed images of the persons. However, if a Person

dataset does not include an image (EntityField PICTURE), the first letters of first name and last name

are displayed on a square, colored background. (The configuration of this behavior is done in PICTURE’s

displayValueProcess, see below.)

Both variants - image and letter-based substitution - are named "Avatars" in ADITO.

For a better understanding of the following, you need to know that the ADITO

platform automatically converts binary images (after being loaded from the

database) into base64 strings, before perfoming subsequent logic. Thus, the value of

an EntityField of contentType IMAGE is always a string, not a binary object.

The ADITO platform’s Avatar auto-generation logic for EntityFields of contentType IMAGE works as

follows:

● If the EntityField is to be displayed in a ViewTemplate of type "Picture", the value is interpreted

as base64 image, which is then shown without additions (no background etc.). The following

steps are skipped.

● The logic checks if the value includes character ":" (colon). If not, the value is interpreted as

base64 image, which is then shown it without additions (no background etc.). The following

steps are skipped.

● The subsequent steps of the logic depend on the prefix (= the string part preceeding the ":"

character):

○ prefix "TEXT": 0-2 characters are shown on a colored, square background, according to

the following logic:

First, the part of the string that follows the ":" character is split into substrings, using " "

(space) as delimiter.

Empty substrings are sorted out. The remaining substrings are the actual basis for

generating Avatar character(s):

■ If there is only one substring, its first 2 characters are used. If the substring

contains only 1 character, the Avatar will show only this single character.

■ If there are multiple substrings, the first characters of the first 2 substrings are

used. There is one exception: If the first character of a substring is a non-letter

character, then this substring is skipped, and instead the first letter of the next

© 2025 ADITO Software GmbH 326 / 472

substring is used. This logic is helpful when, e.g., a company name like "Energystar -

Oil Company" is given; in this example, the letters "EO" would be extracted, not "E-

".

■ Example from the xRM project’s Context "Contact": If there is no image of the

person available, the displayValue of EntityField PICTURE starts with "TEXT:",

followed by the values of first name, last name, and company name (separated by

a "space"). Thus, the auto-generated Avatar characters are usually the first letter of

the first name and the first letter of the last name. If, however, a first name is not

available (= this substring is empty), then the Avatar’s characters will be the first

letter of the last name and the first letter of the company name.

■ The color of the Avatar’s square background depends on the color-related

properties of the respective EntityField ("color" or "colorProcess"). If none of these

properties is set, the background color is generated on the basis of a hash value of

the original string.

Note: The auto-generation logic is, of course, limited to the colors defined in the

"Theme" (see chapters Themes and Color). Thus, the logic cannot ensure that a

unique color is assigned to each single dataset.

○ prefix "NEON" or prefix "VAADIN": The complete string is interpreted as name of one of

the official icons provided by the ADITO platform. You can browse the names of the

available icons, e.g., via scanning the combo box of an "icon" property (see chapter Icons

for further information).

○ prefix "URL": The part of the string that follows the ":" character is interpreted as an URL,

pointing to an external image.

Example task:

Given be an EntityField MYIMAGEFIELD, which has the contentType IMAGE. Now, if no image can be

loaded from the database, the value of MYIMAGEFIELD should be a combination of the first characters

of text-typed EntityFields ENTITIYFIELD1 and ENTITIYFIELD2. If ENTITIYFIELD2 is empty or starts with a

non-letter character, the first character of ENTITIYFIELD3 should be used instead.

To achieve this, you need to program a logic for setting a textual value for covering the case that a real

image is not available. Usually, this is done in MYIMAGEFIELD’s valueProcess or displayValueProcess,

including a case like this:

XXX_entity.MYIMAGEFIELD.displayValueProcess

(...)
if (vars.get("$field.MYIMAGEFIELD"))
 result.string(vars.get("$field.MYIMAGEFIELD"));
else

© 2025 ADITO Software GmbH 327 / 472

 result.string("TEXT:"
 + vars.getString("$field.ENTITIYFIELD1") + " "
 + vars.getString("$field.ENTITIYFIELD2") + " "
 + vars.getString("$field.ENTITIYFIELD2"));
(...)

The ADITO platform’s logic will then auto-generate an Avatar on the basis of the string as concatinated

in the "else" part of the above code fragment.

Further examples:

For testing purposes, you may

● create an EntityField (e.g., named "PICTURE") for a suitable Entity of the xRM Project (e.g.,

Interest_entity),

● assign it to a suitable View (e.g., to InterestFilter_view), and

● enter the following valueProcess:

Interest_entity.PICTURE.valueProcess

// Avatar with characters "XA" on colored background
result.string("TEXT:xyz ABC mno");
//
// Icon showing "plus" symbol
// result.string("NEON:PLUS");
//
// Icon showing "factory" symbol
// result.string("VAADIN:FACTORY");
//
// URL pointing to image of Heinz Boesl (Founder of ADITO)
//
result.string("URL:https://www.adito.de/fileadmin/uploads/unternehme
n/team/heinz-boesl.jpg");
//
// ADITO logo as base64
//
result.string("UklGRroFAABXRUJQVlA4TK0FAAAvlUAJEE4hyLZZ/bWfM0TEBFT2B
5Hk2rbrtjkteOip8ysgnWatY6eoVBURD/AHGF8sCwmbSJKEdNX7T1/DZyiAHB/MFTLcR
JJtK8fcO2OA6GX8QuxR/XCDE0kAAJaRlLVt27ZtvWzbtm3btm3btm2fUQduIymSa0vHd
8twT4AYyVbYZvsvO8A3TgVfkh9qeY8kQQBAsM3FtW3btm3btm3btm3N3qvWbzZjO3HgN
pIiJceYmVn4Q8oIhowLJP+2DAtKVhMRlpe9t4ysh4QKtCSCLTNrIrLyuSaSeOv+/Lk/Z
MwaUVaU5f1OWVPSFEzWECGU1YsX1+DjfQrRPlLQOedQuxRN1hDRkB8dhwrKEiIwkrt7q
H2KLiuIUMhe16FCs4KIrvzuow4pBgyYPwInlZfWDhWR+SN0ctp6fE4h2qcWdUwxZvqIp
fxrPLuGnq47M+1B61BRGDB7BFGam24Z+bW+KMxGF6gTijmTR9jlpiWDf/wR+Q9m6rQYq
FgMmDzi0nZLakLFFKhTihUDpo6gSl9b+S4qCcVS3VDxGDB1hF+eWrImhEmouAJ1TrFn5
khg8VjSk+STOisGKmnmUxbBlIm28kPUks4NdUlxDo8rCIFZsKIE1/VB/Adw7sE5KnoK/

© 2025 ADITO Software GmbH 328 / 472

Wz/ZQETIkedLn0GDBn9TocGecIg6zhEUt5bsiHElxGh2KobKnX4Rp4bV0O3moDWErXvq
XTpwpnX1pXSHD3K3r88lc3OmavP3twbVJANNz77Aw75QF3X80D464s7e2JxzeOQmOKxX
EiNBAjibUyo+AJ1RXEPlrJ3S5c/jNcU09nQR77dbShJjPeNtpGFKaLlI2zUoGgEThLBl
6VGdWZOsVHnxchR6RTsGI1Fl3Ggb4g7shWoOwgj5d1WrN/MkkSU5VtX52XqmuIdKnWfk
qD5gZLEP+YlWBho6LOYU/QjpgRrNslS8Ajh9kuSFw0Jfoj4Yk2x8jEgiWSU3c8M/ThvO
majqXQq7VApVAv1pxiorKEb7SPIc1r2k8Q0cAWaBr4CJgWK1ul/kuguICNG3DlHrHLoJ
Ahqp4hDRuZogtXBnyMb1u8bDnw1gI8QwxiQCKlsXYycq7RrLMU/UDq+JUEW1jzgkoCzq
kDmWsVpSBLLAAvF6vqdBGrdSdQkiVWQohXAcJLYSiKa8uuiOq/rOlQOBdctgL6R4xm+x
mk3ScyDbMLtJLEDtAnD7moDVdqVEsdLjjEgAislAr0adUcJdjH0CztBEd7dPMcdJLtNm
MEkcQD8JdO0SutKQWOL9SgRGjl6vUPl924AjU7v4+9unPamzQN0D0ZQ/0DrTxIpXckbL
YnHiZjI344X19AQ6p4S7mDm77gX3cDP03wRkkBz3IPpuLH77RM9SSK1K6ejqYcRBKlvP
yv/ZFzKpeIu1b/9fB/eGz/t04BDFVHw5Qg/0wERyRN79n+/18PxNNbB9l+2BvAlWpNEY
VeKwUziKMIsly15EN4IzDnhi5g2kIq+hoqkhgrgrMpg1uAbswXDdQdcBkYRlZdXUpkkt
nEXsaD/byNC1UTs5X9Levv/t1Ci1FMxueaqu2MpO9rGOYNuVZOWSW1GvEQaQVTga0kbT
cgOVUiXKE5sS5Cm1MblwEelCqp0Ft8pbt2GQqBqiqmFYFPUcIQao/be/ap3aNgJHM/dM
x0ypfZaXKcpK84ycwP1m7IVIblrK3fC2RdKmfo8qxbXIyyYjSRxToUQ4dlQ8HaE2Me1i
WcUzmuRcLMVSx1TbBJbPJZOQRpAoVJdxRhCse/uXo+MGDLLOnGoSRD4b4HkKX0MGOBPT
Qvzc6OWeqLsIhsCyb9r5L+4ZySUMfUbcxHb9HwWBlDjyvnPhX3SZRxRWy6d/45GQNXnV
+nUW49s6RFGZHRRXn/H5x/l144leY9cOL+9oFYcc9kYd+qL/7BIKKj3/Ws4cOqcWqRKK
CUKHgMAAA==");

If the Avatar logic fails for whatever reason (e.g., the prefix or the base64 is not

valid) a circled "exclamation mark" icon is shown instead of the Avatar (or, in some

cases, no Avatar at all).

As an exercise, try to write a displayValueProcess for Car_entity’s EntityField

PICTURE, in order to display a green Avatar, if an image of the car is not available.

11.6.1.5. Using gif files

Technically, you can also use an animated gif file instead of a static image, e.g., as picture of a contact

person, or as background of the client’s login page. However, we recommend to use this feature with

great care (if at all), as animations generally tend to distract the user’s attention from the actual

information content shown in the client - and, in most cases, they are of no real additional benefit for

the user.

© 2025 ADITO Software GmbH 329 / 472

11.6.2. Client navigation helpers

In ADITO, there are several ways to navigate through the various Contexts and Views. In the following

chapters, you can find a description of additional functions, which increase the convenience when

navigating in the client.

11.6.2.1. QuickEntry

The round blue button in the upper right corner of the ADITO client provides "QuickEntry" functionality,

i.e., it enables you to quickly create new datasets of various Contexts. Technically, this means that

specific EditViews are linked here. To add an EditView to the QuickEntry, proceed as follows:

● Click on the EditView in the "Projects" window.

● Set the View’s property "title". This text will appear in the list behind the quick create button.

● Open the editor dialog "Quick Entry" by clicking on the editor button (three-dotted button) in

the View’s property "quickEntry".

● In this dialog, press the "Plus" button, to add a new line.

● Select the required EditView in the combo box of the new line.

● Move the new View up to the required position.

● Set a suitable icon in the EditView’s icon property. Otherwise, a question mark will be displayed

in the QuickEntry list. You will need to log out and back in to make this take effect.

● Confirm with OK.

Do not set the "quickEntry" property for Views other than EditViews. This can lead

to errors in the client.

To remove a View from the list behind the Quick Create button, right-click on its property "quickEntry"

and choose "Restore Default Value" from the context menu.

11.6.2.2. linkedContext

Every Entity-Field has got a property named "linkedContext". Here, you can specify any Context of your

application. The effect in the client is, that (not in all Views, but, e.g., in the PreviewView)

● beside the field, a small blue "eye" icon is shown. If you click on it, the PreviewView of the

specified Context is opened.

● the field’s content is shown in blue font color, indicating a hyperlink. If you click on it, the

MainView of the specified Context is opened.

© 2025 ADITO Software GmbH 330 / 472

11.6.3. Color

Colors help the user to navigate in the ADITO client. For example, a blue button with a white plus sign

means "Here, you can create something new." Therefore, the definition of further colorings should

always be done with caution and integrated into a general color concept.

Several ADITO models have color-related properties:

● color: Here, you can select a fixed value from a list of predefined colors. It is not possible to

choose random colors.

● colorProcess: Here, you can enter code which ends with a result.string() command

having a color value as argument. It is not possible to choose random colors, but you have to use

one of the color values available via the constants neon.<…>COLOR (import "system.neon"

first). This will prevent that, by mistake, colors are used that violate the defined "Theme" (see

chapter Themes, subchapter of chapter Controlling the design).

Currently, the color properties of an EntityField have only an effect in a limited

number of cases, e.g., for

● EntityFields that are displayed as colored score card (ViewTemplate type

"Score Card")

● EntityFields of contentType IMAGE (and there it works only if its valueProcess

delivers one of ADITO’s predefined vector graphic icons, see example below).

Furthermore, the number of available colors is also cautiously limited to

those colors that are available via the constants neon.<…>, e.g.

neon.PRIORITY_HIGH_COLOR. And, as you can see, these color

constants do not refer to explicit color names, but they refer to their purpose.

● specific types of Avatars (see chapter Avatars)

For exercise purposes, let’s introduce an additional column showing an icon, whose color depends on

the color of the car:

● Add a new EntityField named COLOR_ICON to Car_entity

● Set the properties of the new field as follows:

○ contentType: IMAGE

○ valueProcess:

Car_entity.COLOR_ICON.valueProcess

var statusNew = $KeywordRegistry.taskStatus$new;

© 2025 ADITO Software GmbH 331 / 472

result.string(TaskUtils.getStatusIcon(statusNew));

(We simply "borrow" a circle-type icon from Context "Task".)

○ colorProcess:

Car_entity.COLOR_ICON.colorProcess

switch(vars.get("$field.COLOR"))
{
 case $KeywordRegistryCarPool.carColor$green():
 result.string(neon.PRIORITY_LOW_COLOR);
 break;
 case $KeywordRegistryCarPool.carColor$yellow():
 result.string(neon.PRIORITY_MEDIUM_COLOR);
 break;
 case $KeywordRegistryCarPool.carColor$red():
 result.string(neon.PRIORITY_HIGH_COLOR);
 break;
}

● If you have not done it before, extend lib "KeywordRegistry_carPool" by the functions returning

the KEYID of keyword entries corresponding to the colors:

KeywordRegistry_carPool

// Keyword entry names (KEYID)
$KeywordRegistryCarPool.carColor$red = function(){return "RED";};
$KeywordRegistryCarPool.carColor$yellow = function(){return "YELLOW";};
$KeywordRegistryCarPool.carColor$green = function(){return "GREEN";};

● Now, you can extend the "Table" ViewTemplate of CarFilter_view by a further column holding

the new EntityField COLOR_ICON. Deploy and see the result in the client.

© 2025 ADITO Software GmbH 332 / 472

11.6.4. Login web page

The client web page showing the ADITO login mask consists, by default, of

● a standard background, showing a marketing-style photo of ADITO,

● an ADITO logo, placed above the login mask, and

● the description "ADITO <Number>" in the browser tab title, e.g. "ADITO 2019".

If you want to customize these design elements, proceed as follows: In the "Projects" window of the

ADITO Designer, navigate to system > default and, in the Editor window, double-click on

"____CONFIGURATION". Then, in the Navigator window, navigate to System > Client. This will open a

property list in the Editor window: Look at section "Client", which includes the following properties:

● clientTitleText: Here, enter the text you want to be displayed as title of the browser tab.

● clientLogo: If you want your own logo to be displayed above the login mask, choose it using the

file browser, available via the three-dotted button.

● clientBackground: If you want your own background image to be displayed, choose it using the

file browser, available via the three-dotted button.

● clientTimeout: Specifies the timeout of a client in milliseconds. If a user does not work within

this time, the connection is disconnected and the client is terminated. The value is freely

selectable as a positive integer.

© 2025 ADITO Software GmbH 333 / 472

11.7. Automatisms

Besides the design elements that can be controlled manually, ADITO includes various automatisms to

ensure a well-balanced design.

11.7.1. Visibility of tabs

The visibility of a tab in a MainView is calculated automatically, in order to avoid empty tabs, as far as

possible. The visibility of a tab depends on the visibility of the components in it: If there is a View

reference, e.g., to a table and this reference is not visible, then the tab will also be invisible.

Example:

Person_entity: In the detail area of the MainView, there is a View reference to

PersonTaskAppointment_view. This View, in turn, includes a View reference to the tasks

(TaskFilter_view) and to the appointments (AppointmentFilter_view). If both tasks and appointments

are invisible, then the tab is invisible. If at least one of these View references is visible, then the tab is

also visible.

In any case, the reason for the invisiblity does not matter - be it because of permissions, Consumer

state, settings of the "devices" property, or just because the View reference is empty.

The calculation of visibility also works for deeply nested Views - the principle remains the same: The

visibility depends on the visibility of the View reference(s). The same applies to one-to-one Consumers

(property isOneToOneRelationship set to true), as they are also realized as reference.

However, if a ViewTemplate of the original Entity is involved, its invisibility does not contribute to the

(in)visibility of the View it is assigned to.

Example (fictitious):

Person_entity: In the detail area of the MainView, there is PersonAttributes_view (via View reference

on #ENTITY). PersonAttributes_view, in turn, has 2 elements:

1. AttributeRelationFilter_view (via View reference on Attributes)

2. "Generic" ViewTemplate with 3 EntityFields of Person_entity, e.g., ROLE, LETTERSALUTATION,

CONTACTTYPE

Now, if

1. AttributeRelationFilter_view is invisible

2. all 3 EntityFields of the "Generic" ViewTemplate are invisible (e.g., because of property

"hideEmptyFields")

then the tab nevertheless remains visible, but white and "empty".

© 2025 ADITO Software GmbH 334 / 472

To sum it up: The (in)visibility logic for tabs only works for View references loaded via a Consumer, but

not for the direct usage of ViewTemplates. (This may change in future ADITO versions.)

Furthermore, there is a specific debug level available: NEON_COMPONENT_VISIBILITY

This debug level helps to analyze, why a component is visible or not: When dependencies are involved,

there is a logging of changes of the visibility of View references and of the reason for these changes.

The content of the logging will give you (in technical language) the following information: "Component

PersonTaskAppointment_view is invisible, because TaskFilter_view is invisible and

AppointmentFilter_view is invisible."

12. 360Degree Context

The 360Degree_entity models the relations between specific Entities and enables the user to work with

these dependencies via the 360DegreeFilter_view, which includes the ViewTemplates "Tree" and

"Timeline".

Currently, the 360Degree logic is restricted to relations of Contact_entity (i.e., of companies and

persons). This means that

● the 360Degree View can only be referenced in the MainViews of the Contexts "Organisation"

and "Person" (appearing as tab "360 Degree");

● the 360Degree View can only include datasets (records) of Contexts having a relation to Context

"Contact" (directly or via a "junction Context") - such as the Contexts "Salesproject", "Offer", or

"Order" do.

In the xRM-Project, in property "documentation" of 360Degree_entity, you can find

a comprehensive explanation of the basics and of how to extend the 360Degree

View: Simply open its source text via the property’s three-dotted button and then, in

the Editor (middle part of the Designer), choose tab "Preview". (It will take some

seconds to open the preview.)

© 2025 ADITO Software GmbH 335 / 472

13. Internationalization

ADITO is perfectly suitable for being applied in an international context. Every textual element in its

components, e.g., the title of an EntityField, can automatically be translated into the language defined

in the user’s browser.

In addition to the following sub-chapters, we recommend you to read also the

complete chapter "Internationalization" of the Designer Manual, where you will find

additional information.

13.1. Language files

The core element of ADITO’s internationalization are translation files, separate for multiple languages,

which are available in the folder "language" (see "Projects" window). These files contain key-value

pairs, stored in XML format, in the editor window visible as table with 2 columns: "Key" and "Value":

● "Key" refers to the original text used in the designer, e.g., the value of the "title" property of an

Entity. In xRM, all "Key" values are in English. We recommend to use English also for all terms

(titles, placeholders, etc.) that are added or modified by customizing.

● "Value" refers to the text to be displayed in the client instead of the "Key".

You can easily add files for further languages by right-clicking on the "language" folder, choosing "New"

in the context menu, and in the next step selecting "language" as type. Finally, select the required

language from the language table, and press OK. Then, a new language file is created, which

automatically contains all keys included in the existing files of other languages.

The usual approach is to let the keys be auto-generated, using the "Extract Keys" button (see below).

Besides, you can create further keys manually by right-clicking into a language table and then choosing

"Add row" from the context menu. New key-value rows first always appear on the top of the table, but

after entering it, they are shifted according to the alphabetical order.

13.1.1. Refresh

If you click on the "Refresh" button (a button in the Editor window, showing a "refresh" symbol), all

language files are scanned and compared, in order to assimilate their keys (or, in mathematical terms,

build the "union set" of all keys of all language files). Then, all files will hold exactly the same keys, even

if not all of them have translations (values).

13.1.2. Extract keys

If you click on the "Extract Keys" button (a button in the Editor window, showing a white "key" symbol),

the whole ADITO system is scanned for textual elements that can be translated. New texts are added,

© 2025 ADITO Software GmbH 336 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

but removed texts remain as keys.

The file "____LANGUAGE_EXTRA" is exclusively used for configuration purposes. Its

keys and values are not used. But if you click on it and edit its property "sqlModels"

(via the three-dotted button), a dialog titled "SQL" opens. Here, in the left part,

mark "Data alias". Then, several SQL statements appear in the right part of the

dialog. These statements will be executed when clicking on the "Extract Keys" button

(see above), which results in the creation of additional "Keys", e.g., the titles of

keyword entries.

13.1.3. Find unused keys

Click this button ("minus" icon) to scan all (!) language files for keys that are currently not used in the

ADITO project. The respective keys are listed, and then you can decide which of them to delete.

13.1.4. Export/import

You can export and import keys in different char sets, with the option to specify what character to use

as separator, etc.

13.1.5. Translate all

The button "Translate all" ("globe" icon) refers to only the language file you have currently opened. It

enables you to let all keys of this file be translated automatically, i.e., to let ADITO retrieve and fill all

"Values" automatically. This is done via a web service. Currently, ADITO supports 3 web services:

Google, Yandex, and DeepL. To make them work, enter the respective API key under Tools > Settings >

ADITO > Translators. (Find more information on how to obtain an API key on https://cloud.google.com/

translate/, https://tech.yandex.com/translate/, and https://www.deepl.com/pro, respectively.)

After clicking the "Translate all" button, a "Translate" dialog appears (if you have specified an API key,

see above), with the following parameters:

● Service: Select the web service to be used for the automatic translation.

● Source language: The language of the keys.

● Target language: The language of the values.

● Line break: Specify here, how ADITO will handle line breaks included in the keys.

○ Line break as single request (default): The text of a key will be cut into multiple parts,

according to the line breaks. Each part will then be sent as separate request. This may

increase the costs, if the maintainer of the translation web service charges you according

to the number of requests.

© 2025 ADITO Software GmbH 337 / 472

https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://tech.yandex.com/translate/
https://www.deepl.com/pro

○ Line break to space: Before the web service request, every line break will be replaced by a

white space, i.e. line breaks will be lost in translation.

○ Disabled: No special handling for line breaks. This may result in the web service returning

"strange" results or no result at all.

● Translate only selected: This option will automatically be checked, if you select one or multiple

keys by marking them, then right-clicking on the selection and choosing "Translate…". In other

cases, it has no effect.

● Override existing values: Check, if you want the web service result to overwrite the current

content of the "Values".

Figure 37. Parameters of the automatic translation

If you want to use DeepL, please note:

● Usually, you do not need a proxy. On the basis of the key, ADITO automatically

detects if the pro API or the free API must be called.

● Make sure that the web API is accessible, e.g., by executing the following test

URL: https://api-free.deepl.com/v2/translate?auth_key=<API-

Key>&text=HelloWorld&target_lang=DE (insert your API key accordingly

before executing)

● Some IT environments require you to deactivate the proxy in the Designer

options (Tools > Options > General > "No Proxy"):

© 2025 ADITO Software GmbH 338 / 472

© 2025 ADITO Software GmbH 339 / 472

13.2. User help

In the ADITO client, users can open help texts and illustrations, via the "questionmark" buttons. These

are also subject to internationalization, i.e, they can be customized in order to be displayed according

user’s browser language.

In ADITO document AID005_Userhelp.pdf, you can find more information of how to customize and

maintain the "User help" via the ADITO Designer.

In the xRM project, this functionality is included, e.g., as "Context help":

Figure 38. Example of facilitating the "user help" functionality

13.3. Validation of address and communication data

By default, the xRM project includes a country-specific validation of

● addresses

● communication data, like telephone number, email address, etc.

Example:

In PersonEditView, the ADITO logic will automatically check, if the address’s zip code and the telephone

number comply with country-specific formats. (This functionality requires, of course, that the country

has been set first, in the "standard" address.) If this validation fails, a message is shown beside the save

button. And the save button will be disabled until the entered data has been corrected.

© 2025 ADITO Software GmbH 340 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID005_EN_Userhelp.pdf

From the customizing point-of-view, there is nothing to do except for making sure that the respective

validation properties are set correctly, under preferences > __PREFERENCES_PROJECT > Custom >

__PREFERENCES_PROJECT:

The actual validation methods (provided by the ADITO platform) are called in

Communication_lib (under process > libraries). You may study this library for a

deeper understanding of the topic.

As for the communication data, the following background information might be helpful:

All communication data (telephone number, mobile phone number, email address, website URL, etc.)

are organized via the KeywordCategory "CommunicationMedium", which has the following

KeywordAttributes:

● contentType restricts the type of content that can be entered, and it determines its auto-

formatting. There are the following contentTypes:

○ TELEPHONE: for telephone number, mobile phone number, etc. The automatic validation

checks if the entered value complies with the country-specific format, and the country’s

international area code will be automatically added at front.

○ EMAIL: for email addresses. The automatic validation checks if the entered value complies

with the structure of a valid email format - e.g., if it includes an "@" and if its domain

extension (".com", ".fr", ".de", etc.) exists. (But it will not check, if the username or the

domain exists, or if the domain’s server is actually operating.)

○ LINK: for URLs of web sites, Blogs, Xing, LinkedIn, etc. The automatic validation checks if

the entered value complies with the structure of a valid URL format (similar to the

validation of email addresses, see above).

● category: PHONE, EMAIL, or OTHER. This enables a definition that only one single telephone

number can be set as standard telephone number, and only one single email address can be set

as standard email address. You can register, e.g., multiple telephone numbers (of private phone,

company phone, mobile phone, etc.), but you can set only one of those as standard. (The

consequences of setting this "standard" is explained in the client user-related documentation.)

© 2025 ADITO Software GmbH 341 / 472

● placeholderTitle: this value of the placeholder property of an EntityField, i.e., the text to be

shown in the client as long as the user has nothing entered into the field.

© 2025 ADITO Software GmbH 342 / 472

14. Further information

Besides the documentation that is prerequisite for this manual (see above), you

can find further information on ADITO customizing

● in the documents residing in the folder others > guides (see "Projects" window)

● in the ADITO Information Documents (AID), which you can find in the customers' area of the

ADITO website, see https://www.adito.de/login.html

© 2025 ADITO Software GmbH 343 / 472

https://www.adito.de/login.html

15. Troubleshooting

If you encounter problems, please make sure that you have

● taken part in the basic ADITO training courses, especially in the following ones:

○ client user

○ Designer

○ system operations

○ customizing

● read the latest version of the Customizing Manual completely:

○ The first part of this manual is designed like a schoolbook: On the basis of a plain

example, you learn to handle ADITO step-by-step. It is not recommended to skip one of

these chapters, as each chapter implies that you have read the previous ones.

○ The second part of this manual is more glossary-like: Additional knowledge is imparted

using various best-practice examples included in the ADITO xRM project. Further helpful

details are available in the appendices. Nevertheless, we recommend you to read also

these glossary chapters completely, in order to have all required skills available.

Furthermore, you can find additional information in topic-oriented documents, e.g., in the Designer

Manual, the Reporting Manual, the workflow documentation, client-user-specific documentation, as

well as in the "ADITO Information Documents" (AIDs). ADITO will be happy to provide you with the

latest version of these documents on request. (Most of them is also available in the customer area of

ADITO’s web site, see https://www.adito.de/login.html .)

Last but not least, we recommend you to make sure that your ADITO contact has registered your email

address for all relevant newsletters. In these, ADITO will inform you about new product features and

new manual versions regularly.

In the following chapters, you will find further hints and tips for troubleshooting.

15.1. Built-in Designer help

The ADITO Designer provides you with the following built-in help functionality:

● Several models (Entities, Libraries, etc.) have explanations integrated in a property named

"documentation" - some more, some less. A good example is the library "SqlBuilder_lib" in

folder process > libraries. In its "documentation" property, you can find an extensive

documentation of the SqlBuilder and its methods.

● In the property sheet, you can click on the name of a property and read a short text explaining

© 2025 ADITO Software GmbH 344 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Reporting_Manual.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID110_Workflow_Management.pdf
https://www.adito.de/login/kundenbereich/dokumente-1.html
https://www.adito.de/login.html

its purpose, right on the bottom of the "Properties" window.

● Both methods of xRM processes (e.g. Utils.parseJSON(…) of Util_lib and methods of the

ADITO core (e.g., entities.getRows(…) of class system.entities) feature an JSDoc

explaining the purpose and usage of the method, partly showing also an example code. You can

access this documentation, if you type the method name in a code window, and then press

CTRL+SPACE.

● Besides, further descriptions are given in specific parts of the Designer, e.g., in the "Add

ViewTemplate" dialog.

Whenever you encounter one of the above documentations to be unclear or not

present where you had expected it, please write a note to your ADITO contact, who

can then initiate an improvement of the documentation, to be released in a future

version of the ADITO platform or the ADITO xRM project, respectively.

15.2. ScanServices

The ADITO Designer includes so-called ScanServices, which are processes running permanently in the

background and scanning your ADITO project for code defects, inconsistencies, or other possible

sources of errors. All results of the ScanServices are displayed in the window titled "Scan Services" in

the lower middle part of the Designer (if not present, you can open this window by selecting it in the

"Window" menu of the menu bar). A result line is marked with a yellow icon, if it is a warning, and with

a red icon, if it is an error. You can "jump" to the source of the warning/error by double-clicking on the

respective line, or by right-clicking on the line and then choosing "Open in Editor" in the context menu

of the line. Mass-edit is also possible, if you multiselect result lines of the same type.

Via the buttons in the vertical button bar (left part of the "Scan Services" window), you can refresh or

re-organize the structure of the result tree according to your own requirements.

An ADITO Entity including an error (e.g., in one of its properties) is underlined with a red wavy line in

the "Projects" window.

If you open an ADITO project for the first time, a full scan starts automatically, which can take some

minutes (you may notice this by high consumption of CPU resources). All further changes you perform

in your project will then automatically be scanned immediately and individually. If you want to start

another full scan manually, press the button with the "refresh" icon.

Find more information on ScanServices in the Designer Manual.

© 2025 ADITO Software GmbH 345 / 472

15.3. Bug tracking

When customizing your ADITO project, it cannot be completely avoided that you sometimes produce a

bug. The central information for analyzing bugs is the so-called stack trace. In many cases, the error’s

stack trace appears in the server log (be it visible in the Web Client or not). It looks like this (example):

Example stack trace of a bug

2022-04-25T08:44:36] [R-1-N-735-S] [<!--Entity: MySuperEntity_entity//-->] [<!--RecordContainer: db//-->] [<!--UID: null//-->] [<!--

Filter: {filter=null, filterCondition=null, ids=["e4be29ef-18d6-472d-aa27-050393c0f841"], excludedIds=null, permissions=null,

condition=MYTABLE.MYIDCOLUM IN ('e4be29ef-18d6-472d-aa27-050393c0f841') }//-->] [<!--Caused by:

de.adito.aditoweb.core.checkpoint.exception.AditoPermissionException: [R-1-N-735-S] [<!--Entity: ProjectticketComment_entity//-->]

[<!--RecordContainer: db//-->] [<!--UID: null//-->] [<!--Filter: {filter=null, filterCondition=null, ids=["e4be29ef-18d6-472d-aa27-

050393c0f841"], excludedIds=null, permissions=null, condition=MYTABLE.MYIDCOLUM IN ('e4be29ef-18d6-472d-aa27-050393c0f841') }//-->]

 at de.adito.aditoweb.server.neon.entity.EntityModel.init(EntityModel.java:430)

 at de.adito.aditoweb.server.neon.images.context.ContextEntityModel.init(ContextEntityModel.java:119)

 at de.adito.aditoweb.server.neon.images.common.AbstractEntityImageNeon.init(AbstractEntityImageNeon.java:64)

 at de.adito.aditoweb.server.neon.services.imagecontrol.command.open.AbstractImageOpenCommand.doOpen(AbstractImageOpenCommand.java

:99)

 at de.adito.aditoweb.server.neon.services.imagecontrol.command.open.AbstractImageOpenCommand.execute(AbstractImageOpenCommand.

java:55)

 at de.adito.aditoweb.server.neon.services.imagecontrol.command.open.AbstractImageOpenCommand.execute(AbstractImageOpenCommand.

java:19)

 at de.adito.aditoweb.server.neon.services.imagecontrol.ImageHandlingStrategy.handleImageOpened(ImageHandlingStrategy.java:73)

 at de.adito.aditoweb.server.neon.services.imagecontrol.ImageControlImpl.open(ImageControlImpl.java:62)

 at de.adito.aditoweb.server.neon.ClientSession.open(ClientSession.java:375)

 at de.adito.aditoweb.server.neon.entity.BaseEntityField._createPeviewWithUids(BaseEntityField.java:457)

 at de.adito.aditoweb.server.neon.entity.BaseEntityField._preview(BaseEntityField.java:400)

 ... 6 more//-->]

[C][B-54-N-112-S] [<!--de.adito.aditoweb.core.checkpoint.exception.mechanics.AditoException: [B-54-N-112-S]

 at de.adito.aditoweb.server.neon.entity.BaseEntityField._preview(BaseEntityField.java:407)

 at de.adito.aditoweb.binding.Action.call(Action.java:62)

 at de.adito.aditoweb.neon.base.vaadin.vclient.clientcomponents.images.frame.components.INeonComponent.lambda$doAction$3

(INeonComponent.java:214)

 at de.adito.aditoweb.neon.base.module.mcommon.UIWorker._loop(UIWorker.java:53)

 at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)

 at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)

 at java.base/java.lang.Thread.run(Thread.java:830)//-->]

As you can see, this stack trace consists of a lot of single log entries, which may

overwhelm you at first sight. But don’t be discouraged! You will know learn how to

analyze it, in order to detect the source of the problem. Consider yourself to be a

"tracking dog", "sniffing" along the (stack) trace until you find the target. If you know

what to sniff for, you reach your goal precisesly and successfully. Rest assured: After

gaining some experience, you will soon be able to detect the source of an exception

quickly.

Now, typically, a stack trace includes…

● …one log entry naming the method or function in which the actual exception happened. This is

what you have to look ("sniff") for. However, this line is not always easy to find, because it is

surrounded by…

● …a lot of further log entries, which include functions or methods that were called before or after

the actual exception. Hence the name "stack trace".

To find you way through this "woods" of log entries, an approach in the following order has turned out

© 2025 ADITO Software GmbH 346 / 472

to be pragmatic:

● Make sure you are familiar with all functions of the ADITO Designer’s build-in debugger (see the

ADITO Designer Manual). Trying to track errors without knowing how to use the debugger is like

being a tracking dog without a nose.

● If you can reproduce the error, first clear the server log: Right-click in the server’s log window

and choose option "Clear" (NOT "Clear cache"!), in order to delete all earlier log entries. If you

then reproduce the error, you will see only the log entries that are really related to the error.

● Stack traces are often logged repeatedly. Therefore, you only need to concentrate on the first set

of log entries, ignoring their repetitions.

● Roughly scan through the stack trace and see if you find somewhere any sentence explaining the

error in human language.

Example: (…) SqlBuilder: .where has to be called before following

and/or. (…) Then you know that the problem is and can fix it, ignoring the rest of the stack

trace.

● Scan the stack trace for specific exception names that start with "Adito". If you, like in the above

example, read "AditoPermissionException", then at least you know that your problem is related

to a conflict with permissions (= access rights, configured via the Client’s menu group "User

Administration").

● Concentrate on the log entries that do NOT start with the word "at". These often include

automatically generated information, like shown in the above example: In this example, you see

that the problem

○ is related to a specific Entity (here: "MySuperEntity_entity")

○ occurs when EntityRecordsRecipe is used (which you can conclude from log elements like

ids, excludedIds, and filterCondition)

○ Now you know that you can restrict your bug tracing to methods that you have newly

added and that use EntityRecordsRecipe (as parameter), e.g., method

neon.openContextWithRecipe - even if this method is not excplicitely given in the

stack trace.

○ In this example, the next step would be to activate the debugger and stop at these very

methods, e.g., in order to analyze their parameter values.

● Concentrate on log entries that start with de.adito…. Ignoring all log entries that start with

something else, especially java… (These are related to the Java engine and only show the

consquences of the error, not its actual source.)

○ Scan these remaining log entries for names of models (Entities, Actions, etc.), processes,

methods, or properties that are part of your project - especially those that you have lately

© 2025 ADITO Software GmbH 347 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

created, used, filled, or changed.

○ If this search is successful, check exactly the code line whose number is given at the end

of the log entry. Example: If you read in the log entry

Activity_entity.entityFields.testAction.onActionProcess#13)

then you know that the error occurs at line 13 of property "onActionProcess" of Action

"testAction" of Entity "Activity_entity"

○ If you inspect this code line, you will possibly detect the source of the error immediately,

because

■ the error is obvious and/or

■ this code line is marked with a red wavy line, and if you hover over this line with

your mouse pointer, a tooltip will pop up giving hints on the error’s source

■ a yellow light bulb is shown to the left of the code line: If you hover over it with the

mouse pointer, a tooltip will pop up giving hints on the error’s source. And if you

click on the light bulb, possible solutions for the problem are offered, which you

can click on, if this solution seems right to you.

○ If you still cannot find the error, then activitate the debugger, place a halting point at the

respective code line, and try to reproduce the error. As soon as the halting point is

reached, inspect the variable values / parameter values at this state of excecution. This

will help you to identify the problem.

● If the stack trace suggests that the source of the problem is not related to a process, function, or

property of your project, but to a method of the ADITO platform (often called "core method"),

then first check, if you have called this method with valid parameters (using the Debugger, see

above). If this is true, then report the problem to ADITO by issuing a bug ticket via the ADITO

Service Client).

● Generally, you should not restrict your inspection to the code line causing the error, but also find

out on which way this line was reached: If, e.g., the error happens in an certain function of an

xRM library, it might be helpful to know what user input (e.g., an executed Action) called this

function. For example, the user might have entered "0", and this input is passed as parameter to

a function, where "0" causes an error - then it is not enough to catch "0" in the function, but

you should also validate the user input in the client and prevent that "0" is entered, along with a

suitable validation message. Or, if the user leaves an input field empty, which might cause a

NullPointerException, the solution should include to mark the corresponding EntityField as

mandatory.

● If you have fixed the problem, check if the logging could be improved in order to find and fix

similar errors easier. Find more information in chapter Logging. If necessary, help ADITO to

improve the product by issuing a ticket via the ADITO Service Client.

© 2025 ADITO Software GmbH 348 / 472

https://service.adito.de/
https://service.adito.de/
https://service.adito.de/

Further examples:

Enter the following faulty code in the onActionProcess of any test Action

Faulty example code

var myVariable1 = "Test";
myVariable1 = null;

// here, an exception will occur
var myVariable2 = myVariable1.toString();

question.showMessage(myVariable2);

If you excecute this Action, you might be shocked to see the following long stack trace both in the client

and in the Designer’s server log window:

Stack trace produced by faulty code

Z-00-N-0011-S Original java exception causing the error. TypeError:
Cannot call method "toString" of null (Activity_entity.entityFields
.testAction.onActionProcess#8) [ID ee2a0441-2d82-3d55-8ad1-
eb47888082e5] [->] Caused by: org.mozilla.javascript.EcmaError:
TypeError: Cannot call method "toString" of null (Activity_entity
.entityFields.testAction.onActionProcess#8)
 at org.mozilla.javascript.ScriptRuntime.constructError
(ScriptRuntime.java:4280)
 at org.mozilla.javascript.ScriptRuntime.constructError
(ScriptRuntime.java:4258)
 at org.mozilla.javascript.ScriptRuntime.typeError(ScriptRuntime
.java:4291)
 at org.mozilla.javascript.ScriptRuntime.typeError2(
ScriptRuntime.java:4310)
 at org.mozilla.javascript.ScriptRuntime.undefCallError
(ScriptRuntime.java:4327)
 at org.mozilla.javascript.ScriptRuntime
.getPropFunctionAndThisHelper(ScriptRuntime.java:2573)
 at org.mozilla.javascript.ScriptRuntime.getPropFunctionAndThis
(ScriptRuntime.java:2566)
 at org.mozilla.javascript.Interpreter.interpretLoop(Interpreter
.java:1537)
 at org.mozilla.javascript.Interpreter.interpret(Interpreter.
java:1013)
 at org.mozilla.javascript.InterpretedFunction.call
(InterpretedFunction.java:109)
 at org.mozilla.javascript.ContextFactory.doTopCall
(ContextFactory.java:412)
 at org.mozilla.javascript.ScriptRuntime.doTopCall(ScriptRuntime

© 2025 ADITO Software GmbH 349 / 472

.java:3578)
 at org.mozilla.javascript.InterpretedFunction.exec
(InterpretedFunction.java:121)
 at de.adito.aditoweb.jdito.interpreter.jscript.jsscript
.ScriptManagerNext.executeScript(ScriptManagerNext.java:51)
 at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptInterpreter._evaluate(AbstractJScriptInterpreter.jav
a:298)
 at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptInterpreter._evaluate(AbstractJScriptInterpreter.jav
a:240)
 ... 13 more
 J-03-D-0756-S JDito-error:
Unable to interpret code. [->] Caused by: de.adito.aditoweb.jdito
.AditoJDitoException: [J-3-D-756-S]
 at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptInterpreter._evaluate(AbstractJScriptInterpreter.jav
a:263)
 at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptInterpreter._interpret(AbstractJScriptInterpreter.ja
va:175)
 at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptInterpreter.interpret(AbstractJScriptInterpreter.jav
a:119)
 ... 11 more
 J-03-D-0040-S JDito-error:
Unable to interpret code. [->] Script: Activity_entity.
entityFields.testAction.onActionProcess [->] Caused by: de.adito
.aditoweb.jdito.AditoJDitoException: [J-3-D-40-S] [<!--Script:
Activity_entity.entityFields.testAction.onActionProcess//-->]
 at de.adito.aditoweb.jdito.interpreter.jscript
.AbstractJScriptInterpreter.interpret(AbstractJScriptInterpreter.jav
a:127)
 at de.adito.aditoweb.jdito.JDito.interpret(JDito.java:53)
 ... 10 more
 R-03-R-0008-S JDito-error:
Unable to interpret code. [->] ResultType: 5 [->] Caused by: de
.adito.aditoweb.jdito.AditoJDitoException: [R-3-R-8-S] [<!--
ResultType: 5//-->]
 at de.adito.aditoweb.jdito.JDito.interpret(JDito.java:59)
 at de.adito.aditoweb.server.neon.entity.calculation
.JDitoFunction.call(JDitoFunction.java:45)
 at de.adito.aditoweb.server.neon.entity.BaseAttributeField
.lambda$registerActionProcess$0(BaseAttributeField.java:235)
 ... 8 more
 P-54-R-0004-S Error executing action. [->] de.adito
.aditoweb.core.checkpoint.exception.mechanics.AditoException: [P-54-
R-4-S]
 at de.adito.aditoweb.core.checkpoint.CheckPointHandler

© 2025 ADITO Software GmbH 350 / 472

.checkPoint(CheckPointHandler.java:114)
 at de.adito.aditoweb.server.neon.entity.BaseAttributeField
.lambda$registerActionProcess$0(BaseAttributeField.java:242)
 at de.adito.aditoweb.binding.IActionCallable.call
(IActionCallable.java:26)
 at de.adito.aditoweb.binding.IActionCallable.call
(IActionCallable.java:16)
 at de.adito.aditoweb.binding.Action.call(Action.java:44)
 at de.adito.aditoweb.neon.base.vaadin.vclient.clientcomponents
.images.frame.components.buttonstrip.NeonButtonStripUtil.lambda$exec
uteAction$0(NeonButtonStripUtil.java:153)
 at de.adito.aditoweb.neon.base.module.mcommon.UIWorker._loop
(UIWorker.java:53)
 at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker
(ThreadPoolExecutor.java:1128)
 at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run
(ThreadPoolExecutor.java:628)
 at java.base/java.lang.Thread.run(Thread.java:830)

If you proceed as advised above, you will be able to extract the only important log entry (ignoring all

the other stuff):

Cannot call method "toString" of null

(Activity_entity.entityFields.testAction.onActionProcess#8)

In clear text, this log entry means:

● The error happens at line 8 of property "onActionProcess" of Action "testAction" of Entity

"Activity_entity".

● The problem is, that method "toString" is called on a variable or an object that has the value

null.

If you then navigate to this onActionProcess, you will easily be able to identify the source of the error:

Additionaly, you can halt at line 8 of this process, using the debugger, and inspect the variable values:

© 2025 ADITO Software GmbH 351 / 472

© 2025 ADITO Software GmbH 352 / 472

15.4. Specific problems

15.4.1. Low performance

If your ADITO system is performing poorly, this could have various reasons. For example, if it takes long

time to load the content of a table, the reason might be that

● the table includes an EntityField whose value is calculated via a complex valueProcess (instead of

using the "expression" property of the RecordFieldMapping in the RecordContainer);

● the related database table needs indices to be set;

● the ADITO server has not enough main memory.

We strongly recommend you to read the ADITO Information Document AID066

Performance Optimization. In this document you will find hints and advice on how

to optimize the performance of your ADITO system.

15.4.2. Changes are not visible in the client

If you have modified your application in the Designer, but the changes are not visible in the client, try

the following steps in the given order:

● Make sure that you have saved and deployed all changes, using button "Deploy Project" in the

Designer’s button bar.

● Always re-open the web page on which you expect your changes to be visible, by clicking on the

respective menu entry. (It is not enough to use the "refresh" button of your browser!)

● Log out and log into the client and open the respective page again.

● (In very rare cases:) Restart the ADITO server, proceeding as follows:

○ Choose "Server - default" from the combo box in the button bar and press the green

triangle to the right of it. A dialog will appear asking you if the currently running server

instance should be stopped, which you need to confirm. In the "Output" window (lower

right part of the Designer), a new sub-windows "Server" will open, where you can watch

the new server instance starting, until the log shows "Server initialized".

○ Alternatively to restarting in one step, you can restart the server in subsequent single

steps:

■ Open the "Output" window (lower right part of the Designer)

■ Open the sub-window "Server".

■ Click on button "Exit" (white square icon), view the server log entries, and wait

until you see the log "Server terminated". If this does not appear after a few

© 2025 ADITO Software GmbH 353 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID066_EN_Performance_Optimization.pdf

seconds, click button "Stop" (white cross icon).

■ Choose "Server - default" from the combo box in the button bar and press the

green triangle to the right of it, view the server log entries, and wait until you see

the log "Server initialized". (Please note: Clicking on button "Start" (white triangle

icon in window "Output - Server", might not be enough, because in this case, less

properties are being reloaded.)

○ Re-open the client: Select "Web Client (Neon)" in the combo box of the Designer’s button

bar, then click button "Execute…" (green triangle icon). This will re-start the client, in

which you can open the respective web page.

● In rare cases, and depending on the browser you use, it can also be necessary to empty the

browser’s cache - in Google chrome, e.g., via the shortcuts CTRL+F5 ("deep refresh" of the

current web page) or CTRL+SHIFT+DEL > "Clear data" (deleting selected cache data) - in order to

see the changes effected by the deploy.

● Check if all configurations visible in the designer are consistent to the XML source code (this is

the format in which all ADITO configurations are actually stored).

Example:

If you have entered the title of an Entity (in the "Properties" window), saved and deployed it, but

you do not see it in the client, then

○ double-click on the Entity (in the "Projects" window)

○ open the tab "Source" in the Editor window (middle part of the designer)

○ search for the tag <title> and check if it includes the specified title. If not, you can

either write it in the XML manually, or - better in most cases - force ADITO to re-

synchronize Designer display and XML source code:

■ Close the Designer.

■ Navigate to the Roaming folder ".aditodesigner", open the folder corresponding to

your ADITO version number, and delete its sub-folder "cache". (By default, this

folder resides in the AppData\Roaming folder of the Windows user directory, e.g.

C:\Users\j.smith\AppData\Roaming.)

■ Re-start the Designer.

■ Re-enter the title. (Usually, this should be necessary, because the re-

synchronisation updates the display according to the XML source, not vice versa).

■ Re-check the XML source code, if the title is now present in the tag <title>.

■ If the problem persists, repeat the last steps, but this time, delete the complete

folder corresponding to your ADITO version number (sub-folder of folder

".aditodesigner").

© 2025 ADITO Software GmbH 354 / 472

■ If the problem still persists, repeat the last steps, but this time, delete the complete

".aditodesigner" folder.

From ADITO version 2022.1.0, folder ".aditodesigner" has one separate sub-folder

(sub-user-directory) for every installed ADITO version, be it a major release (e.g.,

2022.0), a minor release (e.g., 2022.0.1), or a hotfix (e.g., 2022.0.0.2). Earlier

versions had sub-folders (sub-user-directories) only for every major release.

15.4.3. New database structure is not accessible

If you have changed the database structure via DML command, while the ADITO server is running (e.g.,

you have added a new database column via alter table MYTABLE add column

NEWCOLUMN), then you must first delete the corresponding cache before you can access the new

structure’s elements (e.g., the new column). Otherwise, you will get an error message stating that the

respective structure element is not found, if you try to access it.

To delete the cache, open the ADITO Manager (in the client’s Global Menu, choose "Server" in menu

group "Manager"), mark your server and choose option "Clear cache" via the three-dotted button in

the PreviewView. Alternatively, of course, you can achieve the same effect by re-starting the server.

This is required, because, for performance reasons, the ADITO server does not permanently update the

actual database structure.

© 2025 ADITO Software GmbH 355 / 472

Appendix A: JDito system modules and variables

A.1. System modules

Everything besides the basic functionality of JavaScript is provided by JDitos system modules. The

methods are grouped by topic. For example, system.calendar contains every method used for

interfacing with the calendar, system.db contains every method to interface with databases.

In general terms, a module contains every method and constant associated with its topic.

Constants are a kind of wrapper for badly readable values and are used so anyone who reads the code

knows what the meaning of a specific value is. For example: The database type for Apache Derby is the

numeric value "7", but there is a constant in the system.db module called "db.DBTYPE_DERBY10",

which represents the same value, but has a much better readability.

Methods are used to tell the ADITO system what to do, like collecting data from a database or changing

the value of a component. They’re not to be confused with functions. Functions are written in JDito and

describe an order of commands, while JDito methods are implemented into the interpreter to be able

to control the ADITO system.

To use a specific module, you need to import it into your JDito process using the import command.

The import commands must always be at the very top of a process, otherwise an

error is thrown.

Example:

import { result } from "@aditosoftware/jdito-types";

//code begins here

result.string("My result");

The different system modules are:

System module Description

system.ACTION This module only contains constants that hold

values for different client actions. Examples:

ACTION.FRAME_CREATE, ACTION.FRAME_EDIT

© 2025 ADITO Software GmbH 356 / 472

System module Description

system.ALIAS This module only contains constants that are

used for referencing different keys within an

alias object. Examples: ALIAS.CHARSET,

ALIAS.PASSWORD

system.SQLTYPES In this module are constants for the different

SQL columntypes and methods that help in

validating the type, like

SQLTYPES.isTextType(SQLTYPES.CHAR).

system.calendars This module groups methods and constants

necessary for working with calendars and

calendar entries.

system.cti In this module you can find all methods and

constants needed for working with any

telephone system.

system.datetime Datetime holds methods and constants for

working with dates, timestamps and time zones.

system.db This module contains constants and methods for

communication with connected databases, like

executing selects, updates, and deletes.

system.eMath eMath contains constants for different rounding

behaviours and methods, that can savely add,

subtract, multiply, divide and round data of the

data type String. Each type of calculation exists

seperately for integer and decimal values.

system.fileIO Here you can find constants and methods for

serverside file input / output operations.

system.gantt This module currently has no contents.

© 2025 ADITO Software GmbH 357 / 472

System module Description

system.im In this module you can find methods and

constants regarding the XMPP Backend.

system.imClient In this module you can find methods and

constants regarding the XMPP Client.

system.indexsearch In here are the methods and constants used for

running the indexing processes and for

executing searches using the Solr indices.

system.logging This module holds all methods and constants

regarding the logging system.

system.mail This module contains methods and constants for

sending emails and working the email objects.

system.neon This module contains methods and constants to

control the neon web client.

system.neonTools This module contains methods to assist in

controlling the neon client.

system.net net contains methods used for calling web

services using REST or SOAP, for validating URLs

and for getting the contents of a URL.

system.notification Here you can find all methods and constants for

controlling the notification system.

system.pack pack offers methods and constants for working

with ZIP archives.

system.plugin This module contains methods for calling ADITO

plugins on the serverside.

© 2025 ADITO Software GmbH 358 / 472

System module Description

system.process In this module you can find all methods and

constants regarding the immediate execution of

"executable" JDito processes and for managing

the timed execution.

system.project This module offers methods and constants for

getting data models from the deployed project,

like getAlias(), getDatamodel(),

getInstanceConfigValue().

system.question This module holds the methods and constants

for displaying different modal dialogs.

system.report In this module are all methods and constants to

interface with the reporting engine.

system.result This module holds the methods used for

returning values to the ADITO core. Mainly used

in processes like valueProcess or

displayValueProcess.

system.text text contains methods for decoding and

encoding multistrings, formatting and parsing

text and for hashing.

system.tools Despite its name, there are no "tools" in this

module. Instead it holds all methods and

constants used for managing users and roles.

system.translate This module is used for calling the translation

system. It contains all necessary methods and

constants.

system.treetable This module currently has no contents.

© 2025 ADITO Software GmbH 359 / 472

System module Description

system.util This module contains utilitary methods and

constants. Mostly used for encoding and

decoding BASE64 Strings and generation of IDs

with getNewUUID().

system.vars This module offers methods for reading and

setting values from components, EntityFields,

and system/image/local variables.

A.2. System variables

System variables in general (these are not only variables named "$sys.xxx") are containers for values

that are either provided by the ADITO application core or are set via JDito Code.

They are read by method vars.get() and set by method vars.set() of the system module

vars. Their name always has to be prefixed by the "$" sign.

Example:

// Reading a variable
vars.get("$sys.operatingstate");
vars.get("$field.UUID");

// Setting a variable
vars.set("$context.calculatedVal", calcValue);

vars.getString() is no longer required, even for reading String values. This

method will be marked as deprecated in future ADITO versions.

There are four types of system variables ($image and $comp are not mentioned here, because they

belong to the ADITO Legacy platform):

1. $local

These system variables' session runtime is as long as the user is logged-in (per login). The

runtime of the server environment depends on the configuration of the server process (must

always be executed using a specific user) - e.g., in the process autostartNeon, various

variables are being set that are required in the client.

Mostly, $local variables are set by the ADITO core to pass values into specific processes. For

example: process_audit is the process where you can react to the auditing of a specific dataset.

© 2025 ADITO Software GmbH 360 / 472

This process gets the information what database columns are affected, what their types are and

what their old and new values are. These values are passed as local variables and are accessed

via the system.vars module. Example:

//getting the value
var action = vars.get("$local.action");
//setting a value
vars.set("$local.taskId", "1234-1234-1234");

As for the server, this means:

When you configure the interval of a server process, you can specify, if the "JDito instance"

should be kept:

○ If yes, then the global variable persists over multiple runs (on the server - with "server"

meaning one single server pod, e.g. adito-web-bg-0, i.e., the software-sided instance

of an ADITO server);

○ if no, then the global variable does not exist anymore for every new run and therfore

must be set anew.

It would be an extensive and hardly-to-maintain documentation to give a complete

summary of all $local variables, along with their availability and purpose in each single

context. Therefore, you will find only selected $local variables in appendix $local variables

- but beside this, we recommend the "trick" to simply use the Designer’s debugger: In

window "Debugger" (visible only if the debugger is active) you can inspect all $local

variables that are available in the context of the respective breakpoint, where the

debugger has halted. Here is an example:

(In the Designer Manual, you can find more information on the debugger’s functionality

© 2025 ADITO Software GmbH 361 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/Designer_Manual.pdf

and handling.)

2. $sys

The $sys variables are visible within one client and are independent from a specific context. They

are typically used to store values that are used throughout the client, like global configurations,

rights management via sales areas, etc.

$sys variables are accessed as follows:

//getting the value
var action = vars.get("$sys.useRights");
//setting a value (only works, if SALESAREA is a dynamic user
property!)
vars.set("$sys.salesArea", tools.getCurrentUser()[tools.
PARAMS]["SALESAREA"]);

In appendix "$sys variables", you can find a summary of all $sys variables,

along with their individual purpose.

3. $field

Field variables are the equivalent to $comp variables in Legacy ADITO, but they are used within

the Neon Entity environment.

An EntityField value can only be read. For setting the value of an EntityField

refer to the corresponding method in the system.neon module.

Example:

//getting a value
var id = vars.get("$field.UUID");
//setting would lead to an error!

4. $context

These are variables that are valid during the runtime of a Context (neon data model) - i.e., e.g.,

what you have opened in a MainView.

5. $cluster

Cluster variables are visible within all clients. They are set by the server. These are typically used

as caches or for values that have to be the same on all clients. They are accessed in the same

way as sys variables.

Example:

© 2025 ADITO Software GmbH 362 / 472

//getting a value
var supportEmail = vars.get("$cluster.supportMail");
//setting a value
vars.set("$cluster.supportMail", "support@adito.de");

6. $image

Deprecated. These variables were only used in the legacy client (equivalent to $contect).

Variables can always be set only in the context in which they can also be read.

It is not possible to set from one context (e.g., "Organisation opened in tab 1") the

variable of another context (e.g., "Organisation opened in tab 2").

Therefore, the possibilities to use globale variables as cache are very limited,

because the invalidation is difficult - usually, this happens after a re-login in the

autostartNeon process (or by a respective ServiceImplementation for this

process).

© 2025 ADITO Software GmbH 363 / 472

Appendix B: Database Access

Please remind that, for every database table, an appropriate setting of database

indices is required, in order to ensure an optimal performance of database access.

Find further information about performance optimization in AID066.

B.1. Basic SQL Statement

Although SQL is used in many parts of the ADITO application, there is one basic SQL statement that is

executed when a Context is opened, e.g., to display data in the FilterView. This basic SQL statement has

got, as most SQL statements, the following clauses (parts):

● a SELECT clause (including all columns to be load)

● a FROM clause (including all involved tables)

● an optional WHERE clause (including one or multiple conditions)

● an optional ORDER BY clause (including one or multiple columns to use as order criteria)

SELECT MYTABLE.MYCOLUMN1, MYTTABLE.MYCOLUMN2, (...)
FROM MYTTABLE
WHERE MYCOLUMN1 = 'myParameter1' AND MYCOLUMN2 = 'myParameter2'
ORDER BY MYTTABLE.MYCOLUMN2

In ADITO,

● the SELECT clause is defined in the RecordContainer’s RecordFieldMappings MYFIELD.value and

MYFIELD.displayValue, with the properties

○ recordfield: one specific database column to load

○ expression: an SQL expression to use instead of a specific column (marked with "(…)" in

the above example SELECT). If the result.string() argument of this property’s code

is simply "MYTABLE.MYCOLUMN1", then the effect is the same as if we had selected

MYTABLE.MYCOLUMN1 as recordfield. However, you can also enter advanced SQL code

here, e.g.

■ to concatenate multiple columns, e.g.

result.string("MYTABLE.MYCOLUMN1 || MYTABLE.MYCOLUMN1")

■ to enter a sub-select, e.g., SELECT … FROM … WHERE… (Caution: Depending

on the kind of sub-select, this will be executed for every single dataset, which may

decrease the performance).

© 2025 ADITO Software GmbH 364 / 472

● the FROM clause is specified in the following properties of the RecordContainer:

○ linkInformation: one or multiple tables to which the specified columns (see above) belong

to. Caution: If you specify more than one table here, the cross product of all tables is

loaded by default, which can result in huge data masses and therefore be a performance

killer; therefore, multiple tables should only be specified along with additional properties,

especially fromClause (with, e.g., JOINs) and conditionProcess (see below).

○ fromClauseProcess: Optionally, you can enter the complete FROM clause here (without

the word "FROM" itself). JOINs may be included. All involved tables must nevertheless be

specified in the property linkinformation. As usual for processes, the SQL must be

specified as argument of method result.string(), e.g.,

result.string("MYTABLE JOIN OTHERTABLE ON (…)").

● the WHERE clause can optionally be specified in the property conditionProcess (without the

word "WHERE" itself). As usual for processes, the SQL must be specified as argument of method

result.string(), e.g.,

result.string("MYTABLE.MYCOLUMN1 = (…)").

● the ORDER clause can optionally be specified in the property orderClauseProcess (without the

word "ORDER" itself). As usual for processes, the SQL must be specified as argument of method

result.string(), e.g.,

result.string("MYTABLE.MYCOLUMN1, MYTABLE.MYCOLUMN2").

In order to access a database, you should use prepared statements instead of plain

SQL code - at least in all cases, where an external input is processed (i.e., text input

by the user or a variable filled by an import process, see below). Among other

advantages, this increases the data security of ADITO, as attacks by the "SQL

injection" technique are avoided. In the library SqlBuilder_lib you can find

several classes providing SQL helper functions, including prepared statements, in

particular, the class SqlBuilder and SqlUtils. Examples can be found in

chapter SQL Helper Functions below.

B.2. Commit after database changes

All ADITO methods for inserting or changing structure or content of the database are always committed

automatically. A separate "commit" statement is never required.

B.3. SQL Helper Functions

This chapter includes several examples showing

● how SQL code is applied in ADITO, using prepared statements;

© 2025 ADITO Software GmbH 365 / 472

● what SQL code is actually generated by various SQL helper functions.

Generally, for reasons of data security, you should always use prepared statements

in ADITO, especially when you are processing external data, e.g.

● data input by the user (e.g., via a text field)

● data imported from an external source (e.g., the customer’s legacy system)

This prevents external attacks via "SQL injection" and, in some cases, improves the

performance of the system.

The central class for building prepared statements in ADITO is SqlBuilder. You

can find a detailed description of its usage in the property "documentation" of

library SqlBuilder_lib (in folder process > libraries). Prerequisite for viewing

this documentation in the designer is that you have the installed the plugin

„AsciidoctorJ4NB“.

B.3.1. Example: contentTitleProcess of CarDriver_entity

CarDriver_entity.contentTitleProcess

var carDriverId = vars.get("$field.CARDRIVERID");

if (carDriverId) {

 var displayData = newSelect("SALUTATION, FIRSTNAME, LASTNAME")
 .from("PERSON")
 .join("CONTACT", "CONTACT.PERSON_ID = PERSON.PERSONID")
 .join("CARDRIVER", "CARDRIVER.CONTACT_ID = CONTACT.CONTACTID")
 .where("CARDRIVER.CARDRIVERID", carDriverId)
 .arrayRow();

 var salutation = displayData[0];
 var firstname = displayData[1];
 var lastname = displayData[2];

 result.string(salutation + " " + firstname + " " + lastname);
}

An instance of class SqlBuilder enables you to build an SQL statement using several methods,

whose names are identical to the corresponding SQL clauses (select, from, join, etc.).

Method arrayRow() returns the SQL result as array of values: The contents of the first database

result row is returned, with the column values as a one-dimensional array; possible further rows are

© 2025 ADITO Software GmbH 366 / 472

ignored in this case.

© 2025 ADITO Software GmbH 367 / 472

B.3.2. Example: valueProcess of EntityField availability

Car_entity.availability.valueProcess

var carId = vars.get("$field.CARID");

if (carId) {

 var currentReservationId = newSelect("CARRESERVATIONID")
 .from("CARRESERVATION")
 .where("CARRESERVATION.CAR_ID", carId)
 .and("STARTDATE < CURRENT_TIMESTAMP")
 .and("ENDDATE > CURRENT_TIMESTAMP")
 .cell();

 var availability = "NO";
 if (currentReservationId == "") {
 availability = "YES";
 }
 result.string(availability);
}

Method cell() returns the SQL result as one single value: the first column value of the first row;

possible further rows or columns are ignored in this case.

© 2025 ADITO Software GmbH 368 / 472

B.3.3. Example: conditionProcess of CarReservation_entity’s RecordContainer

CarReservation_entity.RecordContainers.db.conditionProcess

var cond = newWhereIfSet("CARRESERVATION.CARDRIVER_ID", "$param.CarDriverId_param")
.andIfSet("CARRESERVATION.CAR_ID", "$param.CarId_param");

result.string(cond);

The SQL code built by the helper method newWhereIfSet is (if called via the MainView of Context

CarDriver), e.g.:

CARRESERVATION.CARDRIVER_ID = '594811af-9947-4cf3-9c4c-d719cb88384a'

If the Parameters are not set (e.g., if you open the FilterView of Context CarReservation), the condition

is an empty String (= no condition at all), so all CarReservation datasets are shown.

© 2025 ADITO Software GmbH 369 / 472

B.3.4. Example: Driver’s name

CarDriver_entity.db.CONTACT_ID.displayValue.expression

result.string(PersUtils.getResolvingDisplaySubSql("CONTACT_ID"));

The helper function PersUtils.getResolvingDisplaySubSql("CONTACT_ID") generates

and returns the following SQL code, which is a subselect for displaying a person’s complete name

instead of its related CONTACTID:

SELECT CASE
 WHEN trim(PERSON.SALUTATION) != ''
 AND PERSON.SALUTATION IS NOT NULL
 THEN CASE
 WHEN trim(PERSON.TITLE) != ''
 AND PERSON.TITLE IS NOT NULL
 THEN trim(PERSON.SALUTATION) || ' '
 ELSE trim(PERSON.SALUTATION)
 END
 ELSE ' '
 END || CASE
 WHEN trim(PERSON.TITLE) != ''
 AND PERSON.TITLE IS NOT NULL
 THEN CASE
 WHEN trim(PERSON.FIRSTNAME) != ''
 AND PERSON.FIRSTNAME IS NOT NULL
 THEN trim(PERSON.TITLE) || ' '
 ELSE trim(PERSON.TITLE)
 END
 ELSE ' '
 END || CASE
 WHEN trim(PERSON.FIRSTNAME) != ''
 AND PERSON.FIRSTNAME IS NOT NULL
 THEN CASE
 WHEN trim(PERSON.MIDDLENAME) != ''
 AND PERSON.MIDDLENAME IS NOT NULL
 THEN trim(PERSON.FIRSTNAME) || ' '
 ELSE trim(PERSON.FIRSTNAME)
 END
 ELSE ' '
 END || CASE
 WHEN trim(PERSON.MIDDLENAME) != ''
 AND PERSON.MIDDLENAME IS NOT NULL
 THEN CASE
 WHEN trim(PERSON.LASTNAME) != ''
 AND PERSON.LASTNAME IS NOT NULL
 THEN trim(PERSON.MIDDLENAME) || ' '

© 2025 ADITO Software GmbH 370 / 472

 ELSE trim(PERSON.MIDDLENAME)
 END
 ELSE ' '
 END || CASE
 WHEN trim(PERSON.LASTNAME) != ''
 AND PERSON.LASTNAME IS NOT NULL
 THEN trim(PERSON.LASTNAME)
 ELSE ' '
 END
FROM PERSON
JOIN CONTACT ON (PERSON.PERSONID = CONTACT.PERSON_ID)
WHERE CONTACT.CONTACTID = CONTACT_ID

© 2025 ADITO Software GmbH 371 / 472

B.3.5. Example: Manufacturer

Car_entity.db.MANUFACTURER.displayValue.expression

var sql = KeywordUtils.getResolvedTitleSqlPart($KeywordRegistry.carManufacturer(), "CAR.MANUFACTURER");

result.string(sql);

The helper function

KeywordUtils.getResolvedTitleSqlPart($KeywordRegistry.carManufacturer

(), "CAR.MANUFACTURER") returns the following SQL code:

CASE
 WHEN CAR.MANUFACTURER = '11a849d8-67ed-448e-86aa-6f4ab54d22ee'
 THEN 'Mercedes'
 WHEN CAR.MANUFACTURER = '107a2bf2-803a-4cf0-bf69-ff649acc113b'
 THEN 'BMW'
 WHEN CAR.MANUFACTURER = '15a66e3a-9e3e-4051-be6f-eb5b425e0fde'
 THEN 'VW'
 ELSE ''
 END

© 2025 ADITO Software GmbH 372 / 472

Appendix C: Order of execution of Entity processes

C.1. Load

Figure 39. Order of execution of processes when loading an Entity

1. onInit

This process runs before the RecordContainer is loaded. Here you can initialize variables like

$global.variablename or $context.variablename.

2. beforeOperatingState

When this process runs, the Entity is already loaded, but is not in one of the operating states yet.

(see appendix "Operating state vs. record state")

3. afterOperatingState

Here it is determined, which operating state is used, but no components are loaded yet. This is

© 2025 ADITO Software GmbH 373 / 472

the place to react to changes in operating state.

4. afterUiInit

This process runs after the UI is loaded. Here you can use methods to influence the UI, i.e.

neon.addRecord to add a new record to an Entity.

5. onValidation

In this process you can validate the data in the fields, before saving. This process should only be

used to validate data. Don’t react to changes here! If any text is given as result of the

onValidation process, an automatism makes sure that

○ the validation is considered as "false";

○ the given text is displayed to the right of the "Save" button;

○ the "Save" button is disabled until the next call of the onValidation process.

○ Example: result.string("Your input must not include special

characters like '&'.");

6. onValueChange

In this EntityField process you can react to changes in an EntityField and, e.g., a computed value

or set other components to inactive depending on the content.

○ With property onValueChangeTypes (in the EntityField’s property sheet directly under

property onValueChange) you can define the types of sources (modifiers) that will trigger

the onValueChange process, e.g. "MASK" or "RECORD". Find more information about the

selectable modifier types and their meanings in the property description of

onValueChangeTypes.

○ Variable $local.modifiertype holds the type of the modifier (source type) that has

triggered the onValueChange process - see property description of onValueChangeTypes.

This variable can be helpful, if multiple modifier types had been selected in property

onValueChangeTypes, and a distinctive reaction is required, depending on the modifier

type.

© 2025 ADITO Software GmbH 374 / 472

C.2. Save

Figure 40. Order of execution of processes when saving an Entity with a dbRecordContainer

© 2025 ADITO Software GmbH 375 / 472

Figure 41. Order of execution of processes when saving an Entity with a jDitoRecordContainer

You can find a description of these processes in their JSDoc and partly in the previous chapter about

load processes. Here is some additional information:

● afterSave

The afterSave process was implemented to execute client commands after saving a record of an

Entity. In some cases, e.g., after saving, a popup message should be shown to the user, or

another Context should be opened. To try the same in the onDBInsert/onInsert process, leads to

problems:

© 2025 ADITO Software GmbH 376 / 472

○ Client commands (neon.xxx, question.xxx) are not allowed to be executed in

RecordContainer processes. (Entity can also be used server-side with "Read/Write Entity"

methods, then the methods lead to errors.)

○ openContext does not work or was "overwritten".

Therefore, the afterSave process was introduced, in order to allow the execution of these

kind of actions after saving.

○ Please note the following:

■ The afterSave process is exclusively executed client-side. Therfore, in this process,

nothing must be changed/triggered etc. (processes, updates etc.). If this is

nevertheless necessary, it must be done manually on the server side, e.g., in the

on(DB)Insert process.

■ If a new Context is opened in the afterSave process, result.string(true);

must be returned, in order to avoid the default behavior after saving.

© 2025 ADITO Software GmbH 377 / 472

Appendix D: Requirements for customized Theme

In the below table you can find all information required by ADITO’s development department and its

UX designer in order to create a customized Theme that is optimized for being compliant with the

Display Screen Equipment Directive (e.g., contrast effects).

Table 5. Requirements for the creation of a customized Theme

Element Location of usage Default

Background image Login-/Logout View ADITO image

Company logo Login-/Logout View ADITO logo

First main color Buttons, hyperlinks, focus color Dark blue

Second main color Menu header, active menu

entry

Red

1 to 20 user-specific colors Charts, Avatars, score cards Various

Alternatively, if available, you can send us your own CI guide.

You can find extensive background information on the topic "Themes" in the ADITO

Information Document AID121 "Themes".

It is strictly against the intention of ADITO that users modify the Theme by

themselves. It is exclusively ADITO’s development department that is authorized to

modify a Theme or create a new Theme.

© 2025 ADITO Software GmbH 378 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf

Appendix E: Checklist for new fields

Here is a checklist for how to proceed if you want to add a new EntityField. First of all,

● inform your ADITO client administrator about the new field, in order to make sure that its access

rights are configured correctly.

● inform the data security official in charge with your project (e.g., in Germany, the

"Datenschutzbeauftragter") about the new field, in order to make sure that possible concerns

will be included in the further configuration and programming (e.g., the implementation of a

dialog pointing to the "impact on the data privacy information (GDPR)" - see, e.g., method

DataPrivacyUtils.notifyNeedDataPrivacyUpdate in DataPrivacy_lib).

Technically, the new field is added as follows:

● In the "Projects" window, double-click on the Entity, so it is shown in the Navigator window.

● In the Navigator window, right-click on the sub-node "Fields" and choose "New Field".

● Enter the field’s name - respecting the ADITO spelling guidelines (see ADITO Information

Document AID001, chapter "Spelling & Wording" > "ADITO models") - and press OK.

● Configure the new field’s properties:

○ "title": Enter a title to be shown with the new field in the client, e.g., as label or as table

column header.

○ "contentType": Change default value "TEXT", if required. For type "DATE", set also

property "resolution".

○ Set further properties, if required (such as valueProcess, for calculated fields).

● (If the field’s value is to be stored in the database:) Create a new column corresponding to the

field, via one of the following ways:

○ Use the ADITO database editor (system > default > Data_alias > ADITO): Right-click on the

database table and choose "Add column…" from the context menu. Make sure the name

of the new column is spelled exactly like the name of the EntityField. Enter all required

column properties, e.g., the data type. Consequently, update the Alias Definition (double-

click on alias > Data_alias, then, in the Navigator window, choose "Diff Alias <> DB Table"

from the context menu of parent node "Data_alias", and perform an update from

"remote" to "local").

○ Alternatively, you can do it the other way round: Add the column in the Alias Definition:

Double-click on alias > Data_alias. Then, in the Navigator window, right-click on the

database table and choose "New Column" from the context menu. Make sure name of

the new column is spelled exactly like the name of the EntityField. Configure all required

© 2025 ADITO Software GmbH 379 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID001_Coding_Styles.pdf

column properties, e.g., "columnType". Consequently, update the database (in the

Navigator window, choose "Diff Alias <> DB Table" from the context menu of parent node

"Data_alias", and perform an update from "local" to "remote"). If you have a Liquibase

create file for this table, add the column manually.

○ If you prefer to use Liquibase instead, create a separate change set for adding the column.

You can use one of the "alter_xxx.xml" files in one of the folders under alias > Data_alias >

basic as pattern, e.g., the file alter_SerialLetter.xml (under alias > Data_alias > basic >

2019.2.1). +

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="j.smith" id="77bf2086-3eac-4a21-bb03-168140477e19">

 <addColumn tableName="MYTABLE">

 <column name="MYCOLUMN" type="NVARCHAR(50)"/>

 </addColumn>

 </changeSet>

</databaseChangeLog>

Perform a Liquibase update (right-click on alias > Data_alias and choose "Liquibase >

Update…" from the context menu). Remember to reference this new xml file also in the

appropriate changelog.xml file, making sure that it is executed after the create file of the

respective table. Consequently, update the Alias Definition (double-click on alias >

Data_alias, then, in the Navigator window, choose "Diff Alias <> DB Table" from the

context menu of parent node "Data_alias", and perform an update from "remote" to

"local").

● (If the field’s value is to be stored in the database:) Establish the connection between the field

and the corresponding database column:

○ Set the new column in property "recordfield" of the new EntityField’s corresponding

".value" RecordFieldMapping in the RecordContainer.

○ If another value than the stored value is to be displayed:

■ Enter a subselect for the display value in property "expression" of the new

EntityField’s corresponding ".displayValue" RecordFieldMapping in the

RecordContainer, and/or

■ enter a code retrieving the display value in the displayValueProcess of the new

field.

● Add the new field in the "columns" or "fields" properties of the ViewTemplates of all Views in

which the new field is to be shown.

● Include all configurations and code required to ensure the correct access rights and all concerns

© 2025 ADITO Software GmbH 380 / 472

of your data security official (see above).

● Save and deploy.

● Clear the cache: Open the ADITO Manager (in the client’s Global Menu, choose "Server" in menu

group "Manager"), mark your server and choose option "Clear cache" via three-dotted button in

the PreviewView. Alternatively, of course, you can achieve the same effect by re-starting the

server.

● Re-login to the ADITO client.

© 2025 ADITO Software GmbH 381 / 472

Appendix F: Accessing the value of an EntityField

This appendix is about the relation between the value of an EntityField and its associated variables.

In this chapter, "value of an EntityField" is actually referring to a specific value

processed in the ADITO core. For a better understanding of the following

explanations, you can simply consider "value of an EntityField" to be the value that

is visible in the client.

If you have created an EntityField called MYFIELD, then it automatically has a system variable with the

name $field.MYFIELD associated. You can access the value of this variable via the method

vars.get("$field.MYFIELD").

The EntityField value and the "$field" variable value are linked in the ADITO core. Each is calculated at

different times, and at certain points they are synchronized to each other.

F.1. Synchronization

There are two ways of synchronizing:

1. EntityField value → "$field" variable value

If the value of an EntityField is set, then it triggers a new calculation of the variable.

2. "$field" variable value → EntityField value

If the value of the "$field" variable changes, its value gets set to the EntityField value.

F.2. How does an EntityField value get set?

The value of an EntityField is set, when a user enters a value in a View. This is when the new calculation

of the variable is triggered according to the order of processes detailed in a previous appendix.

F.3. How does a "$field" variable get its value?

There are three variants of how the value of a "$field" variable can be determined:

1. Record

If you have linked your EntityField with your RecordContainer and have no valueProcess

specified, then the system takes the value from the record.

2. Process

If your EntityField is not linked to the RecordContainer, then the valueProcess is used to

determine the value of the variable.

© 2025 ADITO Software GmbH 382 / 472

3. Record process

This means, you have a mixture of the previous variants: You have linked your EntityField within

the RecordContainer and you have a valueProcess specified.

If the record returns a value, then it is used, while the valueProcess is being ignored. If, however,

the record does not return a value, then the valueProcess is executed to determine a value.

Please mind the following logic:

● If your system changes into state "NEW" or "EDIT" (e.g., if you open the EditView of a Context),

all fields of the Context’s Entity are being retrieved (= loaded or calculated) - no matter if they

are displayed or only used in other processes. This makes sure that all data are up-to-date when

the user edits or enters a dataset.

● Generally: If you open a View (regardless of the system’s state), ADITO automatically determines,

what fields might be required - meaning not only the fields referenced in the View configuration,

but also fields that are used in one of the Entity’s processes, like, e.g., the titleProcess or the

onActionProcess. These fields are then always loaded (= the column or the "expression" of the

RecordFieldMapping will be included in the SQL’s SELECT clause) - even if it later turns out that

one or several fields' values are actually not used.

This will ensure that all (possibly) required values are immediately present when the client user

works with the View - without the system having to load/calculate them separately. On the other

hand, this can lead to performance issues, if there are a lot of fields calculated via property

"expression" - especially when these fields' calculation is complex or suboptimally realized.

On the contrary, if the field is only calculated via a valueProcess or displayValueProcess (and not

via the "expression"), the calculation is only done on demand.

If both types of calculation have been configured, the "expression" is automatically preferred, if

it actually returns a value.

Furthermore, the determination of the "$field" variable’s value depends on the state of the record:

1. VIEW mode

In VIEW mode, the user is only Viewing the data and cannot change it. In this mode, the value is

determined by the previously stated variants.

1. EDIT mode

To to determine a value in EDIT mode, the system proceeds as follows:

○ First, it checks if a valueProcess is specified. If so, then it is executed. Thus, the

valueProcess can be used to preset a value. (This is where the $this.value variable

has to be used (see next chapter).

○ If the valueProcess does not return a value, then the user’s input is used.

© 2025 ADITO Software GmbH 383 / 472

F.4. $this.value

$this.value is a special system variable that is accessible in the valueProcess of an EntityField. It is

accessed via vars.get("$this.value") and contains the current value of the EntityField (being

input or preset). It can therefore, e.g., be used to determine if something was entered or if the field

was completely empty.

If the field has no current value, $this.value contains null, otherwise it

contains the value entered by the user.

If the user has deleted the value, $this.value will return an empty string (no

longer null!).

Therefore, if you want to preset a value, you have to check for if(vars.get("$this.value")

== null) to only set your preset value if no value was present before. In the onValidation and

onValueChange processes, you can use this to get and process the users input.

Example:

Presetting currency to "EUR":

Productprice_entity.CURRENCY.valueProcess.js

if (vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && vars.get("$this.value") == null)

{

 result.string($KeywordRegistry.currency$eur());

}

F.5. $this.value vs. $field.MYFIELD

While variable $this.value contains the current value of a field, variable

$field.<FIELDNAME> contains the last calculated value that was synchronized to the field. In most

cases, those two variables have the same value, due to a close synchronization. There are rare

exceptions when the values can differ, e.g.

● while the initial value of a field is determined;

● when a record gets reloaded.

F.6. $this.value and $field.MYFIELD in valueProcess

Generally, in a valueProcess you have to distinguish between the stored field value ($field.MYFIELD)

and the new value to set ($this.value).

Here is an overview about when and how a valueProcess is executed and what reactions are possible:

© 2025 ADITO Software GmbH 384 / 472

1. Initial loading of the field values

If the value of the field is initially loaded from the Entity, then $this.value is null. This case is

mostly used for presets when entering new data oder editing it, because this case occurs only

once. If you miss to check for $this.value == null then the value of the field will be

overwritten with every refresh.

2. Field is explicitely set empty

In case the field is explicitely set empty (e.g., by the user), a check for !this.value would

fail, because in this case $this.value == ""

3. Changes of the field itself

If the value of the field itself changes directly (e.g., by user input, WriteEntity,

neon.setFieldValue, etc.) then $this.value is filled with a value (or an empty string in

case 2, see above) and the field itself ($field.MYFIELD) ist empty (""). Knowing this, you

can, e.g., prevent that the field is automatically filled by dependencies from other fields, because

the given value was entered explicitely.

4. Trigger of the valueProcess by other fields

This case only happens when entering new data, not when editing it. It is the constellation that

the value of the field itself has not changed, but it has been updated because of triggers/calls

etc. and thus the valueProcess is executed. In this case $this.value and

$field.MYFIELD have the same value. This constellation can be used, e.g., to set the field

depending on other fields. This is the recommended approach, other than to use

neon.setFieldValue in the onValueChange process of another field.

neon.setFieldValue should only be used in onValueChange, if there is

absolutely no other possibility to realize the task. The performance of

neon.setFieldValue is very low, because many dependencies need to be

updated and it can happen that the same code needs to be written in multiple

fields.

If the value of a field is set and you do not return anything in the valueProcess, then the set value will

be used. (This means, in case 3 only the return must be prevented.)

Example of the implementation of the above cases 1, 3, and 4:

The example task is that a field A should initially be filled with value 1, when entering a new dataset. It

should be possible to overwrite the field’s value when entering a new dataset or when editing it. If field

B is set to a specific value, then field A should automatically filled with the value 2 (works for "new",

not for "edit").

Example valueProcess for cases 1, 2, and 4

var fieldA = vars.get("$field.A");

© 2025 ADITO Software GmbH 385 / 472

var thisValue = vars.get("$this.value");

// The value of the field is not required in this case,
// but it can work as trigger, if B changes.
var fieldB = vars.get("$field.B");

var recordState = vars.get("$sys.recordstate");

if([neon.OPERATINGSTATE_NEW, neon.OPERATINGSTATE_EDIT].includes(recordState))
{
 if(recordState == neon.OPERATINGSTATE_NEW && thisValue == null)
 //case 1: initial presetting the field with value 1
 {
 result.string(1);
 }
 else if(fieldA == "" && thisValue)
 //case 3: value was changed -> should be set now
 {
 result.string(thisValue);
 // In this case, you can alternatively simply return nothing.
 // Then $this.value will be set as field value.
 }
 else if(fieldA == thisValue)
 // case 4: thisValue and field have the same value
 // -> The field was not changed, but was triggered somewhere,
 // e.g., because a change of field B -> fieldA should be set to 2
 {
 result.string(2);
 }
}

F.7. $local.value

This is a local system variable that is accessible in the onValidation and the onValueChange processes

and contains the entered value before it is written to the variable value, so you can validate it before

the data enters the system.

Example:

Checking if the user has input a wrong entry date:

Activity_entity.ENTRYDATE.onValidation.js

var entryDate = vars.get("$local.value");
if (!DateUtils.validateNotInFuture(entryDate)) {
 result.string(translate.text("Entrydate must not be in the future"));
}

© 2025 ADITO Software GmbH 386 / 472

F.8. $local.rowdata and $local.initialRowdata

If you want to access the values of EntityFields in specific processes of a RecordContainer, you must

exclusively use $local.rowdata or $local.initialRowdata, because $field variables

might contain outdated values at that time. In particular, these are the following processes:

● dbRecordContainer: onDBInsert, onDBUpdate, and onDBDelete

● jDitoRecordContainer: onInsert, onUpdate, and onDelete (see also sub-chapter "Advanced

explanations" of chapter JDitoRecordContainer)

Find more information on $local.rowdata and $local.initialRowdata

in appendix $local variables.

© 2025 ADITO Software GmbH 387 / 472

Appendix G: Operating state vs. record state

In ADITO, there are 2 types of system states, which can be retrieved via system variables:

● "operating state" → vars.get("$sys.operatingstate")

● "record state" → vars.get("$sys.recordstate")

The values of these state variables are Strings, namely (both for operating state and record state)

● "VIEW"

● "NEW"

● "EDIT"

● "SEARCH"

When coding and checking a state for a specific value, you should not use the above Strings itself, but

the corresponding constants

● neon.OPERATINGSTATE_VIEW

● neon.OPERATINGSTATE_NEW

● neon.OPERATINGSTATE_EDIT

● neon.OPERATINGSTATE_SEARCH

These constants are used both for operating state and for record state. There are no

specific constants for record state.

Operating state and record state are similar, but apply in different environments:

● Operating state refers to the state a Context is currently in, while

● record state refers to the state of a record or even only a part of a record.

Example:

If you are in a MainView and use the pencil button of a component, the Context is still in the operating

state "VIEW", while the part of the record, which is covered by the component, is in record state

"EDIT".

Another example:

If you are in an EditView, operating state is "EDIT", because the whole Context is now in the "EDIT"

mode. The record state is now also "EDIT", because the record is edited with the help of the EditView.

© 2025 ADITO Software GmbH 388 / 472

In most cases, you should use $sys.recordstate to determine if data is being

edited, as the operating state still can be the VIEW mode, while the record state is

EDIT.

Use $sys.operatingstate to determine if you are in an EditView.

Code example:

//Presetting an ID, if a record is newly created.

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && vars.get("$this.value") == null)

{

 result.string(util.getNewUUID());

}

© 2025 ADITO Software GmbH 389 / 472

Appendix H: LoadEntity and WriteEntity

LoadEntity and WriteEntity are essential functionality of the ADITO platform, used to manage

datasets/records. The naming of these terms is not related to method names, but they summarize

functionality represented by several methods used for loading and writing data from/into an Entity.

This means, the loading/writing does not, in the first place, target the database, but the Entity and its

Fields - respecting customized logic for values, displayValues, validations, etc. Of course, at last, the

database will be accessed via the Entity, but also calculated EntityFields, without relation to the

database, can be accessed.

You primarily use LoadEntity and WriteEntity if you want to

● load and write datasets strictly according to the permissions (access rights) configured by the

client administrator - which, e.g., is not the case when loading data via SqlBuilder or the db.xxx

methods (!).

● load or write data which is related to an Entity that is based on more than one database table

(no need to care for SQL joins etc.).

● load a calculated EntityField

● load the displayValue of an EntityField

● have an EntityField’s presets, validations, and dependencies to be respected in the

loading/writing logic

● utilize data caching via a RecordContainerCache.

LoadEntity and WriteEntity should be your preferred way to load and write data in

ADITO, when permissions (access rights) must be respected. Whenever you use

other loading/writing options (e.g., SqlBuilder, db.xxx methods, etc.), the

permissions configured by the client administrator will be ignored, which may cause

severe data security leaks, as critical data may be disclosed to unauthorised persons.

However, performance issues can be involved, as LoadEntity and WriteEntity include

more overhead and calculations than an SQL select or insert. Therefore, it is

important to be careful when utilizing LoadEntity and WriteEntity: If the code is

frequently executed within loops or recurring processes and requires optimal speed,

LoadEntity and WriteEntity may not be the most suitable options. Particularly in

Entity processes, LoadEntity and WriteEntity calls should be handled carefully, e.g.,

in onValidation, stateProcess, valueProcess, or displayValueProcess. Problems can

occur, because

© 2025 ADITO Software GmbH 390 / 472

● processes of the Entity are executed when loading

● a count is executed when loading

● When larger data amounts are involved, LoadEntity consumes extensively

RAM.

Example: If you use LoadEntity for validation of input of a Consumer, then the

already saved connected data will be loaded via LoadEntity in the onValidation

process of the Consumer. This process will be executed very often during editing,

and one Entity loading can take from 0,5 to up to multiple seconds. In this case, the

required data is very small, and in most cases there is no need for respecting

permissions. Thus, an SQL select would do the same job in a fraction of the time

LoadEntity requires.

In order to use any method of LoadEntity or WriteEntity, we need the following import:

import { entities } from "@aditosoftware/jdito-types";

The documentation (JSDoc) of each method (available by using CRTL+SPACE) is not

finished yet. It will be available in a future ADITO version.

H.1. LoadEntity

The term LoadEntity summarizes the methods to get datasets related to an Entity.

The first step is to create a configuration object. There are 2 types of configuration objects available,

specific for different purposes:

// configuration for loading datasets
// (return value: Object of type "LoadRowsConfig")
var myConfig1 = entities.createConfigForLoadingRows()

// configuration for loading datasets from an Entity via a Consumer
// (return value: Object of type "LoadConsumerRowsConfig")
var myConfig2 = entities.createConfigForLoadingConsumerRows()

These configuration objects provide setter methods (parameters) that can be chained in order to define

the datasets that should be loaded (similar to the chaining approach of, e.g., SqlBuilder). The order of

the method calls does not matter. To see how to add these parameters, please refer to the example

below. By adding a "." to the end of the configuration you can use the code completion to see all

available functions by using CTRL+SPACE.

© 2025 ADITO Software GmbH 391 / 472

Table 6. All setter methods (parameters) available for LoadEntity

Setter Method Description

.entity (String) the name of the Entity whose datasets are to be loaded

.fields (Array) list of EntityFields of the Entity. If you specify here only "#UID", then the

ADITO system tries to optimize the loading process (e.g., by skipping

unnecessary processes)

.filter (String) filter to be applied when loading the datasets

.count (Number) maximum number of datasets

.provider (String) name of the Provider that is to be used to retrieve the data

.addParameter

(String, String)

specifies a Parameter, to be used to supply a Provider. The first argument

of this method is the name of the Parameter (e.g., "ContactId_param"),

the second argument is the value to be assigned to this Parameter, e.g., a

UID).

.startRow

(Number)

number of the row of the datasets to start loading

.uid (String) UID of the dataset to be loaded

.uids (Array) UIDs of the datasets to be loaded.

NOTE: If the argument of this setter method is

● an empty Array, then nothing is loaded (subsequent method

getRows returns an empty Array, and method getRowCount

returns 0)

● null, then there there is not any UID-related restriction at all (=

same as if this setter method was not executed at all)

.user (String) title of the user (e.g. "Harold Smith"), in whose "user context"

(permissions, calendar or mail settings, etc.) the loading logic will be

executed. For reasons of data security, this works only in server processes.

(In client-related processes, it will cause an error.)

© 2025 ADITO Software GmbH 392 / 472

.ignorePermissi

ons()
Load without respecting the permissions of the respective user (but other

user-specific functionality, e.g., calendar or mail settings, do still apply).

The methods .entity and .fields are mandatory. If these are not used, the configuration is

invalid. You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

The configuration can be executed via 3 different methods, which have different purposes.

Table 7. The executing methods of LoadEntity

Method Description

entities.getRow (LoadRowsConfig) returns a single row (datasets)

entities.getRows (LoadRowsConfig) returns all rows (datasets)

entities.getRowCount (LoadRowsConfig) returns the number of rows (datasets)

(The methods for LoadConsumerRowsConfig are the same.)

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

The methods entities.getRow and entities.getRows differ in their

behavior, which has an effect especially on the processing of the results and the

filling of variables like sys.uid - see chapter getRow vs. getRows.

H.1.1. Benefits

Using LoadEntity shows the following advantages compared to loading data directly via SqlBuilder or

the db.xxx methods:

1. LoadEntity respects the permissions (access rights) configured by the client administrator.

Nevertheless, if required, you can skip the permissions, by adding .ignorePermissions().

2. Complex SQL queries (with JOINs, subselects, etc.) can be avoided - e.g., in cases when an Entity

is related to more than one single database table.

3. An EntityField’s presets and dependencies are respected in the loading logic.

4. The data is loaded via the RecordContainer of the Entity; thus, all data can be cached - which

results in a better user experience and faster response times when using programs like, e.g.,

Apache Ignite.

© 2025 ADITO Software GmbH 393 / 472

5. Every EntityField of the Entity can be loaded, even if this EntityField is not directly related to one

specific database field (e.g., a calculated EntityField).

H.1.2. Example

Below you find an example code of a test Action that loads all datasets of the xRM project’s Entity

Activity_entity and logs the result in detail. The loading is restricted to the values of the fields SUBJECT,

INFO, ENTRYDATE, and the display values of the fields DIRECTION and RESPONSIBLE. You can always

reduce the size of the result set by filtering according to values or entering UIDs.

MyTest_entity.testAction1a.onActionProcess

// creating the configuration object
var config = entities.createConfigForLoadingRows();
// setting the Entity's name
config.entity("Activity_entity");
// defining the required EntityFields
config.fields([
 "SUBJECT",
 "INFO",
 "DIRECTION.displayValue",
 "ENTRYDATE",
 "RESPONSIBLE.displayValue"
]);

// optional restriction to 1 UID
// config.uid("0cf02b72-a46a-4cd2-975f-15556618ea90");

// optional restriction to multiple UIDs
// config.uids(["0cf02b72-a46a-4cd2-975f-15556618ea90",
// "21852330-9c66-42a3-9d25-d053833f146d"]);

var myResult = entities.getRows(config);

// Retrieving a summary of each dataset
for (let i in myResult) {
 logging.log("-----> Dataset number " + i + ":")
 logging.log(myResult[i]);
 }

// Retrieving the single values of specific EntityFields
for (let i = 0; i < myResult.length; i++) {
 logging.log("-----> Dataset number " + i);
 // each part of the result is an associative array
 logging.log("SUBJECT = " + myResult[i]["SUBJECT"]);
 logging.log("INFO = " + myResult[i]["INFO"]);
 logging.log("DIRECTION = " + myResult[i]["DIRECTION.displayValue"]);
 logging.log("ENTRYDATE = " + myResult[i]["ENTRYDATE"]);
 logging.log("RESPONSIBLE = " + myResult[i]["RESPONSIBLE.displayValue"]);
}

© 2025 ADITO Software GmbH 394 / 472

Variation: Example of loading only 1 specific dataset via entities.getRow(config).

.MyTest_entity.testAction1b.onActionProcess

var config = entities.createConfigForLoadingRows();
config.entity("Activity_entity");

config.fields([
 "SUBJECT",
 "INFO",
 "DIRECTION.displayValue",
 "ENTRYDATE",
 "RESPONSIBLE.displayValue"
]);

// Restriction to 1 UID
config.uid("0cf02b72-a46a-4cd2-975f-15556618ea90");

var myResult = entities.getRow(config);
// Retrieving each field of the dataset
for (let i in myResult) {
 // e.g., myResult["SUBJECT"]
 logging.log("-----> Dataset index = " + i + ": " + myResult[i]);
}

Please note that, in this case, the result is 1 single object, which you can directly access as associative

array, e.g., like this: myResult["SUBJECT"]. Furthermore, note that

entities.getRow(config) requires a configuration that restricts the result to one single

dataset. Otherwise, you will get an exception.

H.1.3. getRow vs. getRows

The methods entities.getRow and entities.getRows differ in their behavior, which has an

effect especially on the processing of the results and the filling of variables like sys.uid.

entities.getRow:

● This method loads a specific dataset.

● Variables like sys.uid are automatically filled with the values of the loaded dataset.

● If the requested dataset cannot be found, an exception is thrown, which must explicitly be

caught by an individual error handling.

● The behavior is similar to opening a PreviewView or MainView.

entities.getRows:

© 2025 ADITO Software GmbH 395 / 472

● Here, multiple datasets are returned, based on a filter.

● Variables refering to single datasets, like sys.uid, are not filled.

● If no datasets are found, no exception will be thrown - even not in case only one single dataset

was expected.

● The behavior is similar to the loading of a FilterView.

Consequences in practice:

● Specific data handling: If it is required that variables like sys.uid are filled, then

entities.getRow should be used. In this case, you need to make sure that possible

exceptions (caused, e.g., by not findable datasets) are handled appropriately.

● Exception-tolerant queries: entities.getRows should be used for queries with no exact

number of hits to be guaranteed or expected, in order to avoid exceptions and to keep results

flexible.

Example:

Here is an example code to be used with entities.getRow, covering every error case:

var conf = entities.createConfigForLoadingRows()
 .entity("Person_entity")
 .uid("38cb4fab-64f9-4d8e-aa6f-a158d13fc933")
 .fields(["#CONTENTTITLE"]);

try {
 var myRow = entities.getRow(conf);
 log.info("Dataset successfully loaded: " + myRow["#CONTENTTITLE"]);

 // process dataset
 (...)
 }
} catch (exception) {
 // Exception handling (can be adapted to requirements individually)
 log.error("Error when loading dataset: " + exception.message);

 // Specific action in case of an exception
 // e.g., setting standard values, informing the user,
 // or cancelling the operation
 (...)
}

H.2. WriteEntity

The term WriteEntity summarizes the methods to write datasets "into" an Entity, and thus, into the

© 2025 ADITO Software GmbH 396 / 472

database table(s) related to it (create, update, or delete records).

The first step is to create a configuration. There are 3 types configurations available, specific for

different purposes:

// configuration for creating new datasets
var myConfig = entities.createConfigForAddingRows()

// configuration for updating new datasets
var myConfig = entities.createConfigForUpdatingRows()

// configuration for delecting new datasets
var myConfig = entities.createConfigForDeletingRows()

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

These configuration objects provide setter methods (parameters) that can be chained in order to define

the datasets that should be loaded (similar to the chaining approach of, e.g., SqlBuilder). The order of

the method calls does not matter. To see how to add these parameters, please refer to the example

below. By adding a "." to the end of the configuration you can use the code completion to see all

available functions by using CTRL+SPACE.

Depending on the configuration type, there are different parameters available:

Table 8. All setter methods (parameters) available for create configuration (createConfigFor

AddingRows())

Setter Method Description of arguments

.entity (String) the name of the Entity whose datasets are to be written

.fieldValues

(Array)

an Array of the EntityFields or Consumers, along with their values

(Important: Mind the order! See information box further below.)

If the values are restricted by a value list (via

dropDownProcess or a Consumer) there is no

validation, i.e., the values are written as given, even if

they are not included in the value list. If you need a

validation, use onValidation.

.consumer (String) name of the Consumer that is to be used to write the data

© 2025 ADITO Software GmbH 397 / 472

.provider (String) name of the Provider that is to be used to write the data

.addParameter

(String, String)

specifies a Parameter, to be used to supply a Provider or a Consumer.

The first argument of this method is the name of the Parameter (e.g.,

"ContactId_param"), the second argument is the value to be assigned to

this Parameter, e.g., a UID).

.user (String) title of the user (e.g. "Harold Smith"), in whose "user context"

(permissions, calendar or mail settings, etc.) the create logic will be

executed. For reasons of data security, this works only in server

processes. (In client-related processes, it will cause an error.)

.ignorePermissio

ns()
Write without respecting the permissions of the respective user (but

other user-specific functionality, e.g., calendar or mail settings, do still

apply).

For the create configuration, the methods .entity and .fieldValues are mandatory. If these are

not used, the configuration is invalid.

When writing the Array-typed argument of method .fieldValues, please

urgently consider the correct order of the EntityFields, as the ADITO platform will

process the EntityFields exactly in the given order. This is crucial, if one EntityField is

logically dependend on another EntityField - e.g., if the valueProcess of

MYENTITYFIELD2 contains the code

vars.get("$field.MYENTITYFIELD1"), then, in the Array,

MYENTITYFIELD1 must necessarily be specified before MYENTITYFIELD2. Otherwise,

the required value of MYENTITYFIELD1 will not yet be set when vars.get is called.

This behavior no bug, but intended, because WriteEntity should work like a user

works in the client: If, e.g., users call an Action without filling in the value of a

dependent EntityField before, they will also not get the intended result.

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

Table 9. All setter methods (parameters) available for update configuration (createConfigFor

UpdatingRows())

Setter Method Description

.entity (String) the name of the Entity whose datasets are to be written

© 2025 ADITO Software GmbH 398 / 472

.uid (String) UID of the dataset to be updated

.fieldValues

(Array)

an Array of EntityFields or Consumers, along with their values

(Important: Mind the order! See information box above.)

If the values are restricted by a value list (via

dropDownProcess or a Consumer) there is no

validation, i.e., the values are written as given, even if

they are not included in the value list. If you need a

validation, use onValidation.

.consumer (String) name of the Consumer that is to be used to update the data

.provider (String) name of the Provider that is to be used to update the data

.addParameter

(String, String)

specifies a Parameter, to be used to supply a Provider or a Consumer.

The first argument of this method is the name of the Parameter (e.g.,

"ContactId_param"), the second argument is the value to be assigned to

this Parameter, e.g., a UID).

.user (String) title of the user (e.g. "Harold Smith"), in whose "user context"

(permissions, calendar or mail settings, etc.) the update logic will be

executed. For reasons of data security, this works only in server

processes. (In client-related processes, it will cause an error.)

.ignorePermissio

ns()
Write without respecting the permissions of the respective user (but

other user-specific functionality, e.g., calendar or mail settings, do still

apply).

For the update configuration, the methods .entity, .fieldValues, and .uid are mandatory. If

these are not used, the configuration is invalid.

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

Table 10. All setter methods (parameters) available for delete configuration (createConfigFor

DeletingRows())

Setter Method Description

.entity (String) the name of the Entity whose datasets are to be written

© 2025 ADITO Software GmbH 399 / 472

.uid (String) UID of the dataset to be updated

.provider (String) name of the Provider that is to be used to delete the data

.addParameter

(String, String)

specifies a Parameter, to be used to supply a Provider. The first argument

of this method is the name of the Parameter (e.g., "ContactId_param"),

the second argument is the value to be assigned to this Parameter, e.g.,

a UID).

.user (String) title of the user (e.g. "Harold Smith"), in whose "user context"

(permissions, calendar or mail settings, etc.) the delete logic will be

executed. For reasons of data security, this works only in server

processes. (In client-related processes, it will cause an error.)

.ignorePermissio

ns()
Load without respecting the permissions of the respective user (but

other user-specific functionality, e.g., calendar or mail settings, do still

apply).

For the delete configuration, the methods .entity and .uid are mandatory. If these are not used,

the configuration is invalid.

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

Depending on the purpose (and thus, on the configuration), there are the following execute methods:

Table 11. The execute methods of WriteEntity

Function Description

entities.createRow (CreateRowConfig) creates a new dataset and returns its UID

entities.updateRow (UpdateRowConfig) updates the dataset

entities.deleteRow (DeleteRowConfig) deletes the dataset

You can see the documentation (JSDoc) of each method by using CRTL+SPACE.

H.2.1. Benefits

Using WriteEntity shows the following advantages compared to writing, updating, or deleting data

directly via SqlBuilder or the db.xxx methods:

© 2025 ADITO Software GmbH 400 / 472

1. WriteEntity respects the permissions (access rights) configured by the client administrator.

Nevertheless, if required, you can skip the permissions, by adding .ignorePermissions().

2. Complex or multiple SQL queries can be avoided - e.g., in cases when an Entity is related to more

than one single database table.

3. Updated or deleted records can be cached, which results in a better user experience and faster

response times when using programs like, e.g., Apache Ignite.

4. An EntityField’s presets, validations, and dependencies are respected in the writing logic.

5. No need for subsequently executing refresh logic (like neon.refreshAll()). This means,

e.g., in a "table" ViewTemplate

a. deleteRow only deletes the respective datasets - no refreshing/reloading of all datasets

required.

b. updateRow automatically reloads (only) the respective datasets.

6. Every EntityField of the Entity can be loaded, even if this EntityField is not directly related to one

specific database field (e.g., a calculated EntityField).

7. Encapsulation with configurations.

H.2.2. Examples

Example 1:

Below you find an example code of a test Action that creates an Activity dataset, without ActivityLinks.

MyTest_entity.testAction2a.onActionProcess

// creating the configuration object
var config = entities.createConfigForAddingRows();

// name of the Entity
config.entity("Activity_entity");

// mapping of the EntityFields and their values
config.fieldValues({
 "SUBJECT": "Test Activity",
 "INFO": "This is some demo information",
 "DIRECTION": "o",
 "ENTRYDATE": datetime.date().toString(),
 "CATEGORY": "MAIL"
});

// execution method for creating a new dataset
var id = entities.createRow(config);

© 2025 ADITO Software GmbH 401 / 472

// loggin the automatically created UID of the new dataset,
// e.g., "38cb4fab-64f9-4d8e-aa6f-a158d13fc978"
logging.log("ACTIVITYID: " + id);

After executing this Action’s code, the "onDBInsert" process of the given Entity will be executed.

Note that you can re-use config objects, e.g., if you want to create multiple similar datasets and the

config is the same except for the respective ID. The following example shows how to insert one Activity

dataset along with multiple ActivityLinks to various Projects.

MyTest_entity.testAction2b.onActionProcess

// IDs of the projects ot be linked to the Actitvity
var projectIds = ["c702e624-6675-4841-ac98-38da133a1c5b",
"559646cf-dcbf-4171-b251-952ac2ab9100",
"4436f590-1adb-466f-aad2-2cba0174aad7",
"9c78b5a2-36ee-45dd-9543-9099b78d28f2",
"029e0150-87bc-4f3a-9d34-7c455201f246"];

// config for creating the Activity dataset
var config = entities.createConfigForAddingRows();
config.entity("Activity_entity");

// config for creating ActivityLink datasets
var configLink = entities.createConfigForAddingRows();
configLink.fieldValues({
 "OBJECT_TYPE": "Salesproject"
}
);

// field values for creating the Activity dataset
config.fieldValues({
 "SUBJECT": subject,
 "TYPE": "LETTER",
 "ENTRYDATE": datetime.date().toString(),
 // link to configLink object
 "Links": [configLink]
}
);

// createRow is executed multiple times via a loop,
// each loop cycle with the same configLink object,
// but with different projectId values
for (let projectId of projectIds) {

 configLink.fieldValues({
 "OBJECT_ROWID": projectId
 }

© 2025 ADITO Software GmbH 402 / 472

);

 entities.createRow(config);
}

Example 2:

Below you find an example code of a test Action that updates an existing Activity dataset.

MyTest_entity.testAction3a.onActionProcess

// creating the configuration object
var config = entities.createConfigForUpdatingRows();

// name of the Entity
config.entity("Activity_entity");

// mapping of the fields to be updated
config.fieldValues({
 "SUBJECT": "My new Subject value",
 "DIRECTION": "i"
});

// UID of the dataset to be updated
config.uid("38cb4fab-64f9-4d8e-aa6f-a158d13fc978");

// execution method for updating a dataset
entities.updateRow(config);

After executing this Action’s code, the "onDBUpdate" process of the given Entity will be executed.

Also for updates, you can re-use config objects, e.g., if you want to update multiple datasets, with the

config being the same except for the respective ID. The following example shows how to set 3 different

Persons (identified by their CONTACTID) inactive.

MyTest_entity.testAction3b.onActionProcess

// CONTACTIDs of Person datasets to be set inactive
var contactIdsToUpdate = ["4c9e95fe-25ae-4875-bd84-7b3705edd4fa",
 "27596cb7-2211-429b-801f-b428250496e8",
 "6263b12a-b19c-4870-97a4-1f044fe102e5"];

// one config for all changes
var config = entities.createConfigForUpdatingRows();
config.entity("Person_entity");
config.fieldValues({
 "STATUS": "CONTACTSTATINACTIVE"

© 2025 ADITO Software GmbH 403 / 472

});

// updateRow is executed multiple times via a loop,
// each loop cycle with the same config object,
// but with different CONTACTID values
for (let idToUpdate of contactIdsToUpdate) {
 config.uid(idToUpdate);
 entities.updateRow(config);
}

Example 3:

Below you find an example code of a test Action that deletes an existing Activity dataset.

MyTest_entity.testAction4.onActionProcess

// creating the configuration object
var config = entities.createConfigForDeletingRows();

// name of the Entity
config.entity("Activity_entity");

// UID of the dataset to be deleted
config.uid("38cb4fab-64f9-4d8e-aa6f-a158d13fc978");

// execution method for deleting a dataset
entities.deleteRow(config);

Before (!) executing this Action’s code, the "onDBDelete" process of the given Entity will be executed.

Example 4:

Below you find an example code of a test Action that creates an Activity dataset, along with ActivityLink

datasets (linking the Activity to other Entities). As you can see, you can encapsulate multiple

configurations with WriteEntity.

MyTest_entity.testAction5.onActionProcess

// encapsulated configuration for link1
var configLink1 = entities.createConfigForAddingRows();

// field mapping
configLink1.fieldValues({
 // "field" : "value"
 "OBJECT_TYPE": "Person",
 "OBJECT_ROWID": "c7ddf982-0e58-4152-b82b-8f5673b0b729"
});

© 2025 ADITO Software GmbH 404 / 472

// encapsulated configuration for link2
var configLink2 = entities.createConfigForAddingRows();

// field mapping
configLink2.fieldValues({
 "OBJECT_TYPE": "Organisation",
 "OBJECT_ROWID": "6efb4fab-64f9-4d8e-aa6f-a158d13fc273"
});

// now create a new Activity with ActivityLinks

// creating the configuration object
var config = entities.createConfigForAddingRows();

// name of the Entity
config.entity("Activity_entity");

//field mapping
config.fieldValues({
 "SUBJECT": "My Linked Activity",
 "INFO": "This is some demo information",
 "DIRECTION": "o",
 "ENTRYDATE": datetime.date().toString(),
 "CATEGORY": "MAIL",
 // connect the configurations
 // via Activity_entity's Consumer "Links"
 "Links": [configLink1, configLink2]
});

// execution method for creating a new dataset
var id = entities.createRow(config);

// loggin the automatically created UID of the new dataset,
// e.g., "88ae4fab-64f9-4d8e-aa6f-a158d13fd132"
logging.log("ACTIVITYID: " + id);

After executing this Action’s code, the onDBInsert process of the given Entity will be executed.

H.3. Usage in server processes

LoadEntity and WriteEntity can also be used in server processes. However, if you use it there, a user

must be assigned. If required, simply create a "technical user" for that purposes, i.e., a user dataset

that is not related to a real person but only to be used by specific internal logic.

H.4. Skipping prevalidation

© 2025 ADITO Software GmbH 405 / 472

Every of the Entity configs provides the .skipPrevalidation(Boolean) setter method. The

default value within the config is false. In this default state the changes get validated before the

Entity is saved. This prevents incomplete entries from being saved. If you set the value to true,

validations are performed when saving data.

Using this method may be necessary when writing or changing at lot of data via processes as it reduces

the number of validations and may lead to an increased performance.

If you skip the prevalidation, you have to make sure your data is correct. Otherwise

it may fail validation checks and incomplete data might be saved.

© 2025 ADITO Software GmbH 406 / 472

Appendix I: RecordContainerCache

In order to increase the performance of your ADITO system for repetitive requests of the same data,

you can utilize a RecordContainerCache.

In ADITO, a cache is always defined separately for each RecordContainer. It is neither

possible nor reasonable to cache simply "everything".

Only data generated by the RecordContainer can be cached, be it a

dbRecordContainer (including "expression" properties), or a jDitoRecordContainer,

with its contentProcess. On the contrary, e.g., the data generated or retrieved by the

valueProcess of an EntityField cannot be cached (even if it interacts directly with the

database!), as the valueProcess is not a part of the RecordContainer.

I.1. Basics

Generally, it makes sense to implement a RecordContainerCache, if

● data are relatively static (i.e., they do not change permanently)

● the amount of data is overseeable.

Therefore, caching is only possible for RecordContainers that are not

pageable.

● the same set of data is often requested, without any changes, and this is a problem for the

system.

○ Example 1: The workload of the DBMS is unnecessary high, and the execution speed is

slowed down. If data have not changed, it is faster to load them from a cache than from

the database.

○ Example 2: ADITO is connected to an external, public, open source web service. If data

have not changed, it is faster to load them from a cache than to utilize the web service.

Use cases in the xRM project are mostly helper lists, such as keywords, attributes, country-related data,

languages, definitions of classifications, currency lists, price lists (if they change only once in a few

months), district definitions, or other information related to any configurations.

Note that the usage of a cache itself consumes substantial system resources,

particularly RAM. Therefore, a solid analysis of the users' behaviour (what data is

actually requested repeatedly by whom, and how often is this the case?) and the

amount of available RAM is required before deciding whether or not to utilize a

© 2025 ADITO Software GmbH 407 / 472

cache for a specific RecordContainer.

SELECT COUNT queries are generally excluded from caching. Find more

information in chapter COUNT queries.

I.2. Setup

By default, a RecordContainer does not use a cache. To activate caching, 2 propertys of the

RecordContainer must be configured, which can be found in section "Cache" of the "Properties"

window:

● cacheType

● cacheKeyProcess

As caching is not possible for pageable RecordContainers, these properties are only

present, if property "isPageable" is set to false.

Furthermore, there is a project property named maxEntryLifetimeInCache, in order to limit the lifetime

of a cache entry.

I.2.1. cacheType

The following cache types (scopes) are selectable:

● NONE: No caching. This is the default value for newly created RecordContainers.

● SESSION: This option is session-specific. One cache store is created separately for each user

(assuming that each user opens only one session). The cache store for user A will be different

from the cache store for user B. This is useful, if specific users often request specific data,

differently from other users.

● GLOBAL: This option creates a common (shared) cache store for all sessions/users logged into

the system. Example: If, for the first time, user A requests certain data, it will be loaded from the

database. If, at a later time, user B requests exactly the same data, it will be loaded from the

cache store instead of from the datbase - hence the loading process will be faster for user B and

all other users requesting the same data.

In most cases, scope GLOBAL fits best to the users' requirements - also in case you

utilize multiple languages (in this case, you only need to make sure that your

cacheKey includes the locale).

I.2.2. cacheKeyProcess

© 2025 ADITO Software GmbH 408 / 472

In principle, a cache store is a list of key-value pairs, with the key being a unique identifier and the value

being the set of requested data. Thus, the result of the cacheKeyProcess must be a unique key

representing the requested data. If, e.g., 2 times the same set of data is requested, then exactly the

same key must be generated. This enables caching: When a set of data is requested for the first time, it

is loaded from the database and saved in the cache store, along with the unique key. When, at a later

time, the same set of data is requested a further time, the RecordContainer first uses the same unique

key to check the cache store for data associated with this key - and if it is found, it is loaded from there,

not from the database.

The following factors influence the data generated by a RecordContainer and hence must be respected

when constructing the cache key:

1. Components that determine, filter, and restrict data:

○ Lists of IDs to be included or excluded in the data query

○ Filters (user filters, search filters, permission filters, etc.)

○ Parameters evaluated in, e.g., the conditionProcess (dbRecordContainer) or

rowCountProcess/contentProcess (jDitoRecordContainer).

2. Components that influence data presentation:

○ Language: Often relevant with RecordContainers, especially during translation of display

values (e.g., Keywords).

○ Region: Can be significant in specific cases.

○ Sorting

○ Grouping

I.2.2.1. Helper functions

Although, in principle, you are free to construct the cache key as you like (as long as uniqueness is

ensured and as long as the same request for a specific set of data always results in the same cache key),

it is strongly recommended to utilize the specific helper functions provided by the ADITO platform:

The ADITO library "CachedRecordContainer_lib" (see, "process" > "libraries", in the project tree)

already includes a helper class named CachedRecordContainerUtils that consists of several

helper functions. These functions return a key string that can be used as result of the cacheKeyProcess.

The helper functions read the values of various variables (lists of IDs, filter configurations, etc.) or

Parameters and integrate these values into the key. Examples: $local.idvalues,

$local.filters, or $param.OnlyActives_param.

If, at the time of the data request, a variable does not exist oder if it contains no value, its name is used

© 2025 ADITO Software GmbH 409 / 472

instead of the value - which contributes to the requirement to make the key string unique.

All variable values/names are concatinated using a dot (".").

The following helper functions exist:

● getKey is the basic function. It enables you to define the complete key by yourself (via

arbitrary variables as arguments) without the requirement to construct the string manually. In

practice, getKey is seldomly used directly in a cacheKeyProcess; rather, it is internally called by

the other helper functions (see below).

● getKeyWithPreset is used, if you want the cache key to respect all criteria that usually

influences data, e.g., specific IDs, filters, sortings, and groupings. getKeyWithPreset

internally calls function getKey, using the following arguments:

○ (mandatory:) a predefined set of variables (= "preset"), to be specified via a constant

defined in class CachedRecordContainerFieldPresets (also part of

CachedRecordContainer_lib). In particular, the following constants are available:

■ STANDARD: includes the variables $local.idvalues,

$local.idvaluesExcluded, $local.filters, $local.order, and

$local.grouped.

■ STANDARD_WITH_LOCALE: includes all variables of constant STANDARD plus (if

present) the variable $sys.clientlocale.

○ (optionally:) an arbitrary number of additional variables

● getCommonKey internally calls function getKeyWithPreset, using the constant

STANDARD_WITH_LOCALE (see above). Optionally, you can specify an arbitrary number of

additional variables as arguments.

These functions are well-documented: You can learn how to use them by reading

their JSDoc. Furthermore, you can learn how they construct the cache key string, by

inspecting their source code in the CachedRecordContainer_lib.

I.2.2.2. Examples in the xRM project

Examples of the design of a cacheKeyProcess can easily be found, if you simply search the complete

xRM project for the string "CachedRecordContainerUtils.get".

Here is an example, used in the jDitoRecordContainer of Attribute_entity:

Attribute_entity.jDito.cacheKeyProcess

import { result } from "@aditosoftware/jdito-types";

© 2025 ADITO Software GmbH 410 / 472

import { CachedRecordContainerFieldPresets, CachedRecordContainerUtils } from "CachedRecordContainer_lib";

var key = CachedRecordContainerUtils.getCommonKey(

 "$param.AttributeCount_param",

 "$param.ChildId_param",

 "$param.ChildType_param",

 "$param.FilteredAttributeIds_param",

 "$param.GetOnlyFirstLevelChildren_param",

 "$param.IncludeParentRecord_param",

 "$param.ObjectType_param",

 "$param.ParentId_param",

 "$param.ParentType_param"

);

result.string(key);

Another example can be found in the dbRecordContainer of ResourcePlanning_entity:

ResourcePlanning_entity.db.cacheKeyProcess

import { CachedRecordContainerUtils } from "CachedRecordContainer_lib";
import { result } from "@aditosoftware/jdito-types";

var res = CachedRecordContainerUtils.getCommonKey(
 "$param.OrganisationContactIds_param",
 "$param.PersonContactIds_param",
 "$param.ResourceOperationIds_param"
);
result.string(res);

You can improve your understanding of the generation of the cache key by

debugging or logging the results of the cacheKeyProcesses of various

RecordContainers of the xRM project, in order to observe the generated key and its

structure. Simply play around with, e.g., the filter in the web client, and see how the

content of the key changes.

Furthermore, for testing purposes, you can also add (further) arguments to one of

the helper functions (see above), e.g., new variables or Parameters. Keep in mind

that the cache key will only change, if a variable/Parameter actually influences the

SQL statement that retrieves the data.

I.2.2.3. Logged example

Let’s, for testing reasons, include a logging in the dbRecordContainer of KeywordEntry_entity:

KeywordEntry_entity.db.cacheKeyProcess

import { CachedRecordContainerFieldPresets, CachedRecordContainerUtils } from "CachedRecordContainer_lib";

import { logging, result } from "@aditosoftware/jdito-types";

var res = CachedRecordContainerUtils.getCommonKey(

 "$param.ContainerName_param",

 "$param.BlacklistIds_param",

© 2025 ADITO Software GmbH 411 / 472

 "$param.OnlyActives_param",

 "$param.WhitelistIds_param",

 "$param.Locale_param"

);

logging.log("------> Keyword Entry (db) Cache Key: " + res);

result.string(res);

Furthermore, make sure that the logging of database queries is active (see chapter Logging).

Now, open Context "Keyword Entry" and define, e.g., the filter "Keyword Category equal AddressType".

Then apply the filter and watch the log. Among several other log entries, you should see

1. the key string generated by the cacheKeyProcess:

(...) ------------> Keyword Entry (db) Cache Key: en_US._____$local.idvalues._____$local.idvaluesExcluded.{"type":"group",

"operator":"AND","childs":[{"type":"row","name":"AB_KEYWORD_CATEGORY_ID","operator":"EQUAL","value":"AddressType","key":"1f70

0fd2-5295-43a9-95ad-e73add4b5086","contenttype":"TEXT"}]}.{}._____$local.grouped._____$param.ContainerName_param._____$param

.BlacklistIds_param.false._____$param.WhitelistIds_param._____$param.Locale_param

→ See how the key consists of a mixture of variable/Parameter values (e.g., the filter

configuration) and variable/Parameter names (= names of variables/Parameters that do not exist

or do not have a value). All variable/Parameter names/values are separated by a dot (".").

2. the database query used to load the filtered data:

(...) SELECT AB_KEYWORD_ENTRY.TITLE , AB_KEYWORD_ENTRY.SORTING , AB_KEYWORD_ENTRY.ISESSENTIAL , AB_KEYWORD_ENTRY.ISACTIVE ,

AB_KEYWORD_ENTRY.AB_KEYWORD_ENTRYID , AB_KEYWORD_ENTRY.KEYID , AB_KEYWORD_ENTRY.AB_KEYWORD_CATEGORY_ID , (select

AB_KEYWORD_CATEGORY.NAME from AB_KEYWORD_CATEGORY where AB_KEYWORD_CATEGORY.AB_KEYWORD_CATEGORYID = AB_KEYWORD_ENTRY

.AB_KEYWORD_CATEGORY_ID) AS CATEGORY_NAME FROM AB_KEYWORD_ENTRY WHERE AB_KEYWORD_ENTRY.AB_KEYWORD_CATEGORY_ID =

'1f700fd2-5295-43a9-95ad-e73add4b5086' ORDER BY CATEGORY_NAME , AB_KEYWORD_ENTRY.SORTING , AB_KEYWORD_ENTRY.TITLE ,

AB_KEYWORD_ENTRY.AB_KEYWORD_ENTRYID

Subsequently, load the same data again, simply by clicking on the "refresh" button of your browser.

Then, in the log, you can see the same key string again, but not the database query - which proofs that

the cache is effective, as the repeatedly requested data has been loaded from the cache store, not from

the database. Q.E.D.

I.2.3. Cache invalidation

In specific cases, it can be required to invalidate (= delete) the cache store (or parts of it) of a specific

Entity. In particular, this is required, in order to avoid

● outdated cache store entries

● allocation of too much memory (RAM)

ADITO includes various automatisms and manual options in order to perform a cache invalidation,

some of which refer to

© 2025 ADITO Software GmbH 412 / 472

● an individual cache store entry or

● the complete cache store of a specific RecordContainer or

● all cache stores of all RecordContainers of a project

I.2.3.1. Automatic

I.2.3.1.1. RecordContainer-specific

The ADITO platform includes an automatic cache invalidation, which is executed whenever data is

changed (inserted, updated, or deleted) via a specific RecordContainer.

Example:

The dbRecordContainer of KeywordEntry_entity caches all requests of keyword entries. Now, when,

e.g., the keyword entries of a specific keyword category have been cached (see the Logged example)

and later the user adds a further keyword entry refering to the same keyword category, then the cache

store of the dbRecordContainer of KeywordEntry_entity is outdated and must be refreshed - which is

automatically initiated by the ADITO platform: The cache is deleted, in order to load the fresh data from

the database (and cache it again), as soon as a user requests data of KeywordEntry_entity again. Thus,

the cache store is now refreshed and provides the correct data for further requests.

I.2.3.1.2. Timespan-related

maxEntryLifetimeInCache is a project-related property (see project tree: preferences >

PREFERENCES_PROJECT), which defines the amount of time an individual cache entry remains in any

cache store of any Entity. Here, you can optionally change the default value to a value more suitable for

your project. The property description explains the syntax, e.g., "1D 42M" means "1 day and 42

minutes".

This value needs to be set with great care:

The larger this time span is,

● the more data requests (cache store entries) are collected in the cache store, and thus the

higher ("wider") is the effect of the cache; but

● the more memory (RAM) is required, and

● the higher is the probability that the user works with outdated data (in cases when, by mistake,

there is neither an automatic nor a manual cache invalidation, see the other sub-chapters of this

topic)

The smaller this time span is,

© 2025 ADITO Software GmbH 413 / 472

● the less data requests (cache store entries) are collected in the cache store, and thus the lower

("narrower") is the effect of the cache;

● the less memory (RAM) is required, and

● the lower is the probability that the user works with outdated data (in cases when, by mistake,

there is neither an automatic nor a manual cache invalidation, see the other sub-chapters of this

topic)

Therefore, the value of maxEntryLifetimeInCache needs to be set strictly according to the usual

influencing factors, particularly

● the expected user behaviour, e.g.,

○ the expected frequency of data changes;

○ the expected kind and frequency of data requests;

● the memory (RAM) available for the ADITO system.

I.2.3.2. Manual

Besides the built-in automatic cache invalidation (see above), there are cases that require a manual

cache invalidation. In particular, these are cases in which

1. data is changed (inserted, updated, deleted) independent from the invalidation automatisms of

the RecordContainer. This happens, e.g., when the database is modified via direct SQL

statements (using, e.g., db.XXX methods or the SqlBuilder), instead of using the

RecordContainer-utilizing methods of "Write Entity" (see appendix chapter WriteEntity). A

common use case is the inserting, updating, or deletion of data via an importer, which (for

performance reasons) might use direct SQL statements.

2. the change of data of a specific Entity influences another (dependent) Entity. Example: If you add

a new keyword category via the KeywordCategoryEdit_view, then the cached list of available

keyword categories shown in the KeywordEntryEdit_view needs to be updated, in order to

include also the new keyword category (see code example below).

In these kinds of cases, method invalidateCache(<name of Entity>, <name of RecordContainer>)

must be executed. Here is an example from the ADITO xRM project:

KeywordCategory_entity.db.onDBInsert.js

import { entities } from "@aditosoftware/jdito-types";

//dependecies are updated so the cache needs to be updated
entities.invalidateCache("KeywordEntry_entity", "db");

© 2025 ADITO Software GmbH 414 / 472

If (in rare cases) it is required to invalidate all RecordContainerCaches of the complete project, simply

execute method invalidateCache() without arguments. Here is an example from the ADITO xRM

project, where a specific server process uses this method call:

mark_cachedrecordcontainers_invalid_serverProcess.process.js

import { entities } from "@aditosoftware/jdito-types";

entities.invalidateCache();

I.3. Shared caching with multiple ADITO servers

If your system includes multiple ADITO servers, it would be negative, if each server used only its own

local cache store, independently from the cache stores of the other servers. In this case, server A had

no information what happens on server B, and vice versa.

Rather, a shared (remote) cache must be applied, by utilizing a remote cache server. This server makes

sure that all data requests in all sessions use one single (shared) cache store. (To be more precise:

Internally, every server still has a local cache, called "NearCache", in order to reduce latency for

accesses of the remote cache - but this architecture can be ignored here; it is enough to imagine the

remote cache server as providing one single cache store, shared between all sessions of all servers.)

Example:

Given, in a multi-server environment, a cache of type GLOBAL has been configured for the

RecordContainer of a specific Entity. User A logs in, which opens a session on, say, server A; user B logs

in, which opens a session on, say, server B. Now, if user A requests a specific set of data of the

respective Entity, then these data are loaded from the database and cached. Now, if every server used

its own local cache and user B, subsequently, requests the same set of data, then the data would,

again, be loaded from the database and cached a second time, this time on server B. If, however, the

ADITO system utilized a remote cache server, then the data requested by user A would be stored in the

shared cache store, and the (same) data requested by user B would be found and loaded from there -

not again from the database.

Using a shared cache only makes sense for caches of type GLOBAL. Caches of type

SESSION are always restricted to one single session, and caches of other sessions are

ignored, be they running on the same server or on other server - even if a remote

cache server is active.

Therefore, each managed ADITO cloud system, by default, comes with an alias for a pre-configured,

ready-to-use remote cache server. Its alias is named "RecordContainerCache" - see the AliasConfig

(double-click on system > default, after the tunnel has been established):

© 2025 ADITO Software GmbH 415 / 472

If this remote cache alias is not present yet, you need to add it first:

1. In the project tree, right-click on node "alias" and choose "New" from the context menu.

2. A dialog named "Create New Model" appears. Here, type in a suitable name (e.g.,

"RecordContainerCache").

3. A dialog named "Create AliasDefinition Model" appears. Here, select the type "Remote Cache".

© 2025 ADITO Software GmbH 416 / 472

4. Deploy your project. Then, the new alias appears in the AliasConfig.

Now, check if the cache alias is set as value of the project property "recordContainerCachingAlias" (see

preferences > ____PREFERENCES_PROJECT, in the project tree):

If it is not set yet,

1. set it now,

2. deploy your project,

3. restart the ADITO server,

4. re-establish the tunnel to your cloud system,

5. reconnect to your your system, in order to see the AliasConfig again.

Now, if you click on the cache alias in the AliasConfig, you can inspect its properties in the "Properties"

window. Here, you should see that the address of the cache server (properties "host" and "port") has

been set automatically:

© 2025 ADITO Software GmbH 417 / 472

This semi-automatic activation of a remote cache server only works for managed

ADITO cloud systems, as these systems by default come with a pre-configured,

ready-to-use installation of a remote cache server. If, however, your system is an

unmanaged cloud system, you first need to order the transformation of your system

to a managed cloud system from ADITO.

ADITO does not offer support of integrating remote cache servers into "on premise"

(not cloud-based) systems. Although, in principle, this is possible, the installation of

the cache server and its integration as remote cache server must be realized by the

customers themselves.

I.3.1. Alternative cache servers

By default, every managed ADITO cloud system comes with an installation of Apache Ignite as pre-

configured, ready-to-use remote cache server. (Besides, ADITO utilizes Ignite also as cluster messaging

server, see chapter Notifications with multiple ADITO servers.) In principle, you can also use other kinds

of remote cache servers, but their installation and integration is not supported by ADITO (besides

providing properties for the remote cache server’s host and port; see above).

© 2025 ADITO Software GmbH 418 / 472

https://ignite.apache.org/

Appendix J: EntityField/Keywords vs. Attributes

If you want to add flexible features to the datasets of an Entity (e.g., the color of a car, along with

selectable values "green", "red", "blue", etc.) you have, in principle, at least the following 2 options:

1. Add an additional EntityField (e.g., CARCOLOR), which consumes KeywordEntries (e.g., GREEN,

RED, BLUE), having a specific category (e.g. "CarColor").

2. Make the client-side setting of Attributes available, via an "Attribute" tab in the Entity’s

MainView, whose content is filled via a Consumers connected with Attribute_entity’s

corresponding Providers.

You may study and copy this technique at the example of Organisation_entity’s View

OrganisationAttributeRestriction_view (referencing AttributeRelationTree_view), whose content

is filled via several Consumers named "AttributeXXX", along with several Parameters (in

particular, ObjectRowId_param, and ObjectType_param). In the client, the result can be seen

and used in the upper part of tab "Attributes" of Context "Company"'s MainView.

Both approaches show advantages and disadvantages. Generally speaking, you should use

Attributes only, if

○ their values are only used for displaying purposes, not for calculations;

○ or used only for a low number of datasets.

Otherwise you are likely to run into performance issues.

This means, an additional EntityField with Keywords should be preferred, if the values of this

EntityField are not only to be displayed, but also used for evaluations, groupings, or complex filters.

In critical cases, it might be recommended to test the usability and performance of

both approaches before deciding about what approach to use in the live system.

Find more details in the following chapters.

J.1. EntityField/Keywords

Advantages:

● higher performance when used for evaluations, groupings, complex filters, etc.

● better "visibility", if no value has been set yet: When using Attributes, no "suggestions" are

shown, but you need to know in advance, what kind of feature can be assigned to a dataset -

while an EntityField is always visible and can therefore suggest the user to examine its values

and choose one.

© 2025 ADITO Software GmbH 419 / 472

● can be used in an index search (other than Attributes)

● can change its state (visible, mandatory, etc.), according to specific conditions (unlike Attributes)

● can be integrated in an ADITO Workflow

● The EntityField can be directly included in the access rights management (permissions); this

means, e.g., that you can configure it in a way that it is only visibile or editable for user having a

specific role.

Disadvantages:

● requires customizing - therefore, the effort for integrating and maintaining it, is higher

● if multiple Keyword-related EntityFields are used, the total number of EntityFields can get too

high, and the Entity therefore confusing to understand and to maintain

Conclusion:

An additional EntityField with Keywords should be preferred, if the values of this EntityField are not

only to be displayed, but also used for evaluations, groupings, complex filters, etc.

J.2. Attributes

Advantages:

● Once the general customizing is done (connection of the Entity with Attribute_entity, see above),

no additional customizing in the Designer required, but everything else can be done in the client:

○ Arbitrary Attributes can be configured and maintained by the client administrator.

○ Those configured Attributes can then be set by the client user.

● See "Disadvantages" of previous chapter.

Disadvantages:

● Low performance is likely if used for evaluations, groupings, complex filters, etc.

● see "Advantages" of previous chapter

Conclusion:

Attributes should only be preferred, if their values are

● only used for displaying purposes, not for evaluations, groupings, complex filters, etc.

● or only used for a low number of datasets.

© 2025 ADITO Software GmbH 420 / 472

Appendix K: $sys variables

$sys variables are visible within one client and are independent from a specific context. They are

typically used to store values that are used throughout the client, like global configurations, rights

management via sales areas, etc. Find more information in appendix JDito system modules and

variables.

Here is an overview of all $sys variables:

Name: $sys… Description of return value

activeimage internal ID of the active top image (entity, report, mail)

activewindow internal ID of the active frame

ancestorimageuid ID of all currently opened frames

calenderusers calender users

clientcountry country of the client

clientdata DATA directory of the client. Visible with the variable $ADITO_DATA

clienthome HOME directory of the client

clientid ID of the client

clientlanguage language of the client

clientlocale localisation of the client (e.g. "de_DE")

clientos name of operating system of the client

clienttemp temp directory of the client

clientuid UID of the client

clientvariant language variant of the client

clientversion version of the client (e.g 2021.0.1)

© 2025 ADITO Software GmbH 421 / 472

content ID of the current selected record

currentcontextname name of the current Context

currententityname name of the current Entity

currentimage ID of the current image variable

currentimagename name of the current image variable

currentimagetype type of the current image variable

datarow condition of the current record without the keyword "where"

datarowcount number of all datasets loaded in the RecordContainer (if so, respecting a

filter), up to the limit configured in the RecordContainer (see property

maximumDbRows)

datarowcountfull number of all datasets (loaded or not) available via the RecordContainer (if

so, respecting a filter), ignoring the limit configured in the RecordContainer

(see property maximumDbRows)

date system date as long

dbalias active database alias

dynamicdate system date as long

extendedpattern current pattern as executed

filter current selection of the frame. Object that includes: .filter, .permission,

.filterCondition, .condition (e.g. vars.get("$sys.filter").filter)

filterable boolean value stating whether or not the current View is filterable

groupable boolean value stating whether or not the current View is groupable

groups current active groups

© 2025 ADITO Software GmbH 422 / 472

hasSelection boolean value stating whether or not it a selection is used

licenseid ID of the license

operatingstate current operatingstate of the Entity/View

order order of the current records

origin origin of the URL

outsidelineaccess area code of the Provider (CTI)

pageable boolean value stating whether or not the RecordContainer is pageable

parententity name of the parent for the dependencies

parentuid UID of the parent for dependencies

pattern current pattern as entered

pendingpattern returns the next pattern that will be executed

preferencesid ID of the selected preferences if multiple choices are available

presentationmode state of the current View/Entity

recordstate state of the single record in the current View/Entity

scope scope of the client

selection current selection (for Entity or index)

selectionRows all rows of a selection

© 2025 ADITO Software GmbH 423 / 472

selections array as a multistring including the following information:

- [0] Static: part of the selection that was used to open the

Context/Entity/View

- [1] Designer: part that was coded in the Designer

- [2] search mask: part of search

- [3] dependency: connection to the record

- [4] extra: global search

serveraddress address of the server (URL)

serverdata DATA directory of the server

serverhome HOME directory of the server

serverid ID of the current system

serveros operating system of the server

serverport ports of the current server

servertemp TEMP directory of the server

serverversion version of the server

staticdate current date as long

staticmillis current date in milliseconds

superframe name of the upper frame

superframeid ID of the upper frame

superimage name of the upper image

superimageid ID of the upper image

superimagetype type of the upper image

superwindowid ID of the upper window

© 2025 ADITO Software GmbH 424 / 472

tablescanbecreated boolean value stating whether or not records can be created in this Context

tablescanbedeleted boolean value stating whether or not records can be deleted in this Context

tablescanbeedited boolean value stating whether or not records can be edited in this Context

tableselection condition for the seleceted table

tableviewselection structured condition

timezone timezone of the current user

today current day without any time as long

uid current UID of the record

uidcolumn UID column name of the record

user username of the current user

useridletime idletime of the current user

usertoken token of the current user

validationerrors string with the current validation errors

viewmode viewmode of the current component

workingmode current workingmode

workingmodebefore

save

workingmode that was active before a save action was triggered

© 2025 ADITO Software GmbH 425 / 472

Appendix L: $local variables

These system variables are only visible within specific processes and are mostly set by the ADITO core

to pass values into these processes. Find more information in appendix JDito system modules and

variables.

Here is a short list of selected $local variables (may be extended in future versions of this manual,

according to demand).

This list does not include $local variables that are explained in other chapters of this

manual. You will find them in the respective chapters, e.g. "$local.operator2" in

chapter "FilterExtension", or "$local.value" in appendix "Accessing the value of an

EntityField".

When using a full-text search for a $local variable over this document, consider that,

for formatting reasons, some variable names include a line break, so you will find it

not via their full name (e.g., "$local.initialRowdata"), but only via the second part of

their name (e.g., "initialRowdata").

WARNING: Please do consider that this list is neither complete nor covering all

cases. It contains only a few typical examples. Several $local variables have

different meanings/purposes in different processes.

Name: $local… Examples of

return value

Data type Examples of usage

condition filter condition, e.g.,

"CONTACT.STATUS is

null"

String filterConditionProcess

of a FilterExtension;

groupQueryProcess of

a FilterExtensionSet

filter filter configuration

(see below)

object contentProcess of a

jDitoRecordContainer

idvalue IDs affected by a

change in an

indexRecordContainer

object affectedIds process of

a

indexRecordContainer,

see chapter "Index for

'Global Search'"

© 2025 ADITO Software GmbH 426 / 472

idvalues ID affected by a

change in a

jDitoRecordContainer

String contentProcess of a

jDitoRecordContainer

initialRowdata values of an Entity’s

dataset at initial

loading, i.e., BEFORE

the user has made

changes

object with EntityField

names (as key) and

their initial values

onDBUpdate process

of a

dbRecordContainer

lookupFieldName (see below) String FilterExtensionSet for

Attributes (see below)

rawvalue user input (e.g.,

selection in combo

box)

String filterConditionProcess

of a FilterExtension;

find details in chapter

"FilterExtension"

rowdata values of an Entity’s

dataset (if so) AFTER

the user has made

changes

object with EntityField

names (as key) and

their corresponding

values

onDBdelete

uid identifier of a dataset

in a

dbRecordContainer

(see table in property

linkInformation >

column "Primary key"

in line marked as "UID

Table")

String onDBInsert,

onDBUpdate,

onDBDelete

In the following, find detailed explanations of selected variables:

L.1. $local.filter

Example of structure and content of variable $local.filter

// if a filter is set, it looks like this:
{
 "filter": {

© 2025 ADITO Software GmbH 427 / 472

 "type": "group",
 "operator": "AND",
 "childs": [
 {
 "type": "row",
 "name": "ACTIVE",
 "operator": "EQUAL",
 "value": "Ja",
 "key": "true",
 "contenttype": "TEXT"
 }
]
 },
 "permissions": null,
 "subset": null,
 "ids": null
}

// if a filter is NOT set, it looks like this:
{
 "filter": null,
 "permissions": null,
 "subset": null,
 "ids": null
}

L.2. $local.lookupFieldName

● Availability:

This variable is available in the valueProcess of a Parameter of a Consumer.

● Content:

○ If the Consumer is connected to an EntityField (→ lookup), then the variable contains the

name of this EntityField.

○ FilterExtensions and FilterExtensionSets can also use a Consumer for a lookup. In these

cases, the variable contains the name of the FilterExtensionField.

● Use case in xRM: FilterExtensionSet for Attributes: With some FilterExtensionFields, a Consumer

is used for the values. To inform the Consumer, which FilterExtensionField has been selected, the

name of the field is retrieved via $local.lookupFieldName.

© 2025 ADITO Software GmbH 428 / 472

Appendix M: $property variables

Name:

$property.MY_FIELD…

Examples of

return value

Data type Examples of usage

contentDescription String current

contentDescription

contentTitle String current contentTitle

contentType String current contentType

dropDown key + value Object result of a

dropDownProcess,

without it being

calculated anew. Via

the key, the displayed

value can be resolved.

iconId String current iconId

image current image

metadata current metadata

state current state

title String current title

titlePlural String current titlePlural

© 2025 ADITO Software GmbH 429 / 472

Appendix N: XML in JDito

This appendix is about working with XML in JDito. XML is short for eXtensible Markup Language, which

is a way to express various data in a structured form. XML consists of HTML-like tags and their

attributes, but those tags and attributes are not predefined, but rather defined by the developer. XML

is often used in APIs or webservices to exchange data in a defined format.

If you have the choice between using XML and JSON, you should always choose

JSON as it is native to JavaScript and JDito and it’s more lightweight in terms of

memory usage. Only use XML if an external API requires it and JSON is not an

option.

In JDito you have access to the XML and XMLList object, which can be imported like import { XML

} from "@aditosoftware/jdito-types";. This object offers methods for building the XML

script in a builder-like way. It can also take a XML script as a string at instantiation to prefill the object

based on that. XMLList is used to represent an XML document containing multiple elements and XML is

used to represent one element.

Simple example:

import { XML, logging } from "@aditosoftware/jdito-types";

var xmlObject = new XML("<xml> \
 <element1 attribute1='value1'
attribute2='value2'> \
 element1 content \
 </element1> \
 <xml>");

logging.log("Element1 content: " + xmlObject.element1 + "\nElement1
attribute1: " + xmlObject.element1["attribute1"]);

To access the elements, the typical object notation is used. If you’re dealing with simple XML scripts,

this is the preferred way. More complex XML scripts may require the usage of the XML object’s

methods like .child(), .children() or .appendChild() to build or process the XML. As an

XML element can contain further elements or even contain several elements having the same name,

.child() returns an array of XML objects.

Example of reading an XML containing multiple children of the same name:

import { XML, logging } from "@aditosoftware/jdito-types";
//initializing as object from a XML string

© 2025 ADITO Software GmbH 430 / 472

var xmlObject = new XML("<xml> \
 <element1 attribute1='value1'
attribute2='value2'> \
 element1 content \
 </element1> \
 <element1 attribute1='value1'
attribute2='value2'> \
 element1 content \
 </element1> \
 <element1 attribute1='value1'
attribute2='value2'> \
 element1 content \
 </element1> \
 <xml>");

//iterating over the children of the XML object
for(let child in xmlObject.children())
{
 logging.log("Content: " + child.text() + "\nAttribute 1: " +
child["attribute1"] + "\nAttribute 2: " + child["attribute2"]);
}

Example of building a XML script:

import { XMLList, XML, logging } from "@aditosoftware/jdito-types";

// Task: A JSON object containing our data needs to be
// "converted" into an XML. (Names are chosen generically.)

var data = {
 {
 "attribute1":"value1", "attribute2":"value2", "content":
"element content"
 }
 ,{
 "attribute1":"value1", "attribute2":"value2", "content":
"element content"
 }
 ,{
 "attribute1":"value1", "attribute2":"value2", "content":
"element content"
 }
};

// preparing the main element of our XML

var xmlListObj = new XMLList("<data></data>");

© 2025 ADITO Software GmbH 431 / 472

// appending children based on the content of your data JSON

for(let obj in data)
{
 xmlListObj.appendChild(new XML("<element1 attribute1='" + obj
.attribute1 + "' attribute2='" + obj.attribute2 + "'> " + obj
.content + "</element1>"));
}

//checking the generated XML in the server log

logging.log(xmlListObj.toXMLString());

Do no longer handle XML using the inline syntax (E4X), example:

var myXml = <element1>
 <element2>My first text.</element2>
 <element3>My second text.</element3>
 </element1>;

© 2025 ADITO Software GmbH 432 / 472

Appendix O: Car pool example: EntityFields

As the spelling of the EntityFields' names is essential for the function of the following code examples,

you can find the names of all car pool related EntityFields below, ready for "copy & paste".

Furthermore, the following tables indicate the preferable contentType of the EntityField, as well as the

data type of the corresponding database column.

Table 12. Car_entity

Name contentType Liquibase data type

availability BOOLEAN - (calc.)

CARID TEXT CHAR(36)

COLOR TEXT VARCHAR(36)

CURRENCY TEXT VARCHAR(36)

damages TEXT - (calc.)

LICENSEPLATENUMBER TEXT NVARCHAR(20)

MANUFACTUREDATE DATE DATE

MANUFACTURER TEXT VARCHAR(36)

mileage NUMBER - (calc.)

PICTURE IMAGE LONGBLOB

PRICE NUMBER DECIMAL(10,2)

TYPE TEXT NVARCHAR(30)

carValue NUMBER - (calc.)

Table 13. CarDriver_entity

© 2025 ADITO Software GmbH 433 / 472

Name contentType Liquibase data type

age NUMBER - (calc.)

CARDRIVERID TEXT CHAR(36)

CONTACT_ID TEXT CHAR(36)

drivingExperience NUMBER - (calc.)

DRIVINGLICENSENUMBER TEXT NVARCHAR(30)

DRIVINGLICENSEISSUEDATE DATE DATE

parkingTicketFinesSum NUMBER - (calc.)

speedingFinesSum NUMBER - (calc.)

Table 14. CarReservation_entity

Name contentType Liquibase data type

CAR_ID TEXT CHAR(36)

CARDRIVER_ID TEXT CHAR(36)

CARRESERVATIONID TEXT CHAR(36)

CURRENCY TEXT VARCHAR(36)

DAMAGE TEXT NVARCHAR(300)

ENDDATE DATE DATETIME

MILEAGERETURN NUMBER INT

mileageStart NUMBER - (calc.)

PARKINGTICKETFINE NUMBER DECIMAL(7,2)

© 2025 ADITO Software GmbH 434 / 472

Name contentType Liquibase data type

SPEEDINGFINE NUMBER DECIMAL(7,2)

STARTDATE DATE DATETIME

© 2025 ADITO Software GmbH 435 / 472

Appendix P: ResourceTimeline example: Liquibase and code

P.1. Liquibase

A folder named resourceTimelineExample was created in the top level of the

Data_alias alias definition. You can adopt this or change it to your own chosen path.

Changelog:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <include relativeToChangelogFile="true" file="resTimeline_creates.xml"/>

</databaseChangeLog>

Changeset:

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <changeSet author="" id="8e3865a8-6824-4ff2-a5da-cd4351e674c7">

 <createTable tableName="EXAMPLERESOURCE">

 <column name="BUSINESSHOURFROM" type="NVARCHAR(10)">

 <constraints nullable="false"/>

 </column>

 <column name="BUSINESSHOURTO" type="NVARCHAR(10)">

 <constraints nullable="false"/>

 </column>

 <column name="CONTACT_ID" type="VARCHAR(36)">

 <constraints nullable="false"/>

 </column>

 <column name="EXAMPLERESOURCEID" type="CHAR(36)">

 <constraints primaryKey="true" primaryKeyName="PK_EXAMPLERESOURCE_EXAMPLERESOURCEID"/>

 </column>

 <column name="DATE_NEW" type="DATETIME"/>

 <column name="USER_NEW" type="VARCHAR(36)"/>

 <column name="DATE_EDIT" type="DATETIME"/>

 <column name="USER_EDIT" type="VARCHAR(36)"/>

 </createTable>

 <createTable tableName="EXAMPLEPLANNINGENTRY">

 <column name="EXAMPLEOPERATION_ID" type="VARCHAR(36)">

 <constraints nullable="false"/>

 </column>

 <column name="EXAMPLERESOURCE_ID" type="VARCHAR(36)">

 <constraints nullable="false"/>

 </column>

 <column name="DATE_START" type="DATETIME">

 <constraints nullable="false"/>

 </column>

 <column name="DATE_END" type="DATETIME">

 <constraints nullable="false"/>

 </column>

 <column name="EXAMPLEPLANNINGENTRYID" type="CHAR(36)">

 <constraints primaryKey="true" primaryKeyName="PK_EXAMPLEPLANNINGENTRY_EXAMPLEPLANNINGENTRYID"/>

 </column>

 <column name="DATE_NEW" type="DATETIME"/>

 <column name="USER_NEW" type="VARCHAR(36)"/>

 <column name="DATE_EDIT" type="DATETIME"/>

 <column name="USER_EDIT" type="VARCHAR(36)"/>

 </createTable>

 <createTable tableName="EXAMPLEOPERATION">

 <column name="TITLE" type="NVARCHAR(512)">

 <constraints nullable="false"/>

 </column>

 <column name="INFO" type="NCLOB"/>

 <column name="EXAMPLEOPERATIONID" type="CHAR(36)">

 <constraints primaryKey="true" primaryKeyName="PK_EXAMPLEOPERATION_EXAMPLEOPERATIONID"/>

© 2025 ADITO Software GmbH 436 / 472

 </column>

 <column name="DATE_NEW" type="DATETIME"/>

 <column name="USER_NEW" type="VARCHAR(36)"/>

 <column name="DATE_EDIT" type="DATETIME"/>

 <column name="USER_EDIT" type="VARCHAR(36)"/>

 </createTable>

 </changeSet>

</databaseChangeLog>

P.2. Code

Code for DATE_NEW fields: valueProcess

import { result, neon, vars } from "@aditosoftware/jdito-types";

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && !vars.get("$this.value"))
{
 result.string(vars.get("$sys.date"));
}

Code for DATE_EDIT fields: valueProcess

import { result, neon, vars } from "@aditosoftware/jdito-types";

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_EDIT && !vars.get("$this.value"))
{
 result.string(vars.get("$sys.date"));
}

Code for USER_NEW fields: valueProcess

import { result, neon, vars } from "@aditosoftware/jdito-types";

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && !vars.get("$this.value"))
{
 result.string(vars.get("$sys.user"));
}

Code for USER_EDIT fields: valueProcess

import { result, neon, vars } from "@aditosoftware/jdito-types";

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_EDIT && !vars.get("$this.value"))
{
 result.string(vars.get("$sys.user"));
}

Code for EXAMPLERESOURCEID, EXAMPLEPLANNINGENTRYID and EXAMPLEOPERATIONID fields;

valueProcess

© 2025 ADITO Software GmbH 437 / 472

import { util, vars, result, neon } from "@aditosoftware/jdito-types";

if(vars.get("$sys.recordstate") == neon.OPERATINGSTATE_NEW && !vars.get("this.value"))
{
 result.string(util.getNewUUID());
}

© 2025 ADITO Software GmbH 438 / 472

Appendix Q: Content types

For every EntityField, you need to select one of multiple content types, via property contentType. Some

of the content types have special options via additional properties, e.g., to limit the size of their input.

If the content is set via property contentTypeProcess, all additional properties are displayed; but still

only those of them are evaluated that belong to the respective content type.

Here is a list of available content types:

Table 15. Available values for property contentType

Content type Description

TEXT Sequence of strings, with the option to limit the size via property maxFieldSize

LONG_TEXT Similar to TEXT, but with the option to distribute the text to multiple lines (press

ENTER for new line)

NUMBER Numbers, with the option to limit the size via properties minValue, maxValue,

maxIntegerDigits, and maxFractionDigits. Via properties outputFormat and

inputFormat, a fixed format can be determined (not recommended for

international environments). There is an in-built validation, if the input is actually a

number: If you enter, e.g., letters or special characters, the save button is disabled,

and the message "Wrong number format" is shown.

DATE Date values, with the option to set the accuracy via property "resolution" (e.g.,

MONTH, DAY, or HOUR), which determines the function of the "Date picker". Via

properties outputFormat and inputFormat, a fixed format can be determined (not

recommended for international environments) - but be aware that still property

"resolution" determines the accuracy of saving the value.

HTML Allows input via a HTML editor, which saves an HTML string. You can limit the input

size via property maxFieldSize. Via property "htmlEditorFeatures" you can

determine if the editor should have only basic features, like font stylings, or also

advanced features, like tables.

© 2025 ADITO Software GmbH 439 / 472

Content type Description

IMAGE Provides a component to upload an image, either via a file chooser or via drag &

drop. Can also show icons (VAADIN:*, NEON:*) or the colored placeholder icons

(TEXT:*). If the user chooses a file that is no image (.png, .jpg, etc.), no error

message is shown, but the component remains in default state, and nothing is

saved. The data type of the corresponding database colum must be selected

accordingly, e.g., LONGBLOB for MariaDB.

TELEPHONE Provides an input field for a telephone number. After saving, the content is shown

with a hyperlink that leads to a computer telephone integration (cti). PLEASE NOTE:

There is no validation, if the input has a valid telephone number format. This has to

be done additionaly, via an onValidation process (see, e.g., EntityField

PHONE_ADDRESS of Employee_entity).

EMAIL Provides an input field for an email address. After saving, the content is shown

with a hyperlink that leads to the standard email client of the user. PLEASE NOTE:

There is no validation, if the input has a valid email format. This has to be done

additionaly, via an onValidation process.

LINK Provides an input field for a hyperlink. After saving, the content is shown with a

hyperlink that leads to the standard browser of the user. PLEASE NOTE: There is no

validation, if the input has a valid hyperlink format. This has to be done additionaly,

via an onValidation process.

PASSWORD Provides an input field for a password. During input, one asterisk is shown instead

of each character, and after saving, three asterisks are always shown,

independently from the actual length of the password. PLEASE NOTE: In the

database, the password is still saved in cleartext.

SIGNATURE Provides an input field for a signature, to be written on a rectangular field with the

mouse pointer or with another suitable input device. The signature is saved as

base64 string (data:image/png;base64). The data type in the database should be

seleced accordingly, e.g., LONGTEXT for MariaDB.

FILE Provides a file upload component that works both via a file browser and via drag &

drop. The file is saved as base64 string (data:image/png;base64). The data type in

the database should be seleced accordingly, e.g., LONGTEXT for MariaDB.

© 2025 ADITO Software GmbH 440 / 472

Content type Description

FILESIZE Provides an input field for entering the size of data, in Bytes. After saving, the

number will automatically be shown with a suitable unit, e.g., Byte, kB, MB, or GB.

BOOLEAN Provides a slider component for entering a boolean value. The slider on the left

position means "false", the slider on the right positioin means "true". In the ADITO

client, the corresponding values are, by default, shown as "No" (meaning "false")

or "Yes" (meaning "true"), whatever data type you may use for the corresponding

database column. Works with various data types, e.g., BOOLEAN, CHAR, VARCHAR,

INT, etc. Exception: If you set a decimal data type (e.g., DECIMAL(5,2)), the client

shows "0.00" instead of "No" ("false"), and "1.00" instead of "Yes" ("true").

FILTER_TREE Provides a button "Open extended filter conditions", which opens a popup

window, in which you can define extended filter conditions - just like the ones you

know from the filter component of a FilterView. Requires at least an empty filter to

be preset, e.g., via the valueProcess - see, e.g., EntityField FILTER of

TopicTreeTopicConfiguration_entity. Otherwise you get an error message,

explaining "The value of the node 'filter' is expected."

© 2025 ADITO Software GmbH 441 / 472

Appendix R: Siblings vs. refreshParent

The Entity parameter "siblings" and the Consumer parameter "refreshParent" both reflect the situation

that there are dependencies between 2 Entities.

Now, when to use Siblings and when refreshParent?

● Siblings are suitable for 2 Entities that are relatively similar, and you want to keep them updated

● refreshParent is the standard to be used for updating normal connections (e.g., parent-child)

Example:

If you work with multiple tabs that, e.g., all show tickets, then "siblings" refreshes all these tabs and

thus increases the server workload. Furthermore, the timer for the closing of the session is set back,

which increases the memory usage. When using refreshParent, however, only the effected tab/dataset

is updated, which thus is more performant.

© 2025 ADITO Software GmbH 442 / 472

Appendix S: LexoRank

If you are not interested in basics and background information, and you simply want

to know how to integrate LexoRank in an ADITO Context, you may skip the following

chapters and continue reading with chapter Example implementation.

S.1. Introduction

LexoRank is an algorithm used as core of a list ordering system. It originates in the software Jira,

developed by company Atlassian.

With LexoRank ("Lexo" stands for "Lexicographic"), an order of elements is established not by only

numbers (1 < 2 < 3 < …9564739), but in an alphanumerical way, e.g.,

● a < b

● a < aa

● aa < ab

● aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa < aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab

● a1 < a2

● a1a < a1b

● etc.

This leads to lists that can be (re-)ordered arbitrarily by drag-and-drop, with the content of the sorting

fields being generated automatically, e.g.,

● a

● b

● c

● ci

● cii

● cj

● d

● …

S.2. Benefits

The benefits of LexoRank are, amongst others,

© 2025 ADITO Software GmbH 443 / 472

https://en.wikipedia.org/wiki/Jira_(software)
https://en.wikipedia.org/wiki/Atlassian
https://en.wikipedia.org/wiki/Lexicographic_order

1. to solve the performance problem that you can have with numerical ordering systems.

2. to simplify drag and drop.

S.2.1. Performance

Example:

Given a table with a numerical ordering system, using integers, e.g.:

Order Name

1 Cat

2 Dog

3 Bird

4 Horse

5 Pig

If you now, e.g., want to drag "Cat" from the first position and drop it down to the position between

"Horse" and "Pig" you have the problem that there is no integer between 4 and 5. Therefore, you have

to re-index ("rebalance") almost all order fields:

Order Name

1 Dog

2 Bird

3 Horse

4 Cat

5 Pig

While the rebalancing process is running, any changes (insert, delete, drag and drop) must be

completely disabled.

If you have very long tables, this requirement of frequent rebalancings can lead to substantial

© 2025 ADITO Software GmbH 444 / 472

performance issues. Instead, with LexoRank, you only need to calculate the order field value of the

moved row.

Example:

Given a table that uses LexoRank as (alphanumerical) ordering system, e.g.:

Order Name

a Cat

b Dog

c Bird

d Horse

e Pig

If you now, e.g., want to drag "Cat" from the first position and drop it down to the position between

"Horse" and "Pig", the LexoRank algorithm only needs to calculate a suitable order field value for the

moved row, e.g., "di", while all other order field values remain unchanged:

Order Name

b Dog

c Bird

d Horse

di Cat

e Pig

As you can see here, the problem that there is no letter between "d" and "e" is solved by introducing a

further digit and setting its value, e.g., to "di" (because d < di < e). This is not possible with numerical

ordering systems, as (in the above example), e.g., "45" is not a value between "4" and "5", but 4 < 5 <

45. (Allowing decimal numbers like "4.5" would only shift the problem, as, in practice, decimal numbers

usually have very limited decimal places.)

© 2025 ADITO Software GmbH 445 / 472

As you can see, the more digits you allow for your ordering field, the more powerful your ordering

system will be.

Still, in practice, you will have a parameter defining the maximum number of digits.

If this maximum is reached, a rebalancing will also be required, like it is for

numerical ordering systems (see above). In ADITO xRM, by default, rebalancing is

not integrated. Rather, the database field holding the order value usually is of data

type VARCHAR(255), allowing 255 digits. Thus, the probability of running out of

digits is close to zero. (And, if the rare case of reaching the maximum should really

happen, drag-and-drop would not be disabled for the whole table, but only for cases

that require the generation of an ordering value that exceeds the maximum.)

S.2.2. Drag and drop

Formerly, in ADITO, enabling drag and drop required multiple additional fields, like ITEMSORT,

SORTINGLAYER, and SORTINGVALUE. Now, only one field is required, holding the LexoRank value (in

ADITO named LEXORANK). Thus, also the related code can be simplified significantly.

S.3. Further information

In this manual, LexoRank will not be explained in detail, as an internet search for the term will lead you

to various web sites with further information, e.g.,

● https://confluence.atlassian.com/adminjiraserver/managing-lexorank-938847803.html

● https://tmcalm.nl/blog/lexorank-jira-ranking-system-explained/

● https://lexorank.richardboeh.me/

● https://medium.com/whisperarts/lexorank-what-are-they-and-how-to-use-them-for-efficient-

list-sorting-a48fc4e7849f

● https://medium.com/turkcell/lexorank-managing-sorted-tables-with-ease-f404f7eb00a9

S.4. Usage in ADITO

There are several reference implementations inspired by LexoRank, with lexorank4j being the wrapper

used in ADITO, particularly simplifying drag and drop in ViewTemplates of type TreeTable. Although, in

the strict sense, the term "LexoRank" is restricted to the algorithm included in Jira, it is used in the

broader sense in this documentation - meaning any algorithm that follows the same principles as

LexoRank in Jira.

LexoRank was introduced in ADITO mainly as ordering system that simplifies drag and drop in

TreeTables (e.g., in the "Offeritem" Context). Besides, performance could be optimized, e.g., in the

© 2025 ADITO Software GmbH 446 / 472

https://confluence.atlassian.com/adminjiraserver/managing-lexorank-938847803.html
https://tmcalm.nl/blog/lexorank-jira-ranking-system-explained/
https://lexorank.richardboeh.me/
https://medium.com/whisperarts/lexorank-what-are-they-and-how-to-use-them-for-efficient-list-sorting-a48fc4e7849f
https://medium.com/whisperarts/lexorank-what-are-they-and-how-to-use-them-for-efficient-list-sorting-a48fc4e7849f
https://medium.com/turkcell/lexorank-managing-sorted-tables-with-ease-f404f7eb00a9
https://github.com/pravin-raha/lexorank4j

"TopicTree" Context. The LexoRank functionality is mainly provided via the library "lexorank" of the

ADITO platform (core). The main function is the calculation of the value of an ordering field (i.e., an

additional EntityField, usually named "LEXORANK"), in the following cases:

1. A row is added in the TreeTable. (This also works for other tables, like MultiEditTables, and for

Trees.)

2. A row is moved in the TreeTable, via drag and drop.

Although the "lexorank" library includes powerful functionality, you still need some customizing, in

order to add LexoRank to your ADITO project (see chapter Example implementation).

S.4.1. Format

The format of the LexoRank values is a combination of

● the "bucket" number (0, 1, or 2 - see below)

● a 6-digit alphanumerical string, separated by a vertical bar, and followed by a colon

● optional further digits

Examples:

● "0|abc123:"

● "0|abc123:xy5".

Its maximum length is defined via the data type of the corresponding database column LEXORANK

(default: VARCHAR(255)) and via the property "maxLexoRankLength" of the corresponding Provider.

"Buckets" are used in the context of rebalancing. In the internet you can find various

explanations of LexoRank format, including the purpose of "buckets" - see, e.g.,

here.

S.4.2. Mainly used methods

In the customizing of ADITO applications, the following methods of library lexorank are mainly used:

● lexorank.genNext(<current rank>): Generates the next rank from the provided

current rank. e.g. genNext("0|000000:") returns 0|100000:

● lexorank.middle(): Returns the rank that is in between the min and the max rank.

An overview of the names and JSDoc of all methods of library lexorank is available,

as usual, via the autocompletion:

© 2025 ADITO Software GmbH 447 / 472

https://medium.com/turkcell/lexorank-managing-sorted-tables-with-ease-f404f7eb00a9

S.4.3. Rebalancing

The implementation of LexoRank in ADITO does not include rebalancing (see the corresponding note in

chapter Performance). However, on demand, rebalancing can be added according to the LexoRank

algorithm in Jira, as described, e.g., here. To enable this, the format of the LexoRank value, in ADITO,

already includes a preceding bucket number (see chapter Format).

S.5. Example implementation

In the following sub-chapters, the integration of LexoRank in ADITO will be explained using the example

of Context "Offeritem". Here, LexoRank is used for supporting the Views OfferitemFilter_view (with

ViewTemplate OfferitemsTreeTable) and OfferitemMultiEdit_view (with ViewTemplate

OfferitemsMultiEditTable). In the web client, you can find both Views subordinated to

OfferOfferitem_view, which in turn is a part of OfferMain_view.

The main purpose of introducing LexoRank here was not primarily performance, but the simplification

of drag and drop (see chapter Benefits with sub-chapter Drag and drop).

The naming has no technical reason. Nevertheless, you should keep to the naming

conventions as given below, e.g., to name the central EntityField LEXORANK. This will

ensure consistency to existing LexoRank implementations and simplify orientation

for other developers.

© 2025 ADITO Software GmbH 448 / 472

https://confluence.atlassian.com/adminjiraserver/managing-lexorank-938847803.html

S.5.1. Introduce new database column LEXORANK

The first step, when integrating LexoRank, is to introduce a new database column named LEXORANK,

with data type VARCHAR(255). (255 is the current default size/length for LEXORANK in ADITO. This

value can be changed on demand. Anyway, it must match the property maxLexoRankLength of the

related Provider - see sub-chapter Set sorting properties.)

You may use the following Liquibase snipped in your changelog:

<changeSet author="j.smith" id="256ddeb8-292f-456d-99b6-9e75d5305ab5">
 <addColumn tableName="OFFERITEM">
 <column name="LEXORANK" type="VARCHAR(255)"/>
 </addColumn>
</changeSet>

Depending on whether there already is another ordering system in your application (e.g., based on

fields like ITEMSORT etc.), you may include a suitable "sql" tag in your Liquibase changeset, in order to

enable a smooth transfer to LexoRank, keeping the current order. Example:

<changeSet author="j.smith" id="256ddeb8-292f-456d-99b6-9e75d5305ab5">

(...)

 <sql> update OFFERITEM set LEXORANK = CONCAT (CONCAT (CONCAT (CONCAT (CONCAT ('0|i', floor(ITEMSORT / 1000) % 10), floor

(ITEMSORT / 100) % 10), floor(ITEMSORT / 10) % 10), ITEMSORT % 10), '0:') </sql>

</changeSet>

S.5.2. Introduce new EntityField LEXORANK

The next (and main) step is to introduce and configure a new EntityField named LEXORANK (here: in

Offeritem_entity), leaving all properties in default state (contentType remains TEXT), except for

● title: LexoRank

● valueProcess: see below

● RecordFieldMapping: Connect the EntityField LEXORANK with the corresponding database

column LEXORANK, as usual.

S.5.3. Set valueProcess

Set the valueProcess of EntityField LEXORANK as follows:

© 2025 ADITO Software GmbH 449 / 472

if(neon.OPERATINGSTATE_NEW == vars.get("$sys.recordstate") && Utils.isNullOrEmptyString("$this.value"))

{

 let lastLexorankUnderParent = newSelect("MAX(OFFERITEM.LEXORANK)")

 .from("OFFERITEM")

 .where("OFFERITEM.ASSIGNEDTO", vars.get("$field.ASSIGNEDTO"))

 cell();

 result.string(lexorank.genNext(lastLexorankUnderParent));

}

The above valueProcess code is simple and universal to use. In the original

Offeritem_entity, the valueProcess of EntityField LEXORANK uses a Parameter

named MetaData_param, which retrieves additional information about the parent

item. As this is not required for LexoRank itself, we can ignore it here.

S.5.4. Set sorting properties

In the Provider that is consumed in the Context holding the superordinated View (in our example, this

is Offeritem_entity’s Provider "OfferItems") set the following properties:

● sortingField: LEXORANK

● sortingMethod: LEXORANK

● maxLexoRankLength: 255 (This is the current default value in ADITO. It can be changed on

demand. Anyway, it must match the size/length given in the data type of the corresponding

database column LEXORANK, see sub-chapter Introduce new database column LEXORANK.)

Only a TreeTable should access this Provider. As the ViewTemplate MultiEditTable

does not support it, Offeritem_entity has 2 Providers - one for TreeTable and one for

MultiEditTable. (Otherwise, MultiEditTable would override the LexoRank with a

simple sorting 1,2,3…).

S.5.5. enableDragAndDrop

In the TreeTableViewTemplate, make sure property "enableDragAndDrop" is set to true.

S.6. Further examples

Besides Offeritem, you can find further LexoRank implementation examples in ADITO xRM, e.g., in the

following Contexts:

● Orderitem: see OrderMain_view > OrderOrderitem_view > OrderitemFilter_view > Treetable

● TopicTree: see TopicTreeFilter_view > treeTable

● ResourceOperationTask (from ADITO version 2024.2.2):

© 2025 ADITO Software GmbH 450 / 472

○ see ResourceOperationTaskTemplateMain_view >

ResourceOperationTaskFilterAddFromTemplateAction_view > TreeTable

○ see ResourceOperationMain_view > ResourceOperationTask_view >

ResourceOperationTaskFilterPlannedDrawer_view > TreeTable

© 2025 ADITO Software GmbH 451 / 472

Appendix T: Trainee example

In the following you can find the files you need to prepare the "Trainee" example that is used to explain

the configuration of a FilterExtensionSet.

T.1. Extending the changelog.xml files

In the project tree, under alias > Data_alias, create a new folder named "trainee". Then create the

following new changelog file in the folder "trainee".

alias/Data_alias/trainee/changelog.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">

 <include relativeToChangelogFile="true" file="create_trainee.xml"/>

</databaseChangeLog>

Then add a reference to the new changelog.xml file in the "master" changelog.xml file:

alias/Data_alias/changelog.xml

<?xml version="1.1" encoding="UTF-8" standalone="no"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-

ext.xsd http://www.liquibase.org/xml/ns/dbchangelog http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.4.xsd">

 <include relativeToChangelogFile="true" file="../Loghistory_alias/changelog.xml"/>

(...)

 <include relativeToChangelogFile="true" file="../Demodata_Data_alias/changelog.xml"/>

 <include relativeToChangelogFile="true" file="trainee/changelog.xml"/>

</databaseChangeLog>

T.2. Creating the database table

In the "trainee" folder, add the following file and name it "create_trainee.xml".

alias/Data_alias/trainee/create_trainee.xml

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog" xmlns:ext="http://www.liquibase.org/xml/ns/dbchangelog-ext"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog-ext

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-ext.xsd http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">

 <changeSet author="p.dietl" id="a4d54535-7193-4148-b6b7-58624b5e05fd">

 <preConditions onFail="MARK_RAN">

 <not>

 <tableExists tableName="trainee" />

 </not>

 </preConditions>

 <createTable tableName="trainee">

 <column name="TRAINEEID" type="CHAR(36)">

 <constraints nullable="false" primaryKey="true" />

 </column>

 <column name="FIRSTNAME" type="VARCHAR(30)" />

 <column name="LASTNAME" type="VARCHAR(30)" />

 <column defaultValueComputed="NULL" name="BIRTHDAY" type="date" />

© 2025 ADITO Software GmbH 452 / 472

 <column name="GENDER" type="VARCHAR(36)" />

 <column defaultValueComputed="NULL" name="GRADEENGLISH" type="INT" />

 <column defaultValueComputed="NULL" name="GRADEGERMAN" type="INT" />

 <column defaultValueComputed="NULL" name="GRADEMATH" type="INT" />

 <column defaultValueComputed="NULL" name="PICTURE" type="LONGBLOB" />

 <column name="TYEAR" type="VARCHAR(50)" />

 </createTable>

 </changeSet>

 <changeSet author="p.dietl" id="a4d54535-7193-4148-b6b7-58624b5e05f7">

 <insert tableName="trainee">

 <column name="TRAINEEID" value="17c57879-31f0-4ec3-b510-8efa414b6127" />

 <column name="FIRSTNAME" value="John" />

 <column name="LASTNAME" value="Smith" />

 <column name="BIRTHDAY" valueDate="1996-05-23" />

 <column name="GENDER" value="m" />

 <column name="GRADEGERMAN" valueNumeric="3" />

 <column name="GRADEMATH" valueNumeric="2" />

 <column name="TYEAR" value="1" />

 </insert>

 <insert tableName="trainee">

 <column name="TRAINEEID" value="19588327-6191-4a63-be40-0ea617690f0f" />

 <column name="FIRSTNAME" value="Luke" />

 <column name="LASTNAME" value="Taylor" />

 <column name="BIRTHDAY" valueDate="2009-01-26" />

 <column name="GENDER" value="m" />

 <column name="GRADEGERMAN" valueNumeric="4" />

 <column name="GRADEMATH" valueNumeric="4" />

 <column name="PICTURE" />

 <column name="TYEAR" value="2" />

 </insert>

 <insert tableName="trainee">

 <column name="TRAINEEID" value="633d69a4-a64b-4356-a870-b55fb1cef10b" />

 <column name="FIRSTNAME" value="Anne" />

 <column name="LASTNAME" value="Miller" />

 <column name="BIRTHDAY" valueDate="2010-04-13" />

 <column name="GENDER" value="f" />

 <column name="GRADEENGLISH" valueNumeric="2" />

 <column name="GRADEMATH" valueNumeric="4" />

 <column name="TYEAR" value="3" />

 </insert>

 <insert tableName="trainee">

 <column name="TRAINEEID" value="6539126d-4a59-413e-a468-4bc36b5ae7f5" />

 <column name="FIRSTNAME" value="Thomas" />

 <column name="LASTNAME" value="Hiller" />

 <column name="BIRTHDAY" valueDate="2008-10-28" />

 <column name="GENDER" value="m" />

 <column name="GRADEENGLISH" valueNumeric="2" />

 <column name="GRADEMATH" valueNumeric="1" />

 <column name="PICTURE" />

 <column name="TYEAR" value="2" />

 </insert>

 </changeSet>

</databaseChangeLog>

T.3. Executing a Liquibase update

Execute a Liquibase update on the "master" changelog.xml. After a few seconds, you should be able to

see the new database table "trainee" in the database editor of the ADITO Designer.

T.4. Creating the Entity

In the project tree, navigate to folder "entity" and create a new Entity named "Trainee_entity". Open

the "Source" tab of the new Entity and replace its content by the following .aod code:

entity/Trainee_entity

<?xml version="1.0" encoding="UTF-8"?>

<entity xmlns="http://www.adito.de/2018/ao/Model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" VERSION="1.4.0"

xsi:schemaLocation="http://www.adito.de/2018/ao/Model adito://models/xsd/entity/1.4.0">

 <name>Trainee_entity</name>

 <majorModelMode>DISTRIBUTED</majorModelMode>

© 2025 ADITO Software GmbH 453 / 472

 <icon>VAADIN:GAMEPAD</icon>

 <contentTitleProcess>%aditoprj%/entity/Trainee_entity/contentTitleProcess.js</contentTitleProcess>

 <iconId>VAADIN:ABACUS</iconId>

 <recordContainer>db</recordContainer>

 <entityFields>

 <entityProvider>

 <name>#PROVIDER</name>

 </entityProvider>

 <entityProvider>

 <name>#PROVIDER_AGGREGATES</name>

 <useAggregates v="true" />

 </entityProvider>

 <entityField>

 <name>TRAINEEID</name>

 <title>Traineeid</title>

 <groupable v="false" />

 </entityField>

 <entityField>

 <name>GENDER</name>

 <title>Gender</title>

 <groupable v="false" />

 <dropDownProcess>%aditoprj%/entity/Trainee_entity/entityfields/gender/dropDownProcess.js</dropDownProcess>

 </entityField>

 <entityField>

 <name>FIRSTNAME</name>

 <title>Firstname</title>

 <groupable v="false" />

 <mandatory v="true" />

 </entityField>

 <entityField>

 <name>LASTNAME</name>

 <title>Lastname</title>

 <groupable v="false" />

 <mandatory v="true" />

 </entityField>

 <entityField>

 <name>BIRTHDAY</name>

 <title>Birthday</title>

 <contentType>DATE</contentType>

 <resolution>DAY</resolution>

 <groupable v="false" />

 </entityField>

 <entityField>

 <name>GRADEENGLISH</name>

 <title>English</title>

 <colorProcess>%aditoprj%/entity/Trainee_entity/entityfields/gradeenglish/colorProcess.js</colorProcess>

 <contentType>NUMBER</contentType>

 <maxIntegerDigits v="1" />

 <maxFractionDigits v="2" />

 <groupable v="false" />

 </entityField>

 <entityField>

 <name>GRADEGERMAN</name>

 <title>German</title>

 <colorProcess>%aditoprj%/entity/Trainee_entity/entityfields/gradegerman/colorProcess.js</colorProcess>

 <contentType>NUMBER</contentType>

 <groupable v="false" />

 </entityField>

 <entityField>

 <name>GRADEMATH</name>

 <title>Math</title>

 <colorProcess>%aditoprj%/entity/Trainee_entity/entityfields/grademath/colorProcess.js</colorProcess>

 <contentType>NUMBER</contentType>

 <groupable v="false" />

 </entityField>

 <entityField>

 <name>fullName</name>

 <title>Full Name</title>

 <groupable v="false" />

 <valueProcess>%aditoprj%/entity/Trainee_entity/entityfields/fullname/valueProcess.js</valueProcess>

 </entityField>

 <entityField>

 <name>gradeAverage</name>

 <title>Average Grade</title>

 <colorProcess>%aditoprj%/entity/Trainee_entity/entityfields/gradeaverage/colorProcess.js</colorProcess>

 <contentType>NUMBER</contentType>

 <groupable v="false" />

 <valueProcess>%aditoprj%/entity/Trainee_entity/entityfields/gradeaverage/valueProcess.js</valueProcess>

 </entityField>

 <entityActionField>

 <name>showOverallAverage</name>

 <title>Show Overall Average</title>

 <onActionProcess>%aditoprj%/entity/Trainee_entity/entityfields/showoverallaverage/onActionProcess.js</onActionProcess>

 <iconId>VAADIN:ABACUS</iconId>

© 2025 ADITO Software GmbH 454 / 472

 </entityActionField>

 <entityField>

 <name>icon</name>

 <contentType>IMAGE</contentType>

 <groupable v="false" />

 <valueProcess>%aditoprj%/entity/Trainee_entity/entityfields/icon/valueProcess.js</valueProcess>

 </entityField>

 <entityField>

 <name>age</name>

 <title>Age</title>

 <groupable v="false" />

 <valueProcess>%aditoprj%/entity/Trainee_entity/entityfields/age/valueProcess.js</valueProcess>

 </entityField>

 <entityField>

 <name>PICTURE</name>

 <title>Picture</title>

 <contentType>IMAGE</contentType>

 <groupable v="false" />

 <displayValueProcess>%aditoprj%/entity/Trainee_entity/entityfields/picture/displayValueProcess.js</displayValueProcess>

 </entityField>

 <entityField>

 <name>TYEAR</name>

 <title>Year of training</title>

 <groupable v="false" />

 <dropDownProcess>%aditoprj%/entity/Trainee_entity/entityfields/tyear/dropDownProcess.js</dropDownProcess>

 </entityField>

 <entityConsumer>

 <name>KeywordGenders</name>

 <dependency>

 <name>dependency</name>

 <entityName>KeywordEntry_entity</entityName>

 <fieldName>SpecificContainerKeywords</fieldName>

 </dependency>

 <children>

 <entityParameter>

 <name>ContainerName_param</name>

 <valueProcess>

%aditoprj%/entity/Trainee_entity/entityfields/keywordgenders/children/containername_param/valueProcess.js</valueProcess>

 <expose v="false" />

 </entityParameter>

 </children>

 </entityConsumer>

 </entityFields>

 <recordContainers>

 <dbRecordContainer>

 <name>db</name>

 <alias>Data_alias</alias>

 <recordFieldMappings>

 <dbRecordFieldMapping>

 <name>BIRTHDAY.value</name>

 <recordfield>TRAINEE.BIRTHDAY</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>FIRSTNAME.value</name>

 <recordfield>TRAINEE.FIRSTNAME</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>GENDER.value</name>

 <recordfield>TRAINEE.GENDER</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>GRADEENGLISH.value</name>

 <recordfield>TRAINEE.GRADEENGLISH</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>GRADEGERMAN.value</name>

 <recordfield>TRAINEE.GRADEGERMAN</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>GRADEMATH.value</name>

 <recordfield>TRAINEE.GRADEMATH</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>LASTNAME.value</name>

 <recordfield>TRAINEE.LASTNAME</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

© 2025 ADITO Software GmbH 455 / 472

 <name>TRAINEEID.value</name>

 <recordfield>TRAINEE.TRAINEEID</recordfield>

 <isFilterable v="true" />

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>PICTURE.value</name>

 <recordfield>TRAINEE.PICTURE</recordfield>

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>TYEAR.value</name>

 <recordfield>TRAINEE.TYEAR</recordfield>

 </dbRecordFieldMapping>

 <dbRecordFieldMapping>

 <name>fullName.value</name>

 <expression>

%aditoprj%/entity/Trainee_entity/recordcontainers/db/recordfieldmappings/fullname.value/expression.js</expression>

 </dbRecordFieldMapping>

 </recordFieldMappings>

 <linkInformation>

 <linkInformation>

 <name>TRAINEE</name>

 <tableName>TRAINEE</tableName>

 <primaryKey>TRAINEEID</primaryKey>

 <isUIDTable v="true" />

 <readonly v="false" />

 </linkInformation>

 </linkInformation>

 <filterExtensions>

 <filterExtensionSet>

 <name>example_filterSet</name>

<filterFieldsProcess>%aditoprj%/entity/Trainee_entity/recordcontainers/db/filterextensions/example_filterset/filterFieldsProcess.js</f

ilterFieldsProcess>

<filterValuesProcess>%aditoprj%/entity/Trainee_entity/recordcontainers/db/filterextensions/example_filterset/filterValuesProcess.js</f

ilterValuesProcess>

<filterConditionProcess>%aditoprj%/entity/Trainee_entity/recordcontainers/db/filterextensions/example_filterset/filterConditionProcess

.js</filterConditionProcess>

 <isGroupable v="true" />

<groupQueryProcess>%aditoprj%/entity/Trainee_entity/recordcontainers/db/filterextensions/example_filterset/groupQueryProcess.js</group

QueryProcess>

 <filtertype>BASIC</filtertype>

 </filterExtensionSet>

 </filterExtensions>

 </dbRecordContainer>

 </recordContainers>

</entity>

T.5. Creating Context and FilterView

In the project tree, navigate to folder "context" and create a new Context named "Trainee". Set the new

Context’s property "entity" to "Trainee_entity".

Create a new View for the "Trainee" context and name it TraineeFilter_view. Open the new View’s tab

"Source" and replace its content by the following .aod code:

context/Trainee/TraineeFilter_view

<?xml version="1.0" encoding="UTF-8"?>

<neonView xmlns="http://www.adito.de/2018/ao/Model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" VERSION="1.2.3"

xsi:schemaLocation="http://www.adito.de/2018/ao/Model adito://models/xsd/neonView/1.2.3">

 <name>TraineeFilter_view</name>

 <majorModelMode>DISTRIBUTED</majorModelMode>

 <filterable v="true" />

 <layout>

 <groupLayout />

 </layout>

 <children>

 <tableViewTemplate>

 <name>table</name>

 <columns>

© 2025 ADITO Software GmbH 456 / 472

 <neonTableColumn>

 <name>c37bea5c-c392-4d15-9fe6-cb78fde71f44</name>

 <entityField>PICTURE</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>304b0639-465d-4bc3-99af-cbeae503061f</name>

 <entityField>icon</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>693f9d93-a5af-469c-92d2-40bf803d4335</name>

 <entityField>fullName</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>11bc9624-2e5e-46fa-aa0c-c589e1e828be</name>

 <entityField>BIRTHDAY</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>29846123-c312-4ec8-9a1d-b60b6084254a</name>

 <entityField>age</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>4eae11fc-78e6-449b-b78e-0261b4085921</name>

 <entityField>GENDER</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>81beca91-5f97-44f6-b081-2a6bb913ab6d</name>

 <entityField>TYEAR</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>a99c5447-ef47-4d5e-bd77-6346fbceeee6</name>

 <entityField>GRADEENGLISH</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>e78f0f90-b82c-455e-85be-091fdeb46290</name>

 <entityField>GRADEGERMAN</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>b152e8f8-aa70-4b56-9084-d86418227bde</name>

 <entityField>GRADEMATH</entityField>

 </neonTableColumn>

 <neonTableColumn>

 <name>70908d27-330e-4574-986e-c645466627ad</name>

 <entityField>gradeAverage</entityField>

 </neonTableColumn>

 </columns>

 </tableViewTemplate>

 <treeTableViewTemplate>

 <name>treetable</name>

 <columns>

 <neonTreeTableColumn>

 <name>ad9d3a2c-d14a-4337-86b0-7dfdc9dbc319</name>

 <entityField>PICTURE</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>4e9dad95-ecc0-4bdd-8d4e-43c73ddc3680</name>

 <entityField>icon</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>22b9cc6d-df6b-4028-9571-c3791f813d31</name>

 <entityField>fullName</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>a857676b-b6ed-4bdf-aaec-c354176831a7</name>

 <entityField>BIRTHDAY</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>6763a5cd-7fa3-4ee7-93b6-0dcfaf8fee94</name>

 <entityField>age</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>091e3e63-fe3c-4855-bd47-c3efe97323dd</name>

 <entityField>GENDER</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>b7356bb8-d671-4755-84e7-41b4196af971</name>

 <entityField>TYEAR</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>d033c989-85a3-4346-b2ff-c9fc465c852d</name>

 <entityField>GRADEENGLISH</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>c06f06cb-8f8a-4804-a315-d060f61af8d7</name>

 <entityField>GRADEGERMAN</entityField>

© 2025 ADITO Software GmbH 457 / 472

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>f9c9e994-ceed-4451-bb55-2209b974bedc</name>

 <entityField>GRADEMATH</entityField>

 </neonTreeTableColumn>

 <neonTreeTableColumn>

 <name>9ad174dd-6913-47df-9981-7f2ec05e6342</name>

 <entityField>gradeAverage</entityField>

 </neonTreeTableColumn>

 </columns>

 </treeTableViewTemplate>

 </children>

</neonView>

Now, set the "Trainee" Context’s property "filterView" to "TraineeFilter_view".

T.6. Adding the Context to the Global Menu

In the project tree, open the menu editor (application > ____SYSTEM_APPLICATION_NEON) and add

the new Context "trainee" to the Global Menu. (You may create a new menu group for it, titled, e.g.,

"Trainee Management".)

Deploy, logout, and login to the web client. Open the new Context "Trainee". Now, you can continue

with chapter FilterExtensionSet.

© 2025 ADITO Software GmbH 458 / 472

Appendix U: Version history

Version Changes

2024.1.1 ● Chapter ResourceTimeline: New sub-chapter Specific color constants.

● Minor grammatical optimizations.

2024.1 ● New chapter on GridLayout

● New chapter on $local.rowdata and $local.initialRowdata in RecordContainer-

related processes

● Chapter JDitoRecordContainer: Added prompts not to use $field variables

in onInsert/onUpdate/onDelete processes.

● Chapter WriteEntity: Setter method .fieldValues: Added info box on

nonexistent validation against value lists.

● Various bugfixes, updates, rearrangements, and optimizations.

● This is the official version of the Customizing Manual for ADITO version 2024.1.

© 2025 ADITO Software GmbH 459 / 472

Version Changes

2024.0 ● Updated chapter RecordContainers, including new introduction and new

chapter COUNT queries

● New appendix RecordContainerCache with extensive information about how

to utilize a cache in ADITO, including explanations regarding shared caching

with Apache Ignite (see chapter Shared caching with multiple ADITO servers)

● New chapter Notifications and observations, including explanations regarding

distributed notification management with Apache Ignite (see chapter

Notifications with multiple ADITO servers)

● Included references to the new ADITO Information Document AID121

"Themes" in chapter Themes and in appendix Requirements for customized

Theme.

● New appendix Version history, including summaries of changes in previous

versions of this document. This appendix replaces the previous long table at

the beginning of the manual, which had forced the reader to scroll down a lot

of pages before reaching the table of content.

● Updated chapter Export (required entry in Dependency_lib)

● Minor bugfixes

● Minor linguistical refactoring

● This is the official version of the Customizing Manual for ADITO version 2024.0.

2023.1.1 ● Some refactoring to various code examples

● Added a reference to an example of a multi selection action to chapter Multi

Selection Action

2023.1 ● Chapter Assigning layout and ViewTemplates: Added description of how to

configure the content search bar (Context filter)

● New chapter Export

● New appendix Siblings vs. refreshParent

● Chapter Customized logging: Added "Tip" box recommending the optimal

parameter setting of JSON.stringify

● minor improvements and bugfixes

● This is the official version of the Customizing Manual for ADITO version 2023.1.

© 2025 ADITO Software GmbH 460 / 472

https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf
https://www.adito.de/fileadmin/uploads/Dokumente/Webclient/AID121_Themes.pdf

Version Changes

2023.0 ● New chapter $this.value and $field.MYFIELD in valueProcess

● New chapter Visibility of tabs

● New chapter Field Groups

● Chapter JDitoRecordContainer:

○ Bugfix in example code of property onUpdate

○ Step-by-step example added

○ Chapter Filtering a JDitoRecordContainer added

● New chapter Lookup for translated values

● Chapter Add Dashlets: Explanation of mandatory icon added

● Chapter Adding a LOGS tab extended by explanation of further useful custom

properties

● Chapter LoadEntity and WriteEntity: Warning box extended with respect to

performance

● New chapter Storing user-specific data outside ASYS_USERS

● New appendix Content types

● New chapter Paging

● New chapter Creating new project roles

● Chapter Retrieving pending records extended and improved

● Chapter about ViewTemplate Gantt extended, incl. description of property

"isSubstep"

● Chapter EntityRecordsRecipe, sub-chapter Usage in customized methods:

Added note box regarding usage of method .filter

● Chapter Configuring EntityFields:

○ added warning regarding outputFormat

○ added description of length-restricting properties

● Chapter FilterExtension: Included not regarding index

● Chapters FilterExtension and FilterExtensionSet: Extended explanations of

groupQueryProcess

© 2025 ADITO Software GmbH 461 / 472

Version Changes

2022.2 ● Chapter Adding a LOGS tab: Added a screenshot detailing where to find the

Auditmode of a table

● Code examples using SqlBuilder got updated to a more recent syntax.

(newSelect)

● Corrected several typos and bugs in code examples

● Code example Person_entity.db.age.value.expression rebuilt using Sql helper

functions

● Added section Skipping prevalidation to Appendix Load/Write Entity

● changed "isSelectionAction" to new "selectionType" in Actions and

ActionGroups

● added description of expandRootItems property to chapters Tree and

TreeTable

● added an info box to FilterExtension detailing the use of FilterExtensions and

FilterExtensionSets on RecordContainers without paging

● added detailed description and a simplified implementation example of the

new ResourceTimeline ViewTemplate ResourceTimeline

● This is the official version of the Customizing Manual for ADITO version 2022.2.

2022.1 ● Chapter Creating Entities: Warning box about not to overlook the refactoring

tab

● Info box about one [userDirectory] being generated for every ADITO version

(major/minor/hotfix).

● New chapter Adding an ATTRIBUTES tab

● New chapter Troubleshooting > Bug tracking

● New appendix about using XML in JDito

● Appendix chapter WriteEntity

○ Bugfix in code examples

○ Deprecated "for each" in code examples replaced by standard syntax

"for…of" (ES2015)

● minor improvements and bugfixes

© 2025 ADITO Software GmbH 462 / 472

Version Changes

2022.0 ● New chapter Adding a LOGS tab

● New chapter Using gif files

● Extended description of RecordFieldMapping’s property [expression],

including an info box regarding its invalidity, if property "recordField" is set

● chapter What is JDito?: new warning box that system-reserved names must

not be used for variable naming

● chapter Configure Dashboard defaults updated regarding new Dashboard

editor

● chapter How does a "$field" variable get its value? extended by description of

criteria for the automatic loading/calculation of a field

● appendix LoadEntity: Description of effect if an empty Array is passed to setter

method uids

● chapter EntityRecordsRecipe: Description of effect if an empty Array is passed

to setter method uidsIncludelist

● chapter JDitoRecordContainer: EntityField named "UID" must always be

present

● new chapter Avatars

● chapter Themes: Description of how to view the available colors

● chapter Color: Effect on Avatars included

● chapter Internationalization: new sub-chapters User help and Validation of

address and communication data

● new chapter Device-specific designs

● new chapter Retrieving pending records

● chapter 360Degree Context updated and extended by referencing property

"documentation" of 360Degree_entity.

● bugfix in code of init_car.xml (values of MANUFACTUREDATE) - see chapter

Entering example data

● appendix WriteEntity extended by info box explaining the importance of

EntityField order when using method .fieldValues

● new chapter explaining ViewTemplate Favorite

© 2025 ADITO Software GmbH 463 / 472

Version Changes

2021.2 ● new chapter EntityRecordsRecipe

● new chapter Dynamic filter values

● new chapter FilterBuilder; FilterBuilder included in code fragments (instead of

JSON)

● new chapter Prerequisites, explaining the prerequisites for reading this

manual, including a description of how to activate an extended Logging of

database access and JDito processes

● chapter Trigger, explaining the principles when the valueProcess of an

EntityField is being executed.

● chapter Configuring EntityFields: Reference to AID066 regarding max.

resolution/size of images

● chapter JDitoRecordContainer: Improved description of property

[hasDependentRecords]

● appendix Order of execution of Entity processes: Description of variable

"$local.modifiertype" in paragraph about property [onValueChange]

● chapter Calculated fields restructured and enhanced by remark regarding

"checking for null" in valueProcess, in order to avoid unintended overwriting

of existing values

● chapter Translate all extended by notes on settings required for DeepL API.

● reference to AID003 Design Guideline in chapter Controlling the design

● explanation of parameter [pOpenInNewTab] of method neon.openContext

● chapter Troubleshooting: New sub-chapter Low performance, referencing

AID066 Performance Optimization.

● chapter Connecting EntityFields with database columns (RecordContainer):

RecordFieldMapping: Renaming of uninitializing option: "Delete" → "Restore

Default Value"

● minor improvements and bugfixes

● This is the official version of the Customizing Manual for ADITO version 2021.2.

© 2025 ADITO Software GmbH 464 / 472

Version Changes

2021.1.1 ● new chapter AggregateFields

● new chapter Using database views

● chapter Deploy extended by paragraph [Deploy_of_a_single_model]

● chapter Internationalization enhanced by including a reference to the DeepL

API and to the corresponding chapter of the Designer Manual

● This is the official version of the Customizing Manual for ADITO versions

2021.1.0 and 2021.1.1.

© 2025 ADITO Software GmbH 465 / 472

Version Changes

2021.0.3 ● chapter FilterExtension restructured and extended by subchapters describing

properties

○ useConsumer/consumer

○ groupQueryProcess

● chapter FilterExtensionSet extended by

○ tip box describing how to relate to a Consumer

○ info box mentioning property groupQueryProcess

● chapter Filter presets extended and improved

● chapters SingleDataChart and MultiDataChart: Description of new property

"colorField"

● chapter ViewTemplates: Description of properties common to multiple or all

ViewTemplates, including "maxDbRow", "title", and "entityField"

● chapter Liquibase update: New note box on emptying the server’s cache after

changes in the database structure

● chapter GroupLayout: Tip box on how to customize the list items of the View

selection button

● chapters Add Dashlets and MasterDetailLayout: New info box stating that

DashletConfigs are not available for Views having a MasterDetailLayout

● appendix "Create Liquibase files automatically" removed and transferred to

the Designer Manual (chapter "Plugin Liquibase")

● Refactoring because of updated wording:

○ "Diff with DB tables" → "Diff Alias <> DB Table" (see chapter Updating

the Alias Definition)

○ "nodes in the dbRecordContainer" → "RecordFieldMappings" (see

chapter Connecting EntityFields with database columns

(RecordContainer))

● chapter Connecting EntityFields with database columns (RecordContainer):

Description of requirement to initialize a RecordFieldMapping before being

able to configure it

● multiple notes of requirement to initialize an exposed Parameter (under a

Provider) before being able to configure it

© 2025 ADITO Software GmbH 466 / 472

Version Changes

2021.0.1 ● new chapters on

○ new ViewTemplates Map and MultiEditTable

○ new model type Renderers

● new appendix EntityField/Keywords vs. Attributes, explaining the pros and

cons of each approach

● new appendix $sys variables with overview of all $sys variables and their

purposes

● new appendix $local variables with description of selected $local variables

● description of $local variables extended in chapter JDito system modules and

variables

● chapter FilterExtensionSet extended by names of $local variables

● refactoring and extension of chapter Using keywords (predefined values),

because of new keyword data structure (category instead of container)

● chapter FilterExtension: bugfix in example code for filterConditionProcess

● chapter on ViewTemplate WebContent (IFrame) extended

● reference to AID114 "Blueprints" included

● description of property [hideContentSearch] included in chapter on

ViewTemplate Table

● description of new configuration method "user" included in appendix on

LoadEntity and WriteEntity

● minor improvements and bugfixes

● version history table: hyperlinks to chapters added; formatting optimized

● This is the official version of the Customizing Manual for ADITO version

2021.0.1.

© 2025 ADITO Software GmbH 467 / 472

Version Changes

2020.2.2 ● chapter FilterExtension: new paragraph about examples in ADITO xRM;

extended description of variable $local.comparison

● explanation of property [isLookupFilter]

● new tip box regarding [zooming] the code in the Editor window

● new example of [CarDriver_entity_contentTitleProcess] using "LoadEntity"

● extended information in chapter Troubleshooting

● new chapter [EnablingDemoData] covering control and danger of demo data in

Liquibase master changelog file

● extended description of [contentTitleProcess] and LookupView

● chapter System variables: paragraphs on $image and $comp removed

● bugfix in initFilterProcess

● explanation of the ViewTemplate Generic's property [hideEmptyFields]

● tip box added explaining how to [deactivate] a displayValue at runtime

● added info box regarding PreviewView in DatalessRecordContainer

● minor improvements.

● This is the official version of the Customizing Manual for ADITO version

2020.2.2.

2020.2.1 ● new chapter DatalessRecordContainer

● new chapter Blueprints

● chapter Icons: new paragraph about how to find a suitable icon quickly

● appendix LoadEntity and WriteEntity: new paragraph "Usage in server

processes"

● further example of LoadEntity (loading 1 single row)

● minor improvements

● This is the official version of the Customizing Manual for the ADITO version

2020.2.1.

© 2025 ADITO Software GmbH 468 / 472

Version Changes

2020.2.0.1 ● new appendix LoadEntity and WriteEntity, along with warnings regarding

permissions to be ignored when using [SqlBuilder] and db.xxx methods

● reference to Reporting Manual in description of ViewTemplate Report

● note regarding setting of EntityField [ISESSENTIAL] (KeywordEntry_entity)

● minor improvements

● This is the official version of the Customizing Manual for ADITO version

2020.2.0.

2020.2.0 ● new chapters with description of ViewTemplates DynamicSingleDataChart and

DynamicMultiDataChart

● extended description and illustration of ADITO models and their Logical

hierarchy

● extended description of Deploy

● added example of calculating Person_entity.db.age.value.expression in the

expression process of the RecordContainer

● example code of FilterExtension improved

● minor improvements and bugfixes

● This is a beta version of the Customizing Manual for ADITO version 2020.2.0.

2020.1.3.1 ● Hotfix: refactoring CHAR(36) → VARCHAR(36) for AB_KEYWORD_ENTRY.KEYID

and corresponding EntityFields, including removal of calling autopad

functionality

● minor improvements

● This is the official version of the Customizing Manual for ADITO version

2020.1.3.

2020.1.3 ● Syntax of version number changed, in order to have a unique reference to the

corresponding ADITO version

● This is a beta version of the Customizing Manual for ADITO version 2020.1.3.

© 2025 ADITO Software GmbH 469 / 472

Version Changes

2.3 ● Added example code for form definition of ViewTemplate DynamicForm

● added short description of ViewTemplate Tiles

● refactoring KeywordRegistry_basic → KeywordRegistry_carPool

● minor improvements.

2.2 ● short notice regarding logging and debugging

● warning regarding usage of [openContext] in RecordContainer processes

● added chapter "Tree and TreeTable: Advanced explanations"

● significant extensions of chapters JDitoRecordContainer, SingleDataChart, and

MultiDataChart (see sub-chapters "Advanced explanations")

● refactoring SpellingGuidelines → AID001

● refactoring vars.getString(…) → vars.get(…), including revision of chapter

System variables, as vars.getString(…) is no longer required

● SALUTATION of driver added

● field name changed: DRIVINGLICENSEID → DRIVINGLICENSENUMBER

● chapter Example: Sum of fines: Note added regarding calculation of fines sum

via SQL

● minor improvements

● version for 2020.1.1

2.1 ● New chapters about FilterExtension and FilterExtensionSet;

● new chapter on Filter presets

● new chapters about ViewTemplates CardTable, DynamicForm, Lookup, and

Report

● warning regarding database [indices]; specifications for customized icons;

examples of database indices in Liquibase file create_carreservation.xml.xml

● minor improvements

● version for 2020.1.0

© 2025 ADITO Software GmbH 470 / 472

Version Changes

2.0 ● new appendix Accessing the value of an EntityField

● new appendix Operating state vs. record state

● new chapter Resetting Dashboards

● chapter IndexRecordContainer extended by instructions on how to rebuild the

index

● extended warnings of using the [valueProcess] or [displayValueProcess]

instead of the "expression" properties

● minor improvements

● version for 2020.0.2

1.9 ● Extended description of ViewTemplates SingleDataChart and MultiDataChart;

● extended Liquibase documentation, including how to auto-generate Liquibase

files from existing database structure and content (see new appendix "Create

Liquibase files automatically)

● database changes via Alias Definition

● extended description of property "color"

● appendix Checklist for new fields added

● chapter Actions extended

● minor improvements

● new version for 2020.0.1

1.8 ● Refactoring SqlCondition → SqlBuilder

1.7 ● new appendix Requirements for customized Theme

● minor further optimizations

1.6 ● new chapter 360Degree Context

● warning of customizing [xRM_libraries]

● new chapter Internationalization

● new chapter QuickEntry

© 2025 ADITO Software GmbH 471 / 472

Version Changes

1.5 ● refactoring of wording: xRM-Basic → xRM

● bugfixes

● minor improvements

1.4 ● table and illustration fpr dependencies

● ER diagram of the ADITO xRM project’s core tables (along with their former

names, until ADITO 5) of carpool project

● new chapter [Colors]

● new tip box explaining [mass_edit] support

● various minor improvements and bugfixes

1.3 ● new appendix Order of execution of Entity processes

● bugfixes, minor improvements

1.2 ● new appendix Database Access

1.1 ● new chapter Layouts

● new chapter JDitoRecordContainer

● new chapter IndexRecordContainer

1.0 ● First release for ADITO version 2019.2.0

© 2025 ADITO Software GmbH 472 / 472

	Customizing Manual
	Character Formatting
	Index
	Preface
	1. Introduction
	2. Overview
	2.1. Structure of ADITO projects
	2.2. Logical hierarchy

	3. Prerequisites
	3.1. Documentation
	3.2. ADITO Web Client
	3.3. ADITO platform and xRM project
	3.4. ADITO database
	3.5. ADITO server
	3.6. Instance configuration
	3.7. Logging
	3.7.1. Predefined logging
	3.7.2. Customized logging
	3.7.3. Logging in "catch" section
	3.7.4. Debugging vs. temporary logging

	4. JDito
	4.1. What is JDito?
	4.2. How to use JDito
	4.3. Further information

	5. Core tables of the xRM project
	6. Modelling the data structure
	7. Creating Entities
	7.1. Configuring Entities
	7.2. Configuring EntityFields

	8. Creating database tables and columns
	8.1. Creating a folder for your xml files
	8.2. Creating an xml file for every table
	8.3. Including xml files in changelog
	8.4. Liquibase update
	8.5. Updating the Alias Definition
	8.6. Connecting EntityFields with database columns (RecordContainer)
	8.7. Using database views

	9. Making data visible
	9.1. Creating Contexts
	9.2. Views
	9.2.1. Creating Views
	9.2.2. Assigning layout and ViewTemplates
	9.2.3. Blueprints

	9.3. Extend the Global Menu
	9.3.1. Creating new project roles

	9.4. Deploy
	9.4.1. Practically
	9.4.2. Technically

	9.5. A first test
	9.5.1. Entering example data

	9.6. Dashboard and Dashlet
	9.6.1. Add Dashlets
	9.6.2. Configure Dashboard defaults
	9.6.3. Resetting Dashboards
	9.6.3.1. Reset of a "public" Dashboard
	9.6.3.2. Reset of a "private" Dashboard

	9.6.4. Creating new Dashboards

	10. Advanced functionality
	10.1. Consumer and Provider: Connecting Entities
	10.1.1. Example: Cars and car drivers in car reservations
	10.1.2. Example: Car drivers and Persons
	10.1.3. Retrieving pending records
	10.1.3.1. Basics
	10.1.3.2. Example 1
	10.1.3.3. Example 2
	10.1.3.3.1. EntityConsumerRowsHelper
	10.1.3.3.2. Implicit refreshing

	10.1.3.4. Further information

	10.2. Using keywords (predefined values)
	10.2.1. Example: Car colors
	10.2.2. Example: Manufacturers
	10.2.3. Example: Currency

	10.3. Controlling the displayed value
	10.3.1. displayValue of a RecordContainer field
	10.3.1.1. Example: Driver’s name
	10.3.1.2. Example: Manufacturer
	10.3.1.3. Example: Car color
	10.3.1.4. Example: Currency

	10.3.2. displayValueProcess of an EntityField
	10.3.2.1. Example: Car Color
	10.3.2.2. Example: Currency

	10.4. Complex dependencies
	10.4.1. MasterDetailLayout
	10.4.1.1. Example: Showing all reservations of a driver in the MainView
	10.4.1.2. Example: Showing all reservations of a car in the MainView

	10.5. Actions and ActionGroups
	10.5.1. Configuration
	10.5.2. Appearance
	10.5.3. Example: Reserve this car
	10.5.4. Example: Reserve car for this driver
	10.5.5. Multi Selection Action

	10.6. Calculated fields
	10.6.1. expression (RecordContainer)
	10.6.2. valueProcess (EntityField)
	10.6.2.1. Common use cases
	10.6.2.2. Warning
	10.6.2.3. Conditional execution
	10.6.2.4. Trigger
	10.6.2.5. Examples
	10.6.2.5.1. Example: Driving experience
	10.6.2.5.2. Example: Age
	10.6.2.5.3. Example: Sum of fines
	10.6.2.5.4. Example: Sum of damages
	10.6.2.5.5. Example: Mileage
	10.6.2.5.6. Example: carValue
	10.6.2.5.7. Example: Availability

	10.7. AggregateFields
	10.7.1. Appearance
	10.7.2. Configuration
	10.7.2.1. when using DbRecordContainer
	10.7.2.2. when using JDitoRecordContainer

	10.7.3. displayValueProcess of an AggregateField
	10.7.4. Usage in filter
	10.7.5. Usage in Consumer
	10.7.6. Properties allowing AggregateFields

	10.8. Field Groups
	10.9. Advanced filter options
	10.9.1. Dynamic filter values
	10.9.2. Filter presets
	10.9.2.1. FilterBuilder
	10.9.2.2. initFilterProcess
	10.9.2.3. neon.setFilter

	10.9.3. FilterExtension
	10.9.3.1. General example
	10.9.3.1.1. Creating a new FilterExtension
	10.9.3.1.2. General properties
	10.9.3.1.3. filterValuesProcess
	10.9.3.1.4. useConsumer/consumer
	10.9.3.1.5. filterConditionProcess
	10.9.3.1.6. groupQueryProcess
	10.9.3.1.7. supportsFilterExtensionGrouping

	10.9.3.2. Specific example task
	10.9.3.2.1. Creating a new FilterExtension
	10.9.3.2.2. Setting the FilterExtension’s properties

	10.9.4. FilterExtensionSet
	10.9.4.1. Example
	10.9.4.1.1. Creating Consumer for gender-related field
	10.9.4.1.2. filterFieldsProcess
	10.9.4.1.3. filterValuesProcess
	10.9.4.1.4. filterConditionProcess
	10.9.4.1.5. groupQueryProcess

	10.9.4.2. Further examples
	10.9.4.3. Available local variables
	10.9.4.4. useConsumer
	10.9.4.5. groupQueryProcess

	10.9.5. EntityRecordsRecipe
	10.9.5.1. Technical background
	10.9.5.2. General usage
	10.9.5.3. Usage in "openContextWithRecipe"
	10.9.5.4. Usage in "LoadEntity"
	10.9.5.5. Usage in customized methods
	10.9.5.6. $sys.selectionsRecordsRecipe
	10.9.5.7. Example: Notifications

	10.9.6. Context filter (content search)
	10.9.6.1. Availability
	10.9.6.2. Evaluation

	10.10. RecordContainers
	10.10.1. Database RecordContainer
	10.10.1.1. COUNT queries
	10.10.1.1.1. Purpose
	10.10.1.1.2. minimizeCountQueries
	10.10.1.1.3. Caching not required

	10.10.2. JDitoRecordContainer
	10.10.2.1. Introduction
	10.10.2.2. Advanced explanations
	10.10.2.3. Step-by-step example
	10.10.2.4. Filtering a JDitoRecordContainer

	10.10.3. IndexRecordContainer
	10.10.4. DatalessRecordContainer

	10.11. Tags
	10.12. Notifications and observations
	10.12.1. Basics
	10.12.2. Setup
	10.12.2.1. Manually triggered notifications
	10.12.2.2. Observation
	10.12.2.2.1. Observation of selected datasets
	10.12.2.2.2. Observation of filtered datasets

	10.12.3. Notifications with multiple ADITO servers

	10.13. Adding an ATTRIBUTES tab
	10.14. Adding a LOGS tab
	10.15. Adding Tasks
	10.16. Auto-generated Primary Keys
	10.17. PreviewMultiple
	10.18. Paging
	10.18.1. Paging with a DbRecordContainer
	10.18.2. Paging with a JDitoRecordContainer
	10.18.3. Further information

	10.19. Storing user-specific data outside ASYS_USERS
	10.20. Lookup for translated values
	10.21. Export
	10.21.1. Export of a subordinated Entity

	11. Controlling the design
	11.1. Themes
	11.2. Layouts
	11.2.1. NoneLayout
	11.2.2. DrawerLayout
	11.2.3. BoxLayout
	11.2.4. GroupLayout
	11.2.5. HeaderFooterLayout
	11.2.6. GridLayout
	11.2.6.1. Properties

	11.2.7. MasterDetailLayout

	11.3. ViewTemplates
	11.3.1. ActionList
	11.3.2. Actions
	11.3.3. Card
	11.3.4. CardTable
	11.3.5. DragAndDrop
	11.3.6. DynamicForm
	11.3.7. DynamicMultiDataChart
	11.3.8. DynamicSingleDataChart
	11.3.9. Favorite
	11.3.10. Gantt
	11.3.11. Generic
	11.3.12. GenericMultiple
	11.3.13. IndexSearch
	11.3.14. Lookup
	11.3.15. Map
	11.3.15.1. MapTiler
	11.3.15.2. General information on the required structure of map data sources
	11.3.15.2.1. Requirements
	11.3.15.2.2. Property "configField"
	11.3.15.2.3. URL
	11.3.15.2.4. Server flexibility

	11.3.16. SingleDataChart
	11.3.16.1. Overview
	11.3.16.2. Advanced explanations
	11.3.16.2.1. Properties
	11.3.16.2.2. Example

	11.3.17. MultiDataChart
	11.3.17.1. Overview
	11.3.17.2. Advanced explanations
	11.3.17.2.1. Properties
	11.3.17.2.2. Example

	11.3.18. MultiEditTable
	11.3.19. Picture
	11.3.20. Report
	11.3.21. ResourceTimeline
	11.3.21.1. Advanced explanations
	11.3.21.1.1. Important properties
	11.3.21.1.2. Outlining the Entities
	11.3.21.1.3. Example: Implementing the basic functions

	11.3.21.2. Specific color constants

	11.3.22. ScoreCard
	11.3.23. Signature
	11.3.24. Stepper
	11.3.25. Table
	11.3.26. Timeline
	11.3.27. Tiles
	11.3.28. TitledList
	11.3.29. Tree
	11.3.30. TreeTable
	11.3.31. Tree and TreeTable: Advanced explanations
	11.3.31.1. Important properties - Tree
	11.3.31.2. Important properties - TreeTable
	11.3.31.3. Building a Tree/TreeTable
	11.3.31.4. Examples
	11.3.31.4.1. Simple Tree of organizations and their persons

	11.3.32. WebContent (IFrame)
	11.3.32.1. Advanced explanations
	11.3.32.2. Common mistakes

	11.3.33. Further ViewTemplate types

	11.4. Renderers
	11.4.1. NUMBERFIELD
	11.4.2. BADGE
	11.4.3. MULTISELECTCOMBOBOX
	11.4.3.1. Basics
	11.4.3.2. Configuration
	11.4.3.3. Value format

	11.5. Device-specific designs
	11.6. Further design elements
	11.6.1. Icons
	11.6.1.1. Predefined icons
	11.6.1.2. Icons from user’s resources
	11.6.1.3. Variable icons
	11.6.1.4. Avatars
	11.6.1.5. Using gif files

	11.6.2. Client navigation helpers
	11.6.2.1. QuickEntry
	11.6.2.2. linkedContext

	11.6.3. Color
	11.6.4. Login web page

	11.7. Automatisms
	11.7.1. Visibility of tabs

	12. 360Degree Context
	13. Internationalization
	13.1. Language files
	13.1.1. Refresh
	13.1.2. Extract keys
	13.1.3. Find unused keys
	13.1.4. Export/import
	13.1.5. Translate all

	13.2. User help
	13.3. Validation of address and communication data

	14. Further information
	15. Troubleshooting
	15.1. Built-in Designer help
	15.2. ScanServices
	15.3. Bug tracking
	15.4. Specific problems
	15.4.1. Low performance
	15.4.2. Changes are not visible in the client
	15.4.3. New database structure is not accessible

	Appendix A: JDito system modules and variables
	A.1. System modules
	A.2. System variables

	Appendix B: Database Access
	B.1. Basic SQL Statement
	B.2. Commit after database changes
	B.3. SQL Helper Functions
	B.3.1. Example: contentTitleProcess of CarDriver_entity
	B.3.2. Example: valueProcess of EntityField availability
	B.3.3. Example: conditionProcess of CarReservation_entity’s RecordContainer
	B.3.4. Example: Driver’s name
	B.3.5. Example: Manufacturer

	Appendix C: Order of execution of Entity processes
	C.1. Load
	C.2. Save

	Appendix D: Requirements for customized Theme
	Appendix E: Checklist for new fields
	Appendix F: Accessing the value of an EntityField
	F.1. Synchronization
	F.2. How does an EntityField value get set?
	F.3. How does a "$field" variable get its value?
	F.4. $this.value
	F.5. $this.value vs. $field.MYFIELD
	F.6. $this.value and $field.MYFIELD in valueProcess
	F.7. $local.value
	F.8. $local.rowdata and $local.initialRowdata

	Appendix G: Operating state vs. record state
	Appendix H: LoadEntity and WriteEntity
	H.1. LoadEntity
	H.1.1. Benefits
	H.1.2. Example
	H.1.3. getRow vs. getRows

	H.2. WriteEntity
	H.2.1. Benefits
	H.2.2. Examples

	H.3. Usage in server processes
	H.4. Skipping prevalidation

	Appendix I: RecordContainerCache
	I.1. Basics
	I.2. Setup
	I.2.1. cacheType
	I.2.2. cacheKeyProcess
	I.2.2.1. Helper functions
	I.2.2.2. Examples in the xRM project
	I.2.2.3. Logged example

	I.2.3. Cache invalidation
	I.2.3.1. Automatic
	I.2.3.1.1. RecordContainer-specific
	I.2.3.1.2. Timespan-related

	I.2.3.2. Manual

	I.3. Shared caching with multiple ADITO servers
	I.3.1. Alternative cache servers

	Appendix J: EntityField/Keywords vs. Attributes
	J.1. EntityField/Keywords
	J.2. Attributes

	Appendix K: $sys variables
	Appendix L: $local variables
	L.1. $local.filter
	L.2. $local.lookupFieldName

	Appendix M: $property variables
	Appendix N: XML in JDito
	Appendix O: Car pool example: EntityFields
	Appendix P: ResourceTimeline example: Liquibase and code
	P.1. Liquibase
	P.2. Code

	Appendix Q: Content types
	Appendix R: Siblings vs. refreshParent
	Appendix S: LexoRank
	S.1. Introduction
	S.2. Benefits
	S.2.1. Performance
	S.2.2. Drag and drop

	S.3. Further information
	S.4. Usage in ADITO
	S.4.1. Format
	S.4.2. Mainly used methods
	S.4.3. Rebalancing

	S.5. Example implementation
	S.5.1. Introduce new database column LEXORANK
	S.5.2. Introduce new EntityField LEXORANK
	S.5.3. Set valueProcess
	S.5.4. Set sorting properties
	S.5.5. enableDragAndDrop

	S.6. Further examples

	Appendix T: Trainee example
	T.1. Extending the changelog.xml files
	T.2. Creating the database table
	T.3. Executing a Liquibase update
	T.4. Creating the Entity
	T.5. Creating Context and FilterView
	T.6. Adding the Context to the Global Menu

	Appendix U: Version history

